張 錚,曹守啟,朱建平,陳佳品
?
面向大面積漁業(yè)環(huán)境監(jiān)測(cè)的長(zhǎng)距離低功耗LoRa傳感器網(wǎng)絡(luò)
張 錚1,曹守啟1,朱建平1,陳佳品2
(1. 上海海洋大學(xué)工程學(xué)院,上海 201306;2. 上海交通大學(xué)電子信息與電氣工程學(xué)院,上海 200240)
該文針對(duì)近海漁業(yè)和大面積水產(chǎn)養(yǎng)殖環(huán)境監(jiān)測(cè)應(yīng)用周期長(zhǎng),覆蓋面積大等特點(diǎn),設(shè)計(jì)了基于LoRa技術(shù)的長(zhǎng)距離低功耗無線傳感網(wǎng)絡(luò)系統(tǒng)。該系統(tǒng)設(shè)計(jì)了低成本的雙信道LoRa網(wǎng)關(guān),并在此基礎(chǔ)之上提出了一種新穎的速率自適應(yīng)的雙信道同步調(diào)度無線通信策略。該策略充分利用LoRa技術(shù)多擴(kuò)頻因子多數(shù)據(jù)率的特點(diǎn),對(duì)網(wǎng)關(guān)不同距離范圍內(nèi)的終端節(jié)點(diǎn)自動(dòng)分配不同的擴(kuò)頻因子以確保網(wǎng)絡(luò)連通性,并通過MAC層同步調(diào)度,在保證監(jiān)測(cè)網(wǎng)絡(luò)大面積覆蓋的同時(shí),大大降低了無線信道碰撞的概率,提高了異常數(shù)據(jù)上傳的實(shí)時(shí)性和終端節(jié)點(diǎn)的平均網(wǎng)絡(luò)壽命。通過仿真和現(xiàn)場(chǎng)試驗(yàn)驗(yàn)證了本方案的有效性,系統(tǒng)可有效覆蓋半徑3 km的監(jiān)測(cè)區(qū)域,100個(gè)終端節(jié)點(diǎn)的網(wǎng)絡(luò)規(guī)模;對(duì)于視距通信,該策略的投遞率從單一擴(kuò)頻因子的0.8提升到0.99,對(duì)于數(shù)據(jù)上傳周期為10 s的快速通信,投遞率從單一擴(kuò)頻因子的0.4提升到0.95以上;如采用3 600 mA?h鋰電池,數(shù)據(jù)上傳周期為10 min,終端節(jié)點(diǎn)壽命可達(dá)1 a。
水產(chǎn)養(yǎng)殖;監(jiān)測(cè);無線傳感器網(wǎng)絡(luò);LoRa;同步;速率自適應(yīng)
近年中國(guó)對(duì)水產(chǎn)品的市場(chǎng)需求不斷上漲,近海漁業(yè)和大面積水產(chǎn)養(yǎng)殖業(yè)發(fā)展迅猛。漁業(yè)環(huán)境的自動(dòng)監(jiān)測(cè)預(yù)警技術(shù)越來越受到重視,引起了許多學(xué)者的研究興趣?;谖锫?lián)網(wǎng)技術(shù)設(shè)計(jì)漁業(yè)環(huán)境無線監(jiān)測(cè)系統(tǒng)已成為目前的研究熱點(diǎn)[1-4]。
大多數(shù)研究人員在設(shè)計(jì)物聯(lián)網(wǎng)無線通信方案時(shí)使用Zigbee和GPRS技術(shù)[5-12]。楊旭輝等[6]基于Zigbee協(xié)議采用分時(shí)分區(qū)供電和數(shù)據(jù)融合技術(shù)延長(zhǎng)了節(jié)點(diǎn)壽命;蔣建明等通過LEACH(low energy adaptive clustering hierarchy)優(yōu)化協(xié)議提高能效性[8,9]。Zigbee的單跳通信距離最長(zhǎng)為幾百米,如需大面積的網(wǎng)絡(luò)覆蓋,則需依賴于路由節(jié)點(diǎn)和Mesh協(xié)議,隨著路由跳數(shù)的增加,實(shí)時(shí)性和可靠性都會(huì)下降,且路由節(jié)點(diǎn)能耗大,多跳路由協(xié)議復(fù)雜,路由節(jié)點(diǎn)難以采用電池供電,因此適用于中小面積的漁業(yè)環(huán)境監(jiān)測(cè)[5,6,8,9,10]。有些方案采用GPRS技術(shù)來實(shí)現(xiàn)漁業(yè)環(huán)境的遠(yuǎn)距離數(shù)據(jù)傳輸和大范圍監(jiān)測(cè)[7, 11,12,13],GPRS模塊功耗較大,Alippi等使用太陽能為網(wǎng)絡(luò)系統(tǒng)供電[12],但移動(dòng)通信技術(shù)按流量計(jì)費(fèi),而有些偏遠(yuǎn)地區(qū)或近海海域的網(wǎng)絡(luò)信號(hào)尚未覆蓋。申慶祥等提出了基于量子遺傳算法的水質(zhì)監(jiān)測(cè)路由優(yōu)化算法提高全網(wǎng)壽命[14],但沒說明具體實(shí)現(xiàn)技術(shù)。李慧等開發(fā)了Android平臺(tái)進(jìn)行水產(chǎn)養(yǎng)殖監(jiān)控[15],通過Zigbee技術(shù)進(jìn)行現(xiàn)場(chǎng)數(shù)據(jù)采集,并利用30 m×30 m的魚塘進(jìn)行了試驗(yàn)。
以LoRa為代表的LPWAN(Low power wide area network)技術(shù)以其低功耗、長(zhǎng)距離、低成本、大網(wǎng)絡(luò)容量等特點(diǎn)無疑將擁有巨大的農(nóng)業(yè)物聯(lián)網(wǎng)應(yīng)用空間[1,16]。LoRa是Semtech公司的一種基于擴(kuò)頻技術(shù)的超遠(yuǎn)距離無線通信方案,有效傳輸距離可達(dá)數(shù)千米以上[16]。目前LoRa技術(shù)的應(yīng)用主要采用LoRa Alliance的LoRaWAN[17]協(xié)議,LoRaWAN的網(wǎng)關(guān)芯片采用Semtech公司的SX1301[18],其能并行接收8個(gè)信道的數(shù)據(jù)包,每個(gè)信道可以接收擴(kuò)頻因子SF7~SF12共6種速率的LoRa信號(hào),極大提高了吞吐率。但其開發(fā)資料不公開,僅當(dāng)用戶付費(fèi)成為L(zhǎng)oRa Alliance會(huì)員,才能獲得相關(guān)資料和技術(shù),SX1301網(wǎng)關(guān)商品單價(jià)在3000元以上,成本很高。
目前學(xué)者對(duì)于LoRa技術(shù)的研究還主要集中在性能評(píng)估方面[19-22];Augustin等通過理論和試驗(yàn)分析評(píng)估了LoRa的擴(kuò)頻因子等配置參數(shù)對(duì)于網(wǎng)絡(luò)覆蓋及性能的影響[19];文獻(xiàn)[21]通過試驗(yàn)評(píng)估了LoRa技術(shù)在移動(dòng)條件下的性能;文獻(xiàn)[22]從理論的觀點(diǎn)分析了LoRaWAN的網(wǎng)絡(luò)規(guī)模和吞吐量。文獻(xiàn)[23]在能源物聯(lián)網(wǎng)項(xiàng)目中利用了LoRa技術(shù)進(jìn)行大面積網(wǎng)絡(luò)覆蓋,并與GPRS技術(shù)方案進(jìn)行了比較分析。目前對(duì)于LoRa通信協(xié)議的改進(jìn)優(yōu)化方面的研究較少。Kim等提出了基于LoRaWAN的物聯(lián)網(wǎng)數(shù)據(jù)傳輸和網(wǎng)絡(luò)架構(gòu)[24];Pham也提出了SX1301網(wǎng)關(guān)成本過高的問題,自行開發(fā)了基于LoRa終端芯片的低成本單信道網(wǎng)關(guān)[25]。目前針對(duì)大面積漁業(yè)環(huán)境和水產(chǎn)養(yǎng)殖監(jiān)測(cè)的低成本專用LoRa低功耗傳感網(wǎng)絡(luò)方案研究很少見到。
本文針對(duì)大面積漁業(yè)環(huán)境監(jiān)測(cè)的需求,研究基于LoRa技術(shù)的專用低功耗傳感網(wǎng)絡(luò)方案,設(shè)計(jì)了低成本雙信道網(wǎng)關(guān),并在此基礎(chǔ)上提出了低功耗低延遲的雙信道MAC層同步調(diào)度通信策略。通過仿真和現(xiàn)場(chǎng)試驗(yàn)驗(yàn)證網(wǎng)絡(luò)系統(tǒng)的性能,以期為大面積漁業(yè)環(huán)境監(jiān)測(cè)研究提供新思路。
本系統(tǒng)自行設(shè)計(jì)開發(fā)低成本網(wǎng)關(guān),采用2個(gè)基于單通道LoRa終端芯片SX1278[26](價(jià)格僅10元)的LoRa模塊構(gòu)成雙通道,并通過優(yōu)化改進(jìn)無線通信協(xié)議,使其完全滿足大面積漁業(yè)環(huán)境監(jiān)測(cè)應(yīng)用需求。網(wǎng)關(guān)的硬件原理框圖如圖1a所示,采用高性能微控制器STM32F429[27],GPS模塊用于定位和網(wǎng)關(guān)授時(shí),以太網(wǎng)和4G模塊用于感知數(shù)據(jù)的云端接入,網(wǎng)關(guān)采用太陽能板或直流電源供電。
圖1 傳感網(wǎng)硬件原理框圖
終端節(jié)點(diǎn)主要負(fù)責(zé)將各種漁業(yè)環(huán)境監(jiān)測(cè)數(shù)據(jù)通過LoRa無線方式發(fā)送給網(wǎng)關(guān)。其硬件原理框圖如圖1b所示,采用低功耗微控制器STM32L151[28],和一個(gè)基于SX1278芯片的LoRa模塊外,還集成溫度、溶氧、pH值、鹽度、濁度等各種水質(zhì)傳感器的一種或幾種。終端節(jié)點(diǎn)部署在環(huán)境監(jiān)測(cè)現(xiàn)場(chǎng),通常采用鋰電池供電。
本方案設(shè)計(jì)的網(wǎng)絡(luò)拓?fù)淙鐖D2所示。LoRa終端節(jié)點(diǎn)與LoRa網(wǎng)關(guān)構(gòu)成星形拓?fù)浼軜?gòu),消除了Zigbee網(wǎng)狀網(wǎng)技術(shù)的路由轉(zhuǎn)發(fā)開銷,具有較低的通信延遲[21]。LoRa終端節(jié)點(diǎn)發(fā)送完數(shù)據(jù)后立即進(jìn)入休眠狀態(tài),直到下一個(gè)數(shù)據(jù)采集周期才被喚醒,可大大降低功耗,延長(zhǎng)網(wǎng)絡(luò)壽命。網(wǎng)關(guān)對(duì)各個(gè)終端的上傳數(shù)據(jù)進(jìn)行匯聚分類,并通過Internet上傳到云端服務(wù)器,然后推送到遠(yuǎn)程終端,如各種移動(dòng)終端、計(jì)算機(jī)等。遠(yuǎn)程終端應(yīng)用軟件對(duì)數(shù)據(jù)進(jìn)行信息管理、分析統(tǒng)計(jì)、智能決策、預(yù)警控制等處理。
圖2 網(wǎng)絡(luò)拓?fù)?/p>
在漁業(yè)環(huán)境監(jiān)測(cè)系統(tǒng)中,既有需要周期性上傳的現(xiàn)場(chǎng)環(huán)境感知常規(guī)數(shù)據(jù),又有需要實(shí)時(shí)上傳的緊急異常數(shù)據(jù),如某一監(jiān)測(cè)指標(biāo)嚴(yán)重超標(biāo),需要發(fā)送報(bào)警信息。為滿足應(yīng)用需求,本文在低成本雙通道LoRa網(wǎng)關(guān)的基礎(chǔ)上提出了一種速率自適應(yīng)的雙信道同步通信策略LoRa- DSADR(dual-channel synchronous communication with adaptive data rate)。在滿足終端節(jié)點(diǎn)低功耗通信的同時(shí),又滿足緊急數(shù)據(jù)實(shí)時(shí)上傳的需求。
對(duì)于LoRa技術(shù),網(wǎng)關(guān)的SX1278模塊與終端的SX1278模塊進(jìn)行無線通信必須滿足無線信道頻段、帶寬、擴(kuò)頻因子設(shè)置相同[29]。
LoRa射頻芯片的通信距離與接收靈敏度有關(guān),而接收靈敏度主要取決于擴(kuò)頻因子;擴(kuò)頻因子設(shè)置值越高,接收靈敏度越高,通信距離越遠(yuǎn)[21,26]。各個(gè)終端節(jié)點(diǎn)的部署位置不同,其到網(wǎng)關(guān)的距離也不同,處于相同距離范圍的節(jié)點(diǎn)可采用相同的擴(kuò)頻因子,如圖3中,通信距離大于半徑1,小于半徑2范圍內(nèi)的節(jié)點(diǎn)的擴(kuò)頻因子SF可設(shè)置為11。表1所示為SX1278通信帶寬設(shè)置為125 kHz時(shí),不同的擴(kuò)頻因子SF設(shè)置值與數(shù)據(jù)率DR的對(duì)應(yīng)關(guān)系。如果按位置對(duì)節(jié)點(diǎn)進(jìn)行分組,對(duì)于距離網(wǎng)關(guān)越近的節(jié)點(diǎn)組,設(shè)置的擴(kuò)頻因子數(shù)值越低,可獲得的數(shù)據(jù)率越高,相同長(zhǎng)度的數(shù)據(jù)包射頻發(fā)射時(shí)間越短,這樣有利于提高吞吐量,減少節(jié)點(diǎn)的通信能耗和碰撞概率。如圖3中,通信半徑小于1的節(jié)點(diǎn)設(shè)置SF=10,可獲得比SF=11高1倍的速率。
圖3 擴(kuò)頻因子(SF)與通信距離(r)
表1 擴(kuò)頻因子與數(shù)據(jù)率
網(wǎng)關(guān)的2個(gè)SX1278模塊分別對(duì)應(yīng)2個(gè)物理信道:周期性數(shù)據(jù)信道1和特殊功能信道2,而終端節(jié)點(diǎn)只使用一個(gè)SX1278模塊?;贚oRa技術(shù)的上述特點(diǎn),LoRa- DSADR策略協(xié)調(diào)MAC(Media access control)層的信道、擴(kuò)頻因子切換與分時(shí)同步調(diào)度。
周期性數(shù)據(jù)信道1只用來進(jìn)行常規(guī)數(shù)據(jù)包的周期性上傳,通過LoRa-DSADR的自適應(yīng)數(shù)據(jù)率算法,為不同距離范圍的終端節(jié)點(diǎn)分配不同的擴(kuò)頻因子,并周期性地進(jìn)行信道1的擴(kuò)頻因子切換。
特殊功能信道2主要完成3個(gè)功能:節(jié)點(diǎn)加入、緊急數(shù)據(jù)上傳、時(shí)間同步維護(hù)。為保證網(wǎng)絡(luò)的連通性,該信道設(shè)置擴(kuò)頻因子SF=12。
新的終端節(jié)點(diǎn)在上電初始化階段工作在特殊功能信道2;LoRaWAN通信沒有采用類似CSMA(carrier sense multiple access)的機(jī)制,其通信性能與ALOHA[30]機(jī)制近似;因此,為了降低信道碰撞概率并節(jié)能,本策略首先進(jìn)行高頻的低功耗偵聽(low power listening,LPL[31]),如圖4所示,即節(jié)點(diǎn)周期性地進(jìn)入信道活動(dòng)檢測(cè)(channel activity detection,CAD)模式,當(dāng)檢測(cè)到信道忙時(shí),節(jié)點(diǎn)進(jìn)入短暫休眠狀態(tài),當(dāng)連續(xù)兩次檢測(cè)到信道空閑時(shí),節(jié)點(diǎn)向網(wǎng)關(guān)發(fā)送加入請(qǐng)求。
圖4 LoRa-DSADR特殊功能信道2調(diào)度圖
為了進(jìn)行終端節(jié)點(diǎn)與網(wǎng)關(guān)的高精度時(shí)間同步,本策略采取了MAC層時(shí)間同步的方法,其過程如圖5所示。網(wǎng)關(guān)在確認(rèn)請(qǐng)求時(shí),將本地定時(shí)器當(dāng)前值附加在確認(rèn)幀的尾部;當(dāng)終端節(jié)點(diǎn)接收到確認(rèn)幀的前導(dǎo)碼,則SX1278會(huì)產(chǎn)生一個(gè)中斷通知MCU,記錄本地定時(shí)器的當(dāng)前值。當(dāng)終端節(jié)點(diǎn)接收完該幀,就能夠計(jì)算出網(wǎng)關(guān)與終端節(jié)點(diǎn)兩端定時(shí)器的差值。
圖5 時(shí)間同步過程
接下來終端節(jié)點(diǎn)首先設(shè)置從本地定時(shí)器值中減去該差值,然后再減去一個(gè)小的同步退避值。的設(shè)置值應(yīng)正好滿足捕捉到確認(rèn)幀前導(dǎo)碼所需的時(shí)間(依前導(dǎo)碼檢測(cè)長(zhǎng)度PreambleDetectSize 和位率BitRate 而定[26])。這樣在終端節(jié)點(diǎn)入網(wǎng)階段就完成了與網(wǎng)關(guān)的時(shí)間同步。
確認(rèn)幀中還包括Beacon周期T和下一次發(fā)送Beacon的時(shí)間偏移量信息。
如圖4所示,網(wǎng)關(guān)以T為周期發(fā)送Beacon,終端節(jié)點(diǎn)入網(wǎng)成功并完成時(shí)間同步后,在下一次Beacon接收時(shí)間切換到特殊功能信道2,完成Beacon接收后再切換回周期性數(shù)據(jù)信道1。通過周期性地接收Beacon,節(jié)點(diǎn)就完成了與網(wǎng)關(guān)的時(shí)間同步維護(hù)。
各個(gè)終端節(jié)點(diǎn)的周期性數(shù)據(jù)信道1 的擴(kuò)頻因子SF 由網(wǎng)關(guān)根據(jù)接收信號(hào)強(qiáng)度RSSI(received signal strength indication)和信噪比SNR(signal noise ratio)自動(dòng)調(diào)整。終端節(jié)點(diǎn)距離網(wǎng)關(guān)越近,接收信號(hào)強(qiáng)度越大,信噪比越高,則分配的擴(kuò)頻因子值越低,數(shù)據(jù)率越高。
漁業(yè)環(huán)境監(jiān)測(cè)多為較空曠區(qū)域,因此門限值可通過現(xiàn)場(chǎng)試驗(yàn)測(cè)試獲得。
對(duì)于周期性常規(guī)數(shù)據(jù),如圖6所示,網(wǎng)關(guān)根據(jù)網(wǎng)絡(luò)內(nèi)節(jié)點(diǎn)的數(shù)量和擴(kuò)頻因子的分配情況,將信道1的數(shù)據(jù)采集上傳周期T劃分為若干個(gè)時(shí)段,每個(gè)時(shí)段采用不同的擴(kuò)頻因子;在每個(gè)時(shí)段內(nèi)為處于相同距離范圍的節(jié)點(diǎn)分配時(shí)隙θ;通過自適應(yīng)數(shù)據(jù)率策略,終端節(jié)點(diǎn)根據(jù)網(wǎng)關(guān)返回的擴(kuò)頻因子設(shè)置信道1,并在分配的時(shí)隙上傳周期性數(shù)據(jù),網(wǎng)關(guān)返回ACK確認(rèn)幀。擴(kuò)頻因子值每降低1,數(shù)據(jù)率提高一倍,數(shù)據(jù)率越高,相同長(zhǎng)度數(shù)據(jù)上傳的時(shí)間越短。終端節(jié)點(diǎn)發(fā)送完數(shù)據(jù)立即進(jìn)入休眠狀態(tài),直到下一個(gè)周期分配的時(shí)隙到來才喚醒進(jìn)行數(shù)據(jù)上傳。如果終端節(jié)點(diǎn)連續(xù)3次上傳數(shù)據(jù),未接收到網(wǎng)關(guān)返回的ACK,則切換到特殊功能信道2,通過數(shù)據(jù)測(cè)試重新評(píng)估擴(kuò)頻因子。網(wǎng)關(guān)會(huì)根據(jù)測(cè)試數(shù)據(jù)重新為終端節(jié)點(diǎn)分配擴(kuò)頻因子和時(shí)隙。
注:θn表示同一距離范圍內(nèi)第n個(gè)節(jié)點(diǎn)分配的時(shí)隙,Tp表示數(shù)據(jù)上傳周期。
對(duì)于緊急數(shù)據(jù),當(dāng)節(jié)點(diǎn)需要上傳時(shí),不必等到分配時(shí)隙的到來,直接切換到特殊功能信道2,進(jìn)行緊急數(shù)據(jù)的實(shí)時(shí)上傳,如圖4所示。由于采用了不同的信道,不會(huì)和其他節(jié)點(diǎn)的周期性上傳數(shù)據(jù)產(chǎn)生通信碰撞,大大提高了系統(tǒng)響應(yīng)的實(shí)時(shí)性。
網(wǎng)關(guān)的LoRa-DSADR流程圖如圖7a所示。網(wǎng)關(guān)在信道初始化完成后空閑等待中斷請(qǐng)求IRQ(interrupt request),當(dāng)有中斷到來時(shí),根據(jù)中斷類型進(jìn)行相應(yīng)的處理。終端節(jié)點(diǎn)的LoRa-DSADR流程圖如圖7b所示。終端節(jié)點(diǎn)在加入網(wǎng)絡(luò)并時(shí)間同步后,休眠等待中斷請(qǐng)求IRQ,當(dāng)有中斷到來時(shí),根據(jù)中斷類型進(jìn)行相應(yīng)的處理,如:時(shí)間同步、信道切換、緊急數(shù)據(jù)上傳、周期性數(shù)據(jù)上傳等。
注:IRQ表示中斷請(qǐng)求,CAD表示信道活動(dòng)檢測(cè)。
為了評(píng)估LoRa-DSADR策略的性能,應(yīng)用Matlab編寫了計(jì)算機(jī)仿真程序,LoRa通信物理層仿真模型設(shè)計(jì)參考文獻(xiàn)[20]。在如圖3所示的半徑3 km的范圍內(nèi)隨機(jī)均勻部署終端節(jié)點(diǎn),網(wǎng)關(guān)位于原點(diǎn)。節(jié)點(diǎn)信道1擴(kuò)頻因子SF=12,信道2擴(kuò)頻因子SF分時(shí)段采用10~12,數(shù)據(jù)包有效負(fù)載51字節(jié)。所有終端節(jié)點(diǎn)數(shù)據(jù)采集上傳周期T為5 min,同步周期T為1 h。LoRa-DSADR與單信道LoRa和時(shí)間同步的單信道LoRa-SYN進(jìn)行性能比較;假設(shè)單信道LoRa的數(shù)據(jù)包發(fā)送時(shí)間偏移服從泊松分布;時(shí)間同步的單信道LoRa-SYN按平均分配的時(shí)隙發(fā)送數(shù)據(jù)包。單信道LoRa和LoRa-SYN都采用擴(kuò)頻因子SF=12。每輪仿真時(shí)間為5 h,取6輪仿真的平均值。仿真評(píng)估網(wǎng)絡(luò)性能隨終端節(jié)點(diǎn)數(shù)量增加的變化情況,評(píng)價(jià)指標(biāo)如下:
1)碰撞率:數(shù)據(jù)包同時(shí)發(fā)送發(fā)生信道碰撞的次數(shù)與發(fā)送的數(shù)據(jù)包總數(shù)的比值。
2)通信延遲:數(shù)據(jù)包從發(fā)送到被網(wǎng)關(guān)成功接收的時(shí)間,包括數(shù)據(jù)空中傳輸和發(fā)送失敗重傳的時(shí)間等。
3)能量消耗:終端節(jié)點(diǎn)平均成功發(fā)送1位數(shù)據(jù)的能耗。
如圖8a所示,單信道LoRa通信沒有采用類似CSMA的機(jī)制,其通信性能與ALOHA近似,碰撞率隨通信終端個(gè)數(shù)的增加而增大。LoRa-SYN因?yàn)楦鱾€(gè)終端節(jié)點(diǎn)都平均分配時(shí)隙周期性同步上傳數(shù)據(jù),碰撞率較低;但隨著節(jié)點(diǎn)數(shù)量的增加碰撞率略有上升,這是因?yàn)閱涡诺绬螖U(kuò)頻因子通信,當(dāng)終端節(jié)點(diǎn)有緊急數(shù)據(jù)需要上傳且不在自己的分配時(shí)隙內(nèi)時(shí),數(shù)據(jù)碰撞的概率很大。LoRa-DSADR由于雙信道多擴(kuò)頻因子通信且加入了CAD功能,緊急數(shù)據(jù)上傳不會(huì)影響到其他節(jié)點(diǎn)的周期性數(shù)據(jù)上傳,只有兩個(gè)節(jié)點(diǎn)同時(shí)上傳緊急數(shù)據(jù)時(shí)才有可能發(fā)生沖突,因此碰撞率非常低,且?guī)缀醪皇芫W(wǎng)絡(luò)節(jié)點(diǎn)個(gè)數(shù)增加的影響。
如圖8b所示,由于單信道LoRa和LoRa-SYN都采用單一擴(kuò)頻因子SF=12,因此其位速最慢(表1),數(shù)據(jù)包空中傳輸時(shí)間最長(zhǎng)。由于信道碰撞和數(shù)據(jù)重傳,單信道LoRa的通信延遲隨節(jié)點(diǎn)數(shù)量的增大而增大。LoRa- DSADR由于采用了自適應(yīng)數(shù)據(jù)率機(jī)制,距離網(wǎng)關(guān)較近的節(jié)點(diǎn)具有較快的數(shù)據(jù)率,因此平均通信延遲最低且保持穩(wěn)定。
圖8 網(wǎng)絡(luò)性能隨終端節(jié)點(diǎn)數(shù)量的變化
如圖8c所示,數(shù)據(jù)碰撞和重傳會(huì)進(jìn)一步增加單信道LoRa通信的能耗,減小電池壽命。LoRa-SYN由于采用擴(kuò)頻因子SF=12,因此傳輸相同長(zhǎng)度數(shù)據(jù)的平均能耗要比LoRa- DSADR高。LoRa-DSADR采用多擴(kuò)頻因子同步調(diào)度通信機(jī)制,且時(shí)間同步開銷很小,隨著節(jié)點(diǎn)數(shù)量的增加,其低功耗優(yōu)勢(shì)非常明顯。根據(jù)仿真結(jié)果推算,如果采用7.4 V的3600 mA?h鋰電池,此場(chǎng)景下采用LoRa-DSADR機(jī)制的終端節(jié)點(diǎn)平均工作壽命在1 a以上。
為了進(jìn)一步驗(yàn)證LoRa-DSADR策略的有效性和可靠性,本文在上海臨港新城滴水湖進(jìn)行了現(xiàn)場(chǎng)試驗(yàn)。圖9a為本試驗(yàn)自行開發(fā)的雙信道網(wǎng)關(guān)和終端節(jié)點(diǎn),以及終端節(jié)點(diǎn)配備的溶氧(RDO-206型)、pH值(PHG-202型)傳感器等硬件設(shè)備。LoRa-DSADR策略采用C語言,在Semtech公司提供的SX1278驅(qū)動(dòng)程序Firmware Drivers V2.1.0的MAC層上設(shè)計(jì)實(shí)現(xiàn)。
終端節(jié)點(diǎn)部署如圖9b所示,漁業(yè)環(huán)境監(jiān)測(cè)應(yīng)用多為較空曠區(qū)域,因此選擇節(jié)點(diǎn)1、3、4與網(wǎng)關(guān)為視距通信,節(jié)點(diǎn)2與網(wǎng)關(guān)之間有叢林遮擋。由于LoRa網(wǎng)絡(luò)的終端節(jié)點(diǎn)與網(wǎng)關(guān)構(gòu)成星型拓?fù)?,進(jìn)行一跳通信,因此影響網(wǎng)絡(luò)性能的因素主要是終端節(jié)點(diǎn)到網(wǎng)關(guān)的距離,是否有障礙物遮擋,還有數(shù)據(jù)發(fā)送的間隔。
本文針對(duì)此傳感網(wǎng)絡(luò)系統(tǒng)專門開發(fā)了安卓手機(jī)APP程序,通過連接云端服務(wù)器,可查詢4個(gè)節(jié)點(diǎn)的監(jiān)測(cè)數(shù)據(jù)。其軟件界面以及2號(hào)節(jié)點(diǎn)的溶氧、pH值、溫度數(shù)據(jù)監(jiān)測(cè)界面如圖10所示。
圖9 硬件設(shè)備與節(jié)點(diǎn)部署圖
圖10 手機(jī)APP程序監(jiān)測(cè)界面
首先測(cè)試4個(gè)終端節(jié)點(diǎn)采用擴(kuò)頻因子SF=10、11、12和LoRa-DSADR機(jī)制時(shí)的數(shù)據(jù)投遞率,測(cè)試數(shù)據(jù)網(wǎng)關(guān)不進(jìn)行ACK應(yīng)答,終端節(jié)點(diǎn)不進(jìn)行數(shù)據(jù)重傳,終端節(jié)點(diǎn)發(fā)射功率為25 mW,數(shù)據(jù)包有效負(fù)載51字節(jié),數(shù)據(jù)周期T為2 min。
由于部署節(jié)點(diǎn)較少且數(shù)據(jù)發(fā)送間隔為2 min,所以信道碰撞概率很低,所以投遞率主要受距離和擴(kuò)頻因子的影響。如圖11a所示,終端節(jié)點(diǎn)1距離網(wǎng)關(guān)最近,4種機(jī)制的投遞率都接近1;在節(jié)點(diǎn)3和4,擴(kuò)頻因子SF=10、SF=11的投遞率隨著距離的增加而下降,SF=12為0.99,而LoRa-DSADR由于采用擴(kuò)頻因子自適應(yīng)機(jī)制數(shù)據(jù)投遞率為0.99。對(duì)于節(jié)點(diǎn)2,雖然距網(wǎng)關(guān)的距離較節(jié)點(diǎn)3、4近,但由于無線信號(hào)傳輸路徑上有叢林遮擋,信號(hào)衰落最嚴(yán)重,所以擴(kuò)頻因子SF=10、SF=11的數(shù)據(jù)投遞率都低于0.8,SF=12和LoRa-DSADR的投遞率均為0.95,如開啟ACK應(yīng)答機(jī)制,數(shù)據(jù)通信的可靠性會(huì)進(jìn)一步提高。由此可以看出,雖然采用SF=12可以獲得和LoRa-DSADR一樣的投遞率,但對(duì)于節(jié)點(diǎn)1、3,LoRa-DSADR機(jī)制會(huì)選擇更小的擴(kuò)頻因子進(jìn)行周期性數(shù)據(jù)上傳,在保證投遞率的同時(shí),有利于進(jìn)一步提高能效性;而對(duì)于節(jié)點(diǎn)2,LoRa-DSADR會(huì)選擇最大的擴(kuò)頻因子,以保證網(wǎng)絡(luò)的連通性。
圖11 投遞率性能測(cè)試
接下來,測(cè)試4個(gè)終端節(jié)點(diǎn)采用擴(kuò)頻因子SF=12和LoRa-DSADR機(jī)制時(shí),數(shù)據(jù)投遞率隨數(shù)據(jù)上傳周期T變化的情況,取10輪試驗(yàn)的平均結(jié)果。如上述試驗(yàn)所述,擴(kuò)頻因子SF=12的數(shù)據(jù)投遞率在本試驗(yàn)范圍內(nèi)不受距離因素的影響,因此,同一數(shù)據(jù)周期T下,各位置節(jié)點(diǎn)的投遞率相差不多,如圖11b所示,采用擴(kuò)頻因子SF=12時(shí),4個(gè)節(jié)點(diǎn)的投遞率都隨數(shù)據(jù)上傳周期的減小而降低,當(dāng)數(shù)據(jù)周期T為10 s時(shí),信道碰撞的概率大大增加,投遞率不到0.4。LoRa-DSADR機(jī)制由于協(xié)調(diào)MAC層擴(kuò)頻因子切換與分時(shí)同步調(diào)度,信道碰撞概率大大降低,除節(jié)點(diǎn)2外,T為20、30、40 s時(shí),各節(jié)點(diǎn)數(shù)據(jù)投遞率都在0.98以上;當(dāng)數(shù)據(jù)周期降為10 s時(shí),各節(jié)點(diǎn)的投遞率仍在0.95以上,由此也驗(yàn)證了本策略時(shí)間同步機(jī)制的有效性。節(jié)點(diǎn)2由于有叢林遮擋,投遞率略為降低。
由試驗(yàn)結(jié)果可知,LoRa-DSADR策略大大降低了信道碰撞的概率,保證了數(shù)據(jù)上傳的可靠性;同時(shí),分配低擴(kuò)頻因子的節(jié)點(diǎn),提高了數(shù)據(jù)率,因此可以減小了數(shù)據(jù)上傳的能耗,提高了節(jié)點(diǎn)的電池壽命。
本文針對(duì)大面積漁業(yè)環(huán)境和水產(chǎn)養(yǎng)殖監(jiān)測(cè)應(yīng)用需求,通過對(duì)現(xiàn)有無線方案的分析比較,提出了基于LoRa的低功耗傳感網(wǎng)絡(luò)系統(tǒng)。首先自行設(shè)計(jì)了低成本的雙通道LoRa網(wǎng)關(guān),并在此基礎(chǔ)上研究設(shè)計(jì)了自適應(yīng)數(shù)據(jù)率的雙信道同步通信策略LoRa-DSADR(dual-channel Synchronous communication with adaptive data rate)。仿真和試驗(yàn)結(jié)果表明:本設(shè)計(jì)可根據(jù)終端節(jié)點(diǎn)部署位置自動(dòng)調(diào)整數(shù)據(jù)率,并根據(jù)工作狀態(tài)自動(dòng)進(jìn)行信道切換,在保證LoRa無線通信大面積覆蓋的同時(shí),滿足低功耗低延遲和高可靠性無線通信的需求。系統(tǒng)可有效覆蓋半徑3 km的監(jiān)測(cè)區(qū)域,100個(gè)終端節(jié)點(diǎn)的網(wǎng)絡(luò)規(guī)模,采用3600mA?h鋰電池,數(shù)據(jù)上傳周期為10 min時(shí),終端節(jié)點(diǎn)壽命可達(dá)1 a。漁業(yè)環(huán)境監(jiān)測(cè)實(shí)際應(yīng)用中的數(shù)據(jù)上傳周期要比試驗(yàn)的數(shù)據(jù)上傳周期要長(zhǎng),因此會(huì)獲得更長(zhǎng)的電池壽命。由于漁業(yè)和水產(chǎn)養(yǎng)殖應(yīng)用環(huán)境較復(fù)雜,下一步需要進(jìn)行更多的長(zhǎng)期的現(xiàn)場(chǎng)試驗(yàn),進(jìn)行功耗的詳細(xì)評(píng)估,通過更多的數(shù)據(jù)包RSSI和SNR樣本采集分析,提高Lora-DSADR機(jī)制的可靠性。另外,在網(wǎng)關(guān)端準(zhǔn)備研究適用于漁業(yè)環(huán)境監(jiān)測(cè)的數(shù)據(jù)融合算法,并加入對(duì)漁業(yè)裝備的控制功能,如增氧機(jī)、投飼機(jī)等,進(jìn)一步完善系統(tǒng)應(yīng)用的智能化程度。
[1] 李道亮,楊昊. 農(nóng)業(yè)物聯(lián)網(wǎng)技術(shù)研究進(jìn)展與發(fā)展趨勢(shì)分析[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2018,49(1):1-20. Li Daoliang, Yang Hao. State-of-the-art review for Internet of Things in agriculture[J]. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(1): 1-20. (in Chinese with English abstract)
[2] 李瑾,郭美榮,高亮亮. 農(nóng)業(yè)物聯(lián)網(wǎng)技術(shù)應(yīng)用及創(chuàng)新發(fā)展策略[J]. 農(nóng)業(yè)工程學(xué)報(bào),2015,31(增刊2):200-209. Li Jin, Guo Meirong, Gao Liangliang. Application and innovation strategy of agricultural Internet of Things[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(Supp.2): 200-209. (in Chinese with English abstract)
[3] Xu G, Shen W, Wang X. Applications of wireless sensor networks in marine environment monitoring: A survey[J]. Sensors, 2014, 14(9): 16932-16954.
[4] 黃建清,王衛(wèi)星,姜晟,等. 基于無線傳感器網(wǎng)絡(luò)的水產(chǎn)養(yǎng)殖水質(zhì)監(jiān)測(cè)系統(tǒng)開發(fā)與試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2013,29(4): 183-190. Huang Jianqing, Wang Weixing, Jiang Sheng, et al. Development and test of aquacultural water quality monitoring system based on wireless sensor network[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013, 29(4): 183-190. (in Chinese with English abstract)
[5] 馬從國(guó),趙德安,王建國(guó),等. 基于無線傳感器網(wǎng)絡(luò)的水產(chǎn)養(yǎng)殖池塘溶解氧智能監(jiān)控系統(tǒng)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2015,31(7): 193-200. Ma Congguo, Zhao Dean, Wang Jianguo, et al. Intelligent monitoring system for aquaculture dissolved oxygen in pond based on wireless sensor network[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(7): 193-200. (in Chinese with English abstract)
[6] 楊旭輝,周慶國(guó),韓根亮,等. 基于ZigBee的節(jié)能型水產(chǎn)養(yǎng)殖環(huán)境監(jiān)測(cè)系統(tǒng)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2015,31(17):183-190. Yang Xuhui, Zhou Qingguo, Han Genliang, et al. Energy-efficient aquaculture environmental monitoring system based on ZigBee[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(17): 183-190. (in Chinese with English abstract)
[7] 顏波,石平. 基于物聯(lián)網(wǎng)的水產(chǎn)養(yǎng)殖智能化監(jiān)控系統(tǒng)[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2014,45(1): 259-265. Yan Bo, Shi Ping. Intelligent monitoring system for aquiculture based on internet of things[J]. Transactions of the Chinese Society for Agricultural Machinery, 2014, 45(1): 259-265. (in Chinese with English abstract)
[8] 蔣建明,史國(guó)棟,趙德安,等. 基于LEACH協(xié)議的水產(chǎn)養(yǎng)殖參數(shù)智能監(jiān)控系統(tǒng)[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2014,45(11): 286-291. Jiang Jianming, Shi Guodong, Zhao Dean, et al. Intelligent monitoring system of aquaculture parameters based on LEACH protocol[J]. Transactions of the Chinese Society for Agricultural Machinery, 2014, 45(11): 286-291. (in Chinese with English abstract)
[9] 蔣建明,史國(guó)棟,趙德安,等. 水產(chǎn)養(yǎng)殖參數(shù)無線測(cè)量網(wǎng)絡(luò)的長(zhǎng)生命周期研究[J]. 農(nóng)業(yè)工程學(xué)報(bào),2014,30(7):147-154. Jiang Jianming, Shi Guodong, Zhao Dean, et al. Research on life cycle of wireless network for measuring environmental parameters in aquaculture[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(7): 147-154. (in Chinese with English abstract)
[10] Simbeye D S, Zhao J, Yang S. Design and deployment of wireless sensor networks for aquaculture monitoring and control based on virtual instruments[J]. Computers & Electronics in Agriculture, 2014, 102(3): 31-42.
[11] Luo H, Li G, Peng W, et al. Real-time remote monitoring system for aquaculture water quality[J]. International Journal of Agricultural & Biological Engineering, 2015, 8(6): 136-143.
[12] Alippi C, Camplani R, Galperti C, et al. A robust, adaptive, solar-powered WSN framework for aquatic environmental monitoring[J]. IEEE Sensors Journal, 2011, 11(1): 45-55.
[13] 陳海磊. 基于物聯(lián)網(wǎng)的大面積水產(chǎn)養(yǎng)殖遠(yuǎn)程監(jiān)控系統(tǒng)設(shè)計(jì)[D]. 鎮(zhèn)江:江蘇大學(xué),2016.
Chen Hailei. Design of Remote Monitoring System for Large Area Aquaculture Based on Internet of Things[D]. Zhenjiang: Jiangsu University, 2016. (in Chinese with English abstract)
[14] 申慶祥,張宇華. 生命周期最大化的無線水質(zhì)監(jiān)測(cè)網(wǎng)絡(luò)路由優(yōu)化研究[J]. 軟件工程,2017,20(9):45-48,41.
Shen Qingxiang, Zhang Yuhua. Research on route optimization of the wireless water quality monitoring network based on lifetime maximization[J]. Software Engineering, 2017, 20(9):45-48, 41. (in Chinese with English abstract)
[15] 李慧,劉星橋,李景,等. 基于物聯(lián)網(wǎng)Android平臺(tái)的水產(chǎn)養(yǎng)殖遠(yuǎn)程監(jiān)控系統(tǒng)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2013,29(13):175-181. Li Hui, Liu Xingqiao, Li Jing, et al. Aquiculture remote monitoring system based on IOT Android platform[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013, 29(13): 175-181. (in Chinese with English abstract)
[16] Ali A, Shah G A, Farooq M O, et al. Technologies and challenges in developing Machine-to-Machine applications: A survey[J]. Journal of Network & Computer Applications, 2017, 83: 124-139.
[17] LoRa Alliance. LoRaWAN? 1. 1 Specification[EB/OL]. (2017-10-11)[2018-08-01].https://lora-alliance.org/sites/default/ files/2018-04/lorawantm_specification_-v1. 1. pdf.
[18] Semtech. SX1301 Datasheet[EB/OL]. (2017-06-01)[2018-08- 01]. https://www.semtech. com/uploads/documents/sx1301. Pdf.
[19] Augustin A, Yi J, Clausen T, et al. A study of LoRa: Long range & low power networks for the Internet of Things[J]. Sensors, 2016, 16(9): 1466.
[20] Casals L,Mir B,Vidal R,et al. Modeling the energy performance of LoRaWAN [J]. Sensors, 2017, 17(10): 2364.
[21] Petajajarvi J, Mikhaylov K, Pettissalo M, et al. Performance of a low-power wide-area network based on LoRa technology: Doppler robustness, scalability, and coverage[J]. International Journal of Distributed Sensor Networks, 2017, 13(3): 1-16.
[22] Georgiou O,Raza U. Low PowerWide Area Network Analysis: Can LoRa Scale?[J]. IEEEWirel. Commun. Lett. 2017, 6(2): 162–165.
[23] Song Y H, Lin J, Tang M, et al. An internet of energy things based on wireless LPWAN[J]. Engineering, 2017, 3(4): 460-466.
[24] Kim D Y, Jung M. Data transmission and network architecture in long range low power sensor networks for IoT[J]. Wireless Personal Communications, 2017, 93(1): 119-129.
[25] Pham C. Building Low-Cost Gateways and Devices for Open LoRa IoT Test-Beds[M]//Guo S, Wei G, Xiang Y,et al. Testbeds and Research Infrastructures for the Development of Networks and Communities. Cham: Springer International Publishing, 2016: 70-80.
[26] Semtech. SX1278 Datasheet[EB/OL]. (2013-09-01) [2018- 08- 01]. https://www.semtech.com/uploads/documents/DS_SX1276- 7-8-9. pdf.
[27] STMicroelectronics. STM32F429 Datasheet[EB/OL]. (2013- 03-19)[2018-08-01].https://www.st.com/resource/en/datasheet/ stm32f429ze. pdf.
[28] STMicroelectronics. STM32L151 Datasheet[EB/OL]. (2014- 03-12)[2018-08-01].https://www.st.com/resource/en/datasheet/ stm32l151rb-a. pdf.
[29] Semtech. LoRa? Modulation Basics[EB/OL]. (2015-05-01) [2018-08-01].https://www.semtech.com/uploads/documents/an1200.22. pdf.
[30] Abramson N. The Aloha System: Final Technical Report[R]. Hawaii University: Honolulu, HI, USA, 1974.
[31] Polastre J, Hill J, Culler D. Versatile Low Power Media Access for Wireless Sensor Networks[C]//Proceedings of the 2nd ACM SenSys Conference, Baltimore, MD, USA, 2004: 95-107.
Long range low power sensor networks with LoRa sensor for large area fishery environment monitoring
Zhang Zheng1, Cao Shouqi1, Zhu Jianping1, Chen Jiapin2
(1.201306,2.200240,)
Thedesign of wireless monitoring system for fishery environment based on Internet of Things technology has become a research hotspot at present. Aiming at the characteristics of long monitoring period and large coverage area in applications of inshore fishery and large area aquaculture environment monitoring, -the long range low power sensor networks was designed based on LoRa technology-. Due to the expensive price and technology closedness of commercial LoRa gateway SX1301, a low cost open dual-channel gateway was designed, based on two LoRa SX1278 transceivers. Based on the hardware design of dual-channel gateway, a dual-channel synchronous communication scheme with adaptive data rate was proposed. Two LoRa SX1278 transceivers corresponded to two independent channels, namely periodic data channel 1 and special function channel 2. The periodic data channel was used to upload regular packets, data collecting cycle of which was divided into several periods using different spreading factor (SF). Each period was equally split into several slots to the nodes within the same distance range in which the spreading factor was the same. The special function channel 2 was used to upload urgent packets, join in network, and synchronize time. For urgent packets, the terminal nodes could directly upload by switching channel 2 without waiting for the allocated slot arriving , to improve the real-time response of the network system. The scheme fully took the advantage of the characteristics of multiple spreading factors based on LoRa. Different spreading factors was assigned to terminal nodes according to the distances to gateway automatically with the different received signal strength indication and signal noise ratio of the received packets to ensure network connectivity. The scheme was built into a custom Matlab simulator to evaluate the data collision ratio, communication delay and energy cost performance varying with the network size(number of terminal node). With the terminal nodes increasing to 100, the performance of proposed scheme was nearly constant; but the collision ratio with single channel and single spreading factor was nearly linearly increasing to 1, and energy cost increased much more. The field experiment was carried out to test the effectiveness and reliability in Dishui Lake in Shanghai. An application program(App) for Android mobile phone was developed for monitoring field data. Four terminal nodes with dissolved oxygen sensor and pH value sensor were deployed in different distance to gateway. To line-of-sight communication, the average delivery ratio of proposed scheme increased from 0.8 to 0.99 compared with single spreading factor. To the rapid communication with 10 s uploading interval, the average delivery ratio increased from 0.4 to 0.95 compared with single spreading factor of 12. The proposed scheme largely reduced the wireless channel collision probability, improving the real-time performance for urgent data and the average lifetime of terminals, while ensuring large coverage area of monitoring network by the MAC layer synchronization scheduling. The simulation and experiment results showed the effectiveness of the proposed scheme. The designed sensor network system could cover a monitoring region with radius of 3 km, with the capacity of 100 terminal nodes and terminal node with 3600 mA?h lithium battery could work for 1 a with the 10 min data uploading interval.
aquaculture; monitoring; wireless sensor networks; LoRa; synchronous; adaptive data rate
2018-09-06
2018-10-30
國(guó)家自然科學(xué)基金(61362017);上海市科委2017年度“創(chuàng)新行動(dòng)計(jì)劃”(17050502000);上海海洋大學(xué)科技專項(xiàng)基金(A2-0203-17-100209);2017年上海市(臨港)產(chǎn)學(xué)研合作項(xiàng)目(滬臨地管委經(jīng)[2017]56號(hào))
10.11975/j.issn.1002-6819.2019.01.020
TN929.5;S951.2
A
1002-6819(2019)-01-0164-08
張 錚,講師,博士,主要從事物聯(lián)網(wǎng)工程、智能儀器設(shè)計(jì)研究。Email:z-zhang@shou.edu.cn
張 錚,曹守啟,朱建平,陳佳品.面向大面積漁業(yè)環(huán)境監(jiān)測(cè)的長(zhǎng)距離低功耗LoRa傳感器網(wǎng)絡(luò)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2019,35(1):164-171. doi:10.11975/j.issn.1002-6819.2019.01.020 http://www.tcsae.org
Zhang Zheng, Cao Shouqi,Zhu Jianping, Chen Jiapin. Long range low power sensor networks with LoRa sensor for large area fishery environment monitoring[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(1): 164-171. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2019.01.020 http://www.tcsae.org