李兆東,楊文超,張 甜,王韋韋,張 順,陳黎卿
?
油菜高速精量排種器槽齒組合式吸種盤設(shè)計(jì)與吸附性能試驗(yàn)
李兆東1,2,楊文超1,張 甜1,王韋韋1,張 順1,2,陳黎卿1,2※
(1. 安徽農(nóng)業(yè)大學(xué)工學(xué)院,合肥 230036;2. 安徽省智能農(nóng)機(jī)裝備工程實(shí)驗(yàn)室,合肥 230036)
針對(duì)現(xiàn)有氣力式油菜排種器高速工作過(guò)程中種子難以從種群中快速分離被吸孔準(zhǔn)確吸附產(chǎn)生漏吸降低排種性能的問(wèn)題,該文設(shè)計(jì)了一種提高油菜高速直播充種性能的槽齒組合式吸種盤,分析并確定了槽齒組合式吸種盤的關(guān)鍵結(jié)構(gòu)參數(shù),構(gòu)建了槽齒擾動(dòng)作用下種子吸附力學(xué)模型。應(yīng)用EDEM數(shù)值模擬分析了平面盤、凹槽盤和槽齒盤3種結(jié)構(gòu)形式的吸種盤對(duì)種群定向擾動(dòng)強(qiáng)度的影響,結(jié)合臺(tái)架試驗(yàn)進(jìn)行了吸種盤結(jié)構(gòu)形式優(yōu)選,試驗(yàn)結(jié)果表明:在傳統(tǒng)平面盤上增設(shè)凹槽與擾種齒可明顯增加種群的擾動(dòng)強(qiáng)度和降低種子漏吸率;以平均動(dòng)能總和作為種群擾動(dòng)強(qiáng)度的量化指標(biāo),在同一轉(zhuǎn)速下,平均動(dòng)能總和數(shù)值從大到小順序?yàn)椋翰埤X盤>凹槽盤>平面盤;以德優(yōu)矮早油菜品種為對(duì)象進(jìn)行了3個(gè)種盤優(yōu)選試驗(yàn),當(dāng)工作負(fù)壓1.5~2.5 kPa、轉(zhuǎn)速10~150 r/min條件下,槽齒盤的漏吸率和吸附合格率均明顯優(yōu)于凹槽盤和平面盤,3個(gè)種盤重吸率無(wú)明顯變化,工作轉(zhuǎn)速大于90 r/min時(shí),槽齒盤的最大漏吸率為7.4%,凹槽盤最小漏吸率為14.02%,平面盤最小漏吸率為30.4%,與凹槽盤相比漏吸率降低了47.2%,與平面盤相比漏吸率降低了75.7%。槽齒盤吸附性能試驗(yàn)表明:以德優(yōu)矮早和中雙11號(hào)為對(duì)象,在相同工作負(fù)壓下,漏吸率隨轉(zhuǎn)速的增大呈上升趨勢(shì),吸附合格率呈下降趨勢(shì),重吸率無(wú)明顯變化;在同一轉(zhuǎn)速下,吸附合格率隨負(fù)壓的增大呈上升趨勢(shì),漏吸率呈下降趨勢(shì),重吸率無(wú)明顯變化;在工作轉(zhuǎn)速10~110 r/min、負(fù)壓1.5~2.5 kPa條件下,吸附合格率不低于92.0%,漏吸率和重吸率之和不大于8.0%。研究結(jié)果可為氣力式油菜高速精量排種裝置結(jié)構(gòu)改進(jìn)與優(yōu)化提供參考。
農(nóng)業(yè)機(jī)械;設(shè)計(jì);種子;氣力式排種器;精量吸附;槽齒擾動(dòng);油菜
油菜是中國(guó)重要的油料作物,其精量直播技術(shù)具有節(jié)本增效、倒伏風(fēng)險(xiǎn)小和適合機(jī)械化收獲等優(yōu)點(diǎn)[1-3]。隨著農(nóng)村勞動(dòng)力缺失和發(fā)展現(xiàn)代農(nóng)業(yè)需要,農(nóng)村土地分散經(jīng)營(yíng)已向適度規(guī)模經(jīng)營(yíng)轉(zhuǎn)變,高速精量直播技術(shù)是推動(dòng)油菜產(chǎn)業(yè)可持續(xù)發(fā)展的重要途徑之一[4-5]。
油菜高速播種過(guò)程中,由于排種機(jī)構(gòu)高速回轉(zhuǎn),充種時(shí)間急劇下降,加上油菜粒徑小,導(dǎo)致漏吸率顯著上升,對(duì)此國(guó)內(nèi)外機(jī)構(gòu)或?qū)W者進(jìn)行了卓有成效的研究。國(guó)外油菜精量排種器以氣吸式為主,通常應(yīng)用具有凸起型圓柱孔的吸種盤或吸種平面盤與攪種裝置組合提高高速排種過(guò)程的吸附性能,但排種器結(jié)構(gòu)較為復(fù)雜,制造成本較高。國(guó)內(nèi)油菜精量排種器在機(jī)械式和氣力式方面均有研究。機(jī)械排種器方面,如湯楚宙等[6]在傳統(tǒng)吸孔輪式排種器基礎(chǔ)上設(shè)計(jì)了一種容量可調(diào)節(jié)型孔式油菜排種器,提高了種子充種性能;曹秀英等[7]為解決型孔堵塞導(dǎo)致斷條的問(wèn)題,設(shè)計(jì)了一種集成式型孔。氣力式排種器方面,廖慶喜等[8]設(shè)計(jì)了一種帶有滾針式吸嘴的排種器,可實(shí)現(xiàn)種子精量吸附;叢錦玲等[9-10]設(shè)計(jì)了一種內(nèi)嵌入導(dǎo)種條的內(nèi)充種式排種器,可實(shí)現(xiàn)油菜和小麥兼用排種;李?yuàn)檴櫟萚11]為油菜提高充種性能,設(shè)計(jì)了一種帶有滾花結(jié)構(gòu)的排種滾筒,可實(shí)現(xiàn)集中排種;李兆東等[12-13]設(shè)計(jì)了一種具有倒正方錐型孔的排種滾筒,并采用氣壓清種與滑槽護(hù)種組合技術(shù)實(shí)現(xiàn)油菜精量排種。上述已有研究表明,油菜機(jī)械式排種器難以實(shí)現(xiàn)高速精量排種,而在氣力式油菜排種器上增設(shè)吸嘴、導(dǎo)種條、滾花或改進(jìn)吸孔形狀等在一定程度上提升了吸孔的充種性能,但均由于種子從充種室內(nèi)種群中快速分離而效果不佳,難以被吸孔準(zhǔn)確捕獲,漏吸率仍較高。
種子從種群中快速分離,并被吸孔準(zhǔn)確吸附是實(shí)施油菜高速精量排種的關(guān)鍵。為此,本文融合機(jī)構(gòu)擾動(dòng)可降低種群內(nèi)摩擦阻力、氣力吸附可實(shí)現(xiàn)定量充種和有效降低種子破損率的優(yōu)點(diǎn),兼顧簡(jiǎn)化排種裝置結(jié)構(gòu)及縮短排種路徑,設(shè)計(jì)一種用于油菜高速排種的槽齒定向擾動(dòng)式吸種盤,以期不以增大工作負(fù)壓來(lái)有效降低高速排種下油菜種子的漏吸率。
氣力式油菜精量高速排種器主要由吸種盤、排種軸、吸室殼體、排種殼體、種箱、導(dǎo)種管、卸種篩等組成,如圖1所示。吸種盤是核心工作部件,其由凹槽、擾種齒、吸孔和吸種盤本體構(gòu)成,直線型擾種齒均勻嵌入凹槽內(nèi)部,凹槽和擾種齒表面均勻分布有多個(gè)呈“圓柱形”的吸孔,整個(gè)吸種盤分為吸種區(qū)、攜種區(qū)、投種區(qū)和過(guò)渡區(qū)4個(gè)區(qū)域,如圖2所示。
1. 鏈輪 2. 壓軸端蓋 3. 吸室殼體 4. 排種軸 5. 吸種盤 6. 排種殼體 7. 種箱蓋 8. 種箱 9. 導(dǎo)種管 10. 卸種篩
圖2 吸種盤結(jié)構(gòu)及工作環(huán)節(jié)
工作時(shí),種箱內(nèi)的種子在重力作用下進(jìn)入充種室,轉(zhuǎn)動(dòng)的擾種齒對(duì)充種室內(nèi)種群擾動(dòng),打破種群穩(wěn)定堆積狀態(tài),少量種子從種群中快速分離進(jìn)入一個(gè)固定的凹槽通道,通過(guò)凹槽內(nèi)均勻分布的吸孔在吸室負(fù)壓作用下將分離出來(lái)的單?;蚨嗔7N子快速捕獲并準(zhǔn)確吸附,攜有種子的吸孔隨吸種盤一起轉(zhuǎn)動(dòng),進(jìn)入投種區(qū)。在投種區(qū)正壓氣流作用下種子與吸孔快速分離進(jìn)入導(dǎo)種管并經(jīng)由輸種管道落入已開(kāi)好的種溝內(nèi),完成一個(gè)播種過(guò)程。
吸種盤是實(shí)現(xiàn)油菜高速精量排種的關(guān)鍵部件,其直徑大小對(duì)排種器結(jié)構(gòu)尺寸、吸孔數(shù)、吸附壓強(qiáng)等參數(shù)確定至關(guān)重要[14-16]。根據(jù)吸種盤轉(zhuǎn)速與充種時(shí)間關(guān)系可知:
式中為吸孔停留在充種區(qū)的時(shí)間(以下稱“充種時(shí)間”),s;C為充種區(qū)弧長(zhǎng),m;v為吸種盤線速度,m/s;為充種角,rad;d為吸種盤直徑,m;n為吸種盤轉(zhuǎn)速,r/min;r為吸孔中心與吸種盤邊沿的徑向距離,m。
由式(1)可得
式(2)表明,充種時(shí)間僅與充種角和吸種盤轉(zhuǎn)速n有關(guān),增大吸種盤直徑并不能延長(zhǎng)吸孔在充種區(qū)停留時(shí)間。現(xiàn)有氣力式排種器吸種盤直徑一般為0.08~0.26 m,因油菜種子粒徑小且兼顧排種器整體設(shè)計(jì),本文選取吸種盤直徑為0.1 m,厚度2.5′10–3m,材料為鋁合金。
2.2.1 吸孔數(shù)
根據(jù)油菜大田高速精量直播農(nóng)藝要求,設(shè)計(jì)吸種盤轉(zhuǎn)速n≤100 r/min,機(jī)組前進(jìn)速度v≤18 km/h,排種器由電動(dòng)機(jī)驅(qū)動(dòng),排種頻率為
式中f為排種頻率,1/s;v為機(jī)組前進(jìn)速度,m/s;T為相鄰吸孔間距,m;為播種株距,m,油菜合理株距為0.06~0.08 m;為吸種盤徑向吸孔數(shù)。
由式(3)得:18.75≤≤25
聯(lián)立式(2)和式(3)可得
由式(4)得知,充種時(shí)間與型孔數(shù)呈正比。為提高充種時(shí)間及確保加工精度,相鄰吸孔中心角取整,本文設(shè)計(jì)吸孔數(shù)為24,相鄰吸孔中心角為15°。
2.2.2 吸孔直徑
在擾種齒對(duì)種群定向擾動(dòng)下,油菜種子以散體顆粒形式從種群中快速分離并進(jìn)入凹槽中,吸孔產(chǎn)生的負(fù)壓氣流對(duì)種子捕獲并吸附在吸孔上,因此吸孔大小和吸附壓強(qiáng)對(duì)準(zhǔn)確捕獲種子具有重要作用。以單粒種子被吸孔吸附為研究對(duì)象,假定種子為材質(zhì)均勻的剛體,不考慮振動(dòng)和種子間碰撞等因素,受力分析如圖3所示。根據(jù)剛體動(dòng)力學(xué)理論[17],建立種子受力方程為
1. 種子 2. 吸孔 3. 凹槽 4. 擾種齒 5. 吸種盤
1. Rapeseed 2. Sucking cell 3. Groove 4. Stiring tooth 5. Sucking-seed plate
注:為吸種盤角速度,rad·s–1;為吸孔回轉(zhuǎn)半徑,mm;為種子重力,N;F為種子的慣性離心力,N;F為種子間的內(nèi)摩擦阻力,N;F為、F和F矢量合外力,N;F為種子所受的吸附力,N;1、2為吸孔側(cè)壁對(duì)種子的支撐力,N;為種子重心與吸種盤之間距離,m;d為吸孔直徑,m。
Note:is angular velocity of sucking-seed plate, rad·s–1;is the turning radius of suction hole, mm;is the gravity of seed, N;Fis centrifugal force of seed, N;Fis the inertial frictional resistance of seeds, N;Fis the vector resultant force ofandFandF, N;Fis the suction force of the seed, N;1、2are the supporting force of the suction side wall to the seed, N;is the distance between the gravity center of the seed and the sucking-seed plate, m;dis diameter of sucking cell, m.
圖3 種子吸附狀態(tài)受力分析示意圖
Fig.3 Schematic diagram of force analysis of seed suction state
式中為種子重力,N;F為慣性離心力,N;F為種子間的內(nèi)摩擦阻力,N;F為、F和F矢量合外力,N;F為吸孔對(duì)種子的吸附力,N;N為側(cè)面矢量合外力,N;1、2為吸孔側(cè)壁對(duì)種子的支撐力,N;為與F合力,;為與F合力,N;0為通過(guò)一個(gè)吸孔的吸附壓強(qiáng),Pa;為種子質(zhì)量,kg;為重力加速度,m/s2;為與F之間的夾角,(°);為吸種盤角速度,rad/s;為與F之間的夾角,(°);為吸孔截面面積,m2;為種子重心與吸種盤之間距離,m;為吸孔回轉(zhuǎn)半徑,m。
根據(jù)式(5),可獲得單粒種子被吸孔捕獲瞬間所需吸附壓強(qiáng)為
排種器實(shí)際工作中,受自身?xiàng)l件(充種室種層厚度、種子間碰撞等)和客觀條件(振動(dòng)、沖擊等)的影響,需考慮吸種可靠性系數(shù)1=1.8~2.0和外界條件系數(shù)2=1.6~2.0[18],由式(6)得
式中0 max為吸附壓強(qiáng)臨界最大值,Pa;為種子摩擦阻力綜合系數(shù)。
2.3.1 定向擾種齒
吸種盤轉(zhuǎn)動(dòng)時(shí),凹槽內(nèi)部嵌入式擾種齒從充種室內(nèi)貼近吸種盤面的種群中穿過(guò),對(duì)種子進(jìn)行推送和分離,利用力的可傳性原理[17],擾種齒對(duì)種子的作用力可通過(guò)周圍種子傳遞至吸孔處,由此建立擾種齒定向擾動(dòng)下吸孔吸附種子的力學(xué)等效模型,如圖4所示。
注:F¢f為槽齒作用下種子間的內(nèi)摩擦阻力,N;F¢R為槽齒作用下矢量合外力,N;F¢p為槽齒盤吸孔對(duì)種子的吸附力,N;FN為擾種齒對(duì)種子的等效支持力,N;γ為F¢R與FN間夾角,(°),γ∈[0°,90°);C為擾種齒厚度,m。
根據(jù)剛體動(dòng)力學(xué)理論[17],建立擾種齒擾動(dòng)作用下種子受力方程為
若獲取擾種齒作用下吸孔吸附單粒種子瞬間所需吸附壓強(qiáng),由式(9)得
槽齒盤采用擾種齒與凹槽交錯(cuò)布置,且吸孔均勻布置在擾種齒和凹槽中,根據(jù)上述設(shè)計(jì)吸孔數(shù)為24,確定擾種齒數(shù)為12。本文設(shè)計(jì)的擾種齒嵌入至凹槽中,故需滿足擾種齒高度與凹槽開(kāi)度相等,即
h=L (13)
式中h為擾種齒高度,m;L為凹槽開(kāi)度,m。
2.3.2 凹槽結(jié)構(gòu)參數(shù)
根據(jù)擾動(dòng)吸附原理,擾種齒對(duì)種群具有定向擾動(dòng)和分離作用,而凹槽對(duì)種群分離出來(lái)的少量種子自由度具有約束作用,以便被吸孔準(zhǔn)確吸附,其結(jié)構(gòu)參數(shù)包括凹槽開(kāi)度和凹槽深度。為實(shí)現(xiàn)凹槽對(duì)種子的約束,又避免凹槽轉(zhuǎn)動(dòng)時(shí)多顆種子并列卡在凹槽中影響吸孔對(duì)種子吸附,凹槽開(kāi)度應(yīng)滿足
凹槽對(duì)種群具有輔助擾動(dòng)作用,有助于吸孔捕獲并吸附種子。設(shè)計(jì)時(shí),如凹槽深度小于擾種齒厚度,從種群中分離出來(lái)的種子不易進(jìn)入凹槽,以致凹槽中的吸孔難以捕獲從種群中分離的種子造成漏充現(xiàn)象;若凹槽深度大于擾種齒厚度,需對(duì)擾種齒厚度進(jìn)行打磨,增加了加工難度。綜合上述考慮,本文凹槽深度與擾種齒厚度設(shè)計(jì)數(shù)值相同,即
H=(15)
式中H為凹槽深度,m。根據(jù)上述求得擾種齒厚度,確定凹槽深度為1′10–3m。
EDEM仿真軟件在農(nóng)業(yè)工程領(lǐng)域得到廣泛應(yīng)用,可模擬排種機(jī)構(gòu)與顆粒物料間相互作用后種子的運(yùn)動(dòng)狀態(tài)和機(jī)械特性[22-24]。已有研究表明,減小種子間相互作用力,激發(fā)種群內(nèi)種子的活躍度,有助于提高充種率[25-26]。雷小龍等[27]采用EDEM數(shù)值模擬與高速攝像相結(jié)合的方法研究了小麥和油菜兼用性能試驗(yàn),提出的具有圓柱形擾種齒且采用雙螺旋排列的攪種機(jī)構(gòu)可明顯增大對(duì)種群擾動(dòng),提高了小麥和油菜的充種性能;丁力等[28]借助EDEM軟件設(shè)計(jì)了一種具有型孔凸臺(tái)的吸種盤,利用型孔凸臺(tái)擾動(dòng)種群和托附種子,可提高吸附性能;史嵩等[29]通過(guò)EDEM數(shù)值模擬和性能試驗(yàn)驗(yàn)證得出增大種群擾動(dòng)可在瞬間降低種子的內(nèi)摩擦阻力,優(yōu)選出了組合孔式排種盤。為提高油菜高速充種性能,本文應(yīng)用EDEM仿真軟件進(jìn)行了傳統(tǒng)平面盤(工作面為光面圓盤)、凹槽盤(光面圓盤上增設(shè)1個(gè)環(huán)槽)和槽齒盤(環(huán)槽中增設(shè)若干個(gè)擾種齒)3種結(jié)構(gòu)型式種盤對(duì)種群擾動(dòng)的對(duì)比仿真試驗(yàn),吸種盤結(jié)構(gòu)形狀如圖5所示。
圖5 3種結(jié)構(gòu)形式吸種盤示意圖
進(jìn)行EDEM數(shù)值模擬的幾何模型簡(jiǎn)化為吸室殼體、排種殼體和吸種盤3部分,根據(jù)排種器實(shí)際加工材料,吸室殼體、排種殼體和吸種盤均設(shè)定為鋁合金。油菜種子球形度高,仿真中將顆粒簡(jiǎn)化為直徑為2 mm的硬球模型[31]。油菜種子表面光滑,顆粒表面無(wú)粘附力,仿真中選取Hertz-Mindlin無(wú)滑動(dòng)接觸模型[30-32],EDEM仿真模型如圖6所示。根據(jù)文獻(xiàn)[30-32],種子和吸種盤材料特性以及種子與種子、種子與吸種盤相互作用相關(guān)力學(xué)特性參數(shù),見(jiàn)表1。
圖6 3種型式吸種盤的EDEM仿真模型
為探明平面盤、凹槽盤和槽齒盤3種結(jié)構(gòu)型式的吸種盤對(duì)種群定向擾動(dòng)強(qiáng)度,以種群內(nèi)各時(shí)刻種子顆粒的動(dòng)能平均值作為量化指標(biāo)(種子顆粒動(dòng)能平均值越大表明種群擾動(dòng)強(qiáng)度越大)進(jìn)行仿真試驗(yàn),本試驗(yàn)以傳統(tǒng)光面吸種盤作為對(duì)照組。因油菜機(jī)械化直播技術(shù)多應(yīng)用于平原或丘陵地區(qū),平原地區(qū)田塊較大機(jī)組前進(jìn)速度可達(dá)8~10 km/h,丘陵地區(qū)地塊較小機(jī)組前進(jìn)速度一般不超過(guò)5 km/h,根據(jù)設(shè)計(jì)要求,本文所設(shè)計(jì)的排種器主要應(yīng)用于油菜電控播種機(jī)上,試驗(yàn)時(shí)吸種盤工作轉(zhuǎn)速范圍設(shè)定10~150 r/min,具體有10、30、50、70、90、110、130和150 r/min共8個(gè)梯度,分別開(kāi)展3種吸種盤在各速度梯度下的仿真試驗(yàn),并獲取每個(gè)速度梯度下種子顆粒的平均動(dòng)能。仿真中2 s內(nèi)產(chǎn)生5 000顆油菜種子,從第2 s吸種盤開(kāi)始轉(zhuǎn)動(dòng),應(yīng)用EDEM 軟件中Analyst 后處理模塊直接提取第3~10 s吸種盤與種群相互作用時(shí)種子在各時(shí)刻下的平均動(dòng)能。
表1 油菜種子與吸種盤物理和力學(xué)特性仿真參數(shù)
本文設(shè)計(jì)的排種器吸種盤由電機(jī)驅(qū)動(dòng),播種機(jī)高速作業(yè)速度在8~10 km/h,可通過(guò)編碼器實(shí)時(shí)測(cè)量機(jī)組前進(jìn)速度,利用嵌入單片機(jī)上的反饋控制技術(shù)對(duì)驅(qū)動(dòng)吸種盤的電機(jī)實(shí)時(shí)控制以實(shí)現(xiàn)定量排種。本文以種盤轉(zhuǎn)速 70 r/min工作條件為例進(jìn)行仿真,圖7為3種吸種盤平均動(dòng)能隨時(shí)間變化趨勢(shì)圖。從圖7中可看出:不同種盤作用下種子平均動(dòng)能波動(dòng)差異較大,槽齒盤的波動(dòng)最明顯,凹槽盤的波動(dòng)次之,平面盤無(wú)明顯波動(dòng)。圖7a中可以看出平面盤平均動(dòng)能在4 s到5 s突然增大,其原因在于在較高轉(zhuǎn)速下,平面盤工作面對(duì)貼近盤面的種群具有一定的拖帶作用,局部種群有一定跳躍遷移導(dǎo)致種子平均動(dòng)能在某一時(shí)刻存在突變。較高的瞬時(shí)平均動(dòng)能反應(yīng)較大的瞬時(shí)擾動(dòng)強(qiáng)度,在不同時(shí)間下可用種子平均動(dòng)能定量描述種盤對(duì)種群定向擾動(dòng)特性。
圖7 3種吸種盤的種子平均動(dòng)能隨時(shí)間變化曲線
根據(jù)文獻(xiàn)[18],本文用種子在不同時(shí)刻下的平均動(dòng)能累加求和(即平均動(dòng)能總和)量化不同擾種機(jī)構(gòu)作用下的種群擾動(dòng)強(qiáng)度。圖8為3種吸種盤在不同轉(zhuǎn)速下平均動(dòng)能總和數(shù)值變化規(guī)律情況。結(jié)果表明:當(dāng)吸種盤轉(zhuǎn)速由10 r/min增加至150 r/min時(shí),槽齒盤對(duì)種群擾動(dòng)強(qiáng)度呈明顯上升趨勢(shì),而平面盤和凹槽盤對(duì)種群擾動(dòng)強(qiáng)度不大;在相同轉(zhuǎn)速下,槽齒盤對(duì)種群擾動(dòng)強(qiáng)度明顯優(yōu)于平面盤和凹槽盤。平均動(dòng)能總和波動(dòng)趨勢(shì)與平均動(dòng)能波動(dòng)趨勢(shì)一致,其數(shù)值大小關(guān)系依次為槽齒盤>凹槽盤>平面盤。從仿真結(jié)果中可得到以下推論:合理的種盤可有效提高種群的擾動(dòng)強(qiáng)度,打破種群穩(wěn)定堆積狀態(tài),有利于少量種子從種群中快速分離并進(jìn)入凹槽被吸孔準(zhǔn)確吸附,從而改善油菜高速精播下的漏充問(wèn)題。
圖8 吸種盤轉(zhuǎn)速與種子平均動(dòng)能總和關(guān)系
以仿真分析用的3種型式吸種盤為載體設(shè)計(jì)了油菜氣力式精量排種器,借助高速攝像技術(shù)進(jìn)行種盤優(yōu)選試驗(yàn)和較優(yōu)種盤吸附性能試驗(yàn),探尋種盤擾動(dòng)強(qiáng)度對(duì)油菜種子吸附性能的影響,優(yōu)選出較優(yōu)種盤以實(shí)現(xiàn)不以增大工作負(fù)壓來(lái)提高油菜高速精量排種過(guò)程中吸附性能。
主要試驗(yàn)設(shè)備有:槽齒組合氣力盤式精量排種器、TB86BL120-430型步進(jìn)電機(jī)(常州遠(yuǎn)控有限公司)、自制電機(jī)驅(qū)動(dòng)控制器、HG-250型漩渦式氣泵(浙江森森集團(tuán)股份有限公司)、氣力管道、U型壓力計(jì)、i-SPEED 3高速攝像系統(tǒng)(日本OLYMPUS公司)和排種裝置試驗(yàn)臺(tái)開(kāi)展排種性能試驗(yàn),相關(guān)試驗(yàn)裝置及設(shè)備如圖9所示。
1. 驅(qū)動(dòng)電機(jī) 2. 排種器 3. 氣力管道 4. 排種支架 5. U型壓力計(jì) 6. 高速攝像系統(tǒng)
根據(jù)仿真模型相關(guān)參數(shù)試制了槽齒盤、凹槽盤和平面盤3種型式吸種盤,將其安裝在油菜氣力式高速精量排種器上,以漏吸率、吸附合格率、重吸率和堵孔率為試驗(yàn)指標(biāo),開(kāi)展了種盤優(yōu)選試驗(yàn)和較優(yōu)種盤吸附性能試驗(yàn),排種器外殼利用3D技術(shù)進(jìn)行透明化設(shè)計(jì)。種盤優(yōu)選試驗(yàn)中,種盤轉(zhuǎn)速選取與仿真試驗(yàn)相同的8個(gè)轉(zhuǎn)速梯度,工作負(fù)壓為1.5、2.0和2.5 kPa 3個(gè)梯度。較優(yōu)吸種盤吸附性能試驗(yàn)以工作轉(zhuǎn)速和負(fù)壓為試驗(yàn)因素,進(jìn)行雙因素試驗(yàn),吸種盤轉(zhuǎn)速設(shè)定與仿真試驗(yàn)相同的8個(gè)轉(zhuǎn)速梯度,工作負(fù)壓設(shè)定0.5、1.0、1.5、2.0和2.5 kPa共5個(gè)梯度。采用高速攝像系統(tǒng)拍攝吸種盤與種群作用狀態(tài)及種子吸附狀態(tài),如圖10所示。
圖10 吸種盤與種群作用狀態(tài)及種子吸附狀態(tài)的高速攝像圖片
吸附性能檢測(cè)區(qū)以吸孔離開(kāi)充種區(qū)的位置為始點(diǎn),以攜種區(qū)最高位置為終點(diǎn);吸孔堵塞檢測(cè)區(qū)以種子離開(kāi)投種區(qū)為始點(diǎn),以過(guò)渡區(qū)的最低位置為終點(diǎn)。利用高速攝像系統(tǒng)獲取這2個(gè)區(qū)域的影像,每組試驗(yàn)記錄并獲取240個(gè)吸孔的影像進(jìn)行統(tǒng)計(jì),每組重復(fù)3次取平均值作為試驗(yàn)結(jié)果加以分析。參照GB/T 6973-2005《單粒(精密)播種機(jī)試驗(yàn)方法》,各試驗(yàn)指標(biāo)計(jì)算公式為
4.3.1 種盤優(yōu)選試驗(yàn)
試驗(yàn)選用德優(yōu)矮早未分級(jí)油菜種子,其三軸尺寸為(1.91×1.84×1.77)mm,千粒質(zhì)量為4.25 g,球形度為96.34%,含水率為7.40%。圖11為吸種盤轉(zhuǎn)速70 r/min時(shí)負(fù)壓對(duì)油菜種子吸附性能影響。由圖11a和圖11b可知,不同種盤的漏吸率均隨負(fù)壓的增大呈下降趨勢(shì),各種盤的吸附合格率均隨負(fù)壓的增大呈上升趨勢(shì)。圖中顯示,槽齒盤的漏吸率和吸附合格率均優(yōu)于其他2個(gè)種盤,當(dāng)負(fù)壓小于1.5 kPa時(shí),各種盤漏吸率和吸附合格率均有明顯差異,負(fù)壓大于1.5 kPa時(shí),各種盤的吸附性能差異不明顯。圖11c顯示,各種盤重吸率無(wú)明顯差異,且均小于0.1%。結(jié)合上述試驗(yàn)結(jié)果分析:增大負(fù)壓是提高吸附合格率、降低漏吸率的可行手段,當(dāng)負(fù)壓在較低范圍時(shí),擾動(dòng)強(qiáng)度大的種盤吸附性能較優(yōu),表明增大擾動(dòng)強(qiáng)度可以輔助充種。
圖12~圖14分別為負(fù)壓1.5、2.0 和2.5 kPa工況下吸種盤轉(zhuǎn)速對(duì)油菜種子吸附性能影響。由圖12a、13a和14a可知,各種盤的漏吸率均隨轉(zhuǎn)速的提高呈上升趨勢(shì),其中平面盤和凹槽盤的漏吸率呈近似指數(shù)性增長(zhǎng)趨勢(shì),槽齒盤的漏吸率增長(zhǎng)速度較為緩慢。當(dāng)轉(zhuǎn)速n≤50 r/min時(shí),3種吸種盤的漏吸率差異不大;轉(zhuǎn)速50 r/min<n< 150 r/min時(shí),槽齒盤的漏吸率明顯低于凹槽盤和平面盤,平面盤和凹槽盤漏吸率不低于18%,槽齒盤漏吸率不大于8.0%。
從圖12b、13b和14b可看出,不同種盤吸附合格率均隨轉(zhuǎn)速的增加呈降低趨勢(shì),當(dāng)種盤轉(zhuǎn)速50 r/min<n< 150 r/min時(shí),平面盤和凹槽盤吸附合格率下降趨勢(shì)加快,其吸附合格率不大于80%,槽齒盤的吸附合格率下降趨勢(shì)較為緩慢,吸附合格率不低于90%。
從圖12c、13c和14c中看出,槽齒盤、凹槽盤和平面盤3種結(jié)構(gòu)型式吸種盤的重吸率無(wú)明顯差異,重吸率不大于1.%。高速攝像試驗(yàn)觀察得知,這3種結(jié)構(gòu)型式吸種盤試驗(yàn)過(guò)程中型孔均未出現(xiàn)堵塞情況,結(jié)果表明通過(guò)吸孔合理設(shè)計(jì),可有效控制重吸率和堵孔率。
根據(jù)上述試驗(yàn)結(jié)果可知,當(dāng)轉(zhuǎn)速n≤50 r/min時(shí),3種吸種盤漏吸率和吸附合格率無(wú)明顯差異,其原因在于此時(shí)各種盤對(duì)種群定向擾動(dòng)的強(qiáng)度差異不大,吸孔處同一負(fù)壓對(duì)種子捕獲能力相同,故漏吸率和吸附合格率無(wú)明顯差異;轉(zhuǎn)速50 r/min<n< 150 r/min時(shí),槽齒盤漏吸率和吸附合格率明顯優(yōu)于其他2個(gè)種盤,結(jié)合仿真分析其原因在于:與平面盤和凹槽盤相比,槽齒盤的擾種強(qiáng)度隨轉(zhuǎn)速的增加呈明顯增大趨勢(shì),隨轉(zhuǎn)速明顯變化的擾種強(qiáng)度可有效打破種群內(nèi)摩擦阻力,有利于少量種子從種群中快速分離被吸孔捕獲而吸附,而擾種強(qiáng)度較小的平面盤和凹槽盤只能依靠提高工作負(fù)壓來(lái)改善油菜種子吸附性能。
從圖12~圖14中還可看出,在負(fù)壓1.5~2.5 kPa條件下,轉(zhuǎn)速為50 r/min是平面盤與其他2個(gè)種盤對(duì)種子吸附性能的分界值,轉(zhuǎn)速為90 r/min是槽齒盤與其他2個(gè)種盤對(duì)種子吸附性能的分界值。由此得知,實(shí)際工作中當(dāng)排種器工作轉(zhuǎn)速不大于50 r/min時(shí),3個(gè)種盤對(duì)油菜種子吸附性能差異不明顯,3個(gè)種盤可互選;在排種器工作轉(zhuǎn)速不大于90 r/min時(shí),槽齒盤和凹槽盤對(duì)油菜種子吸附性能差異不明顯,這2個(gè)種盤可互選;當(dāng)排種器工作轉(zhuǎn)速大于90 r/min時(shí),需優(yōu)先選擇槽齒盤。在工作轉(zhuǎn)速110~150 r/min、負(fù)壓1.5~2.5 kPa條件下,槽齒盤最大漏吸率為7.4%,凹槽盤最小漏吸率為14.02%,平面盤最小漏吸率為30.4%,與凹槽盤相比漏吸率降低了47.2%,與平面盤相比漏吸率降低了75.7%。
圖11 轉(zhuǎn)速為70 r/min時(shí)負(fù)壓對(duì)吸附性能的影響
圖12 負(fù)壓為1.5 kPa時(shí)轉(zhuǎn)速對(duì)吸附性能的影響
圖13 負(fù)壓為2.0 kPa時(shí)轉(zhuǎn)速對(duì)吸附性能的影響
圖14 負(fù)壓為2.5 kPa時(shí)轉(zhuǎn)速對(duì)吸附性能的影響
綜上分析,擾種強(qiáng)度越大的吸種盤,漏吸率越低、吸附合格率越高,該值較大的槽齒盤對(duì)應(yīng)的吸附性能明顯優(yōu)于其他2個(gè)吸種盤。由此可知:吸孔直徑確定條件下,適當(dāng)增大擾種強(qiáng)度可輔助充種,以改善油菜高速排種過(guò)程中的吸附性能。
4.3.2 槽齒盤吸附性能試驗(yàn)
試驗(yàn)選用德優(yōu)矮早和中雙11號(hào)2個(gè)未分級(jí)處理的油菜品種,其中雙11號(hào)三軸尺寸為(1.98×1.94×1.89)mm,千粒質(zhì)量為4.66 g,球形度為97.79%,含水率為7.64%。表2為安裝有槽齒盤的油菜氣力式精量排種器在不同工作轉(zhuǎn)速和負(fù)壓下直播千粒質(zhì)量偏小的德優(yōu)矮早和千粒質(zhì)量偏大的中雙11號(hào)2個(gè)品種的試驗(yàn)結(jié)果。從整體上看:相同工作負(fù)壓下,漏吸率隨轉(zhuǎn)速的增大呈上升趨勢(shì),吸附合格率呈下降趨勢(shì),重吸率無(wú)明顯變化;在同一轉(zhuǎn)速下,吸附合格率隨負(fù)壓的增大呈上升趨勢(shì),漏吸率呈下降趨勢(shì),重吸率無(wú)明顯變化。
工作轉(zhuǎn)速10~110 r/min、負(fù)壓1.5~2.5 kPa條件下,吸附合格率不低于92.0%,漏吸率和重吸率之和不大于8.0%,試驗(yàn)中未發(fā)生吸孔堵塞情況;當(dāng)負(fù)壓小于1.5kPa、轉(zhuǎn)速不低于110 r/min時(shí),吸附合格率均小于85.0%,漏吸率和重吸率大于15.0%。結(jié)合上述數(shù)據(jù)分析:轉(zhuǎn)速10~110 r/min、負(fù)壓1.5~2.5 kPa時(shí),擾種齒對(duì)種群定向擾動(dòng)可打破種子層堆積狀態(tài),使少量種子從種群中分離出來(lái)有序跳動(dòng)進(jìn)入凹槽通道被凹槽內(nèi)部吸孔處產(chǎn)生的負(fù)壓氣流快速捕獲并牢牢吸附;當(dāng)負(fù)壓小于1.5kPa、轉(zhuǎn)速不低于110 r/min時(shí),擾種齒對(duì)種群擾動(dòng)強(qiáng)度增大,從種群中分離出來(lái)的少量種子存在無(wú)序跳動(dòng)且開(kāi)始脫離凹槽通道,由于負(fù)壓氣流不大,使得凹槽內(nèi)部吸孔處產(chǎn)生的負(fù)壓氣流捕獲種子能力下降,進(jìn)而導(dǎo)致吸附合格率較低、漏吸率較高。
從表2中可看出,高轉(zhuǎn)速n∈[110,150] r/min區(qū)間內(nèi),當(dāng)負(fù)壓為1.5~2.5 kPa時(shí),德優(yōu)矮早品種吸附合格率整體要好于中雙11號(hào)品種,結(jié)合式(8)分析其原因在于:當(dāng)吸種盤結(jié)構(gòu)確定時(shí),吸孔瞬間捕獲種子所需負(fù)壓與種子質(zhì)量和吸種盤轉(zhuǎn)速呈正比,高轉(zhuǎn)速下可通過(guò)增大負(fù)壓提高吸附合格率,由于德優(yōu)矮早品種種子質(zhì)量小于中雙11號(hào)品種種子質(zhì)量,因此高轉(zhuǎn)速下,提高中雙11號(hào)品種吸附合格率所需負(fù)壓應(yīng)大于德優(yōu)矮早品種所需負(fù)壓。
表2 工作負(fù)壓和轉(zhuǎn)速對(duì)吸附性能影響
注:為吸附合格率,%;為漏吸率,%;為重吸率,%;為堵孔率,%;n為吸種盤轉(zhuǎn)速,r·min-1。
Note:is suction qualification rate;is leakage suction rate;is multi suction rate;is blocking rate;nis rotation speed of sucking-seed plate.
本文設(shè)計(jì)了一種可改善油菜氣力式排種器高速直播條件下充種性能的槽齒組合式吸種盤,闡述了其結(jié)構(gòu)組成和工作原理,分析并確定了擾種齒和凹槽關(guān)鍵結(jié)構(gòu)參數(shù),及種群在擾種齒作用下種子吸附狀態(tài)的力學(xué)模型,并通過(guò)EDEM與臺(tái)架試驗(yàn)對(duì)平面盤、凹槽盤和槽齒盤進(jìn)行優(yōu)選和吸附性能對(duì)比,結(jié)果表明:
1)在傳統(tǒng)平面盤上增設(shè)凹槽與擾種齒可明顯增加種群的擾動(dòng)強(qiáng)度和降低種子漏吸率。以平均動(dòng)能總和作為種群擾動(dòng)強(qiáng)度的量化指標(biāo),在同一轉(zhuǎn)速下,平均動(dòng)能總和數(shù)值從大到小順序?yàn)椋翰埤X盤>凹槽盤>平面盤。以德優(yōu)矮早油菜品種為對(duì)象,工作負(fù)壓1.5~2.5 kPa、轉(zhuǎn)速10~150 r/min條件下,槽齒盤的漏吸率和吸附合格率均明顯優(yōu)于凹槽盤和平面盤,而重吸率無(wú)明顯差異,當(dāng)轉(zhuǎn)速大于90 r/min時(shí),槽齒盤最大漏吸率為7.4%,凹槽盤最小漏吸率為14.02%,平面盤最小漏吸率為30.4%,與凹槽盤相比漏吸率降低了47.2%,與平面盤相比漏吸率降低了75.7%。
2)對(duì)于德優(yōu)矮早和中雙11號(hào),在相同工作負(fù)壓下,漏吸率隨轉(zhuǎn)速的增大呈上升趨勢(shì),吸附合格率呈下降趨勢(shì),重吸率無(wú)明顯變化;在同一轉(zhuǎn)速下,吸附合格率隨負(fù)壓的增大呈上升趨勢(shì),漏吸率呈下降趨勢(shì),重吸率無(wú)明顯變化;在工作轉(zhuǎn)速10~110 r/min、負(fù)壓1.5~2.5 kPa條件下,吸附合格率不低于92.0%,漏吸率和重吸率之和不大于8.0%。
盡管常用油菜種子品種多樣,但其球形度和平均粒徑差異不大,安裝槽齒盤、凹槽盤和平面盤的油菜高速精量排種器臺(tái)架試驗(yàn)中均未出現(xiàn)吸孔堵塞的情況,通過(guò)吸孔直徑合理設(shè)計(jì)可較好地控制重吸率和堵孔率,增大擾種強(qiáng)度可輔助充種,進(jìn)而改善油菜高速排種過(guò)程的吸附性能,下一步需開(kāi)展復(fù)雜工況下槽齒盤結(jié)構(gòu)優(yōu)化及播種單元作業(yè)速度匹配研究。
[1] 官春云. 改變冬油菜栽培方式,提高和發(fā)展油茶生產(chǎn)[J]. 中國(guó)油料作物學(xué)報(bào),2006,28(1):83-85. Guan Chunyun. The cultivation pattern change of winter rapeseed to increase and develop production[J]. Chinese Journal of Oil Crop Science, 2006, 28(1): 83-85. (in Chinese with English abstract)
[2] 王寅. 直播和移栽冬油菜氮磷鉀肥施用效果的差異與機(jī)理研究[D]. 武漢:華中農(nóng)業(yè)大學(xué),2014. Wang Yin. Study on the Different Responses to Nitrogen,Phosphorus,and Potassium Fertilizers and The Mechanisms Between Direct Sown and Transplanted Winter Oilseed Rape[D]. Wuhan: Huazhong Agricultural University, 2014. (in Chinese with English abstract)
[3] 田波平,廖慶喜,黃海東,等. 2BFQ-6 型油菜精量聯(lián)合直播機(jī)的設(shè)計(jì)[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2008,39(10):211-213. Tian Boping, Liao Qingxi, Huang Haidong, et al. Design of 2BFQ-6 precision planter for rapeseed[J]. Transactions of the Chinese Society for Agricultural Machinery, 2008, 39(10): 211-213. (in Chinese with English abstract)
[4] 廖慶喜,雷小龍,廖宜濤,等. 油菜精量播種技術(shù)研究進(jìn)展[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2017,48(9):1-16.Liao Qingxi, Lei Xiaolong, Liao Yitao, et al. Research progress of precision seeding for rapeseed[J]. Transactions of the Chinese Society for Agricultural Machinery, 2017, 48(9): 1-16. (in Chinese with English abstract)
[5] 李兆東. 油菜氣壓式精量集排器排種技術(shù)及其工作機(jī)理解析[D]. 武漢:華中農(nóng)業(yè)大學(xué),2016. Li Zhaodong. Study on Seeding Technology and Working Mechanism of Pneumatic-typed Precision Centralized Metering Device for Rapeseed[D]. Wuhan: Huazhong Agricultural University, 2016. (in Chinese with English abstract)
[6] 湯楚宙,羅海峰,吳明亮,等. 變?nèi)萘啃涂纵喪脚欧N器設(shè)計(jì)與試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2010,26(12):114—119. Tang Chuzhou, Luo Haifeng, Wu Mingliang, et al. Design and test on seed metering device with variable capacity model-hole roller[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2010, 26(12): 114-119. (in Chinese with English abstract)
[7] 曹秀英,廖慶喜,叢錦玲,等. 離心式油菜精量排種器型孔結(jié)構(gòu)設(shè)計(jì)與試驗(yàn)[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2014,45(增刊):40-46. Cao Xiuying, Liao Qingxi, Cong Jinling, et al. Design and experiment on metering hole structure of centrifugal precision metering device for rapeseed[J]. Transactions of the Chinese Society for Agricultural Machinery, 2014, 45(S1): 40-46. (in Chinese with English abstract)
[8] 廖慶喜,張猛,余佳佳,等. 氣力集排式油菜精量排種器[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2011,42(8):30-34. Liao Qingxi, Zhang Meng, Yu Jiajia, et al. Pneumatic centralized metering device for rapeseed[J]. Transactions of the Chinese Society for Agricultural Machinery, 2011, 42(8): 30-34. (in Chinese with English abstract)
[9] 叢錦玲,余佳佳,曹秀英,等. 油菜小麥兼用型氣力式精量排種器[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2014,45(1):46-52. Cong Jinling, Yu Jiajia, Cao Xiuying, et al. Design of dual-purpose pneumatic precision metering device for rape and wheat[J]. Transactions of the Chinese Society for Agricultural Machinery, 2014, 45(1): 46-52. (in Chinese with English abstract)
[10] 叢錦玲,廖慶喜,曹秀英,等. 油菜小麥兼用吸種盤的排種器充種性能[J]. 農(nóng)業(yè)工程學(xué)報(bào),2014,30(8):30-39. Cong Jinling, Liao Qingxi, Cao Xiuying, et al. Seed filling performance of dual-purpose seed plate in metering device for both rapeseed & wheat seed[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(8): 30-39. (in Chinese with English abstract)
[11] 李?yuàn)檴?,廖慶喜,王都,等. 油菜氣力滾花滾筒式精量集排器充種性能仿真分析與試驗(yàn)[J]. 華中農(nóng)業(yè)大學(xué)學(xué)報(bào),2017,36(5):99-107. Li Shanshan, Liao Qingxi, Wang du, et al. Simulation analyses and experiments of seed filling performance of pneumatic knurled cylinder-type centralized precision metering device for rapeseed[J]. Journal of Huazhong Agricultural University, 2017, 36(5): 99-107. (in Chinese with English abstract)
[12] 李兆東,雷小龍,曹秀英,等. 油菜精量氣壓式集排器的設(shè)計(jì)與試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2015,31(7):9-17. Li Zhaodong, Lei Xiaolong, Cao Xiuying, et al. Design and experiment of pneumatic-typed precision centralized metering device for rapeseed[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(7): 9-17. (in Chinese with English abstract)
[13] 李兆東,李?yuàn)檴櫍苄阌?,? 油菜精量氣壓式集排器排種性能試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2015,31(18):17-25. Li Zhaodong, Li Shanshan, Cao Xiuying, et al. Seeding performance experimentof pneumatic-typed precision centralized metering device[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(18): 17-25. (in Chinese with English abstract)
[14] 劉佳,崔濤,張東興,等. 機(jī)械氣力組合式玉米精密排種器[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2012,43(2):43-47.Liu Jia, Cui Tao, Zhang Dongxing, et al. Mechanical-pneumatic combined corn precision seed-metering device[J]. Transactions of the Chinese Society for Agricultural Machinery, 2012, 43(2): 43-47. (in Chinese with English abstract)
[15] 王芳,呂冰,王洪明,等. 氣吸式谷子排種裝置吸種孔的結(jié)構(gòu)設(shè)計(jì)與試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2017,33(8):30-36. Wang Fang, Lü Bing, Wang Hongming, et al. Structural design and test of seed-suction hole air-sucking seed- metering device[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(8): 30-36. (in Chinese with English abstract)
[16] 李明,劉曉輝,廖宜濤,等. 氣力滾筒式油菜精量集排器[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2013,44(12):68-73.Li Ming, Liu Xiaohui, Liao Yitao, et al. Pneumatic cylinder-type centralized precision metering device for rapeseed[J]. Transactions of the Chinese Society for Agricultural Machinery, 2013, 44(12): 68-73. (in Chinese with English abstract)
[17] 哈爾濱工業(yè)大學(xué)理論力學(xué)教研室. 理論力學(xué)(Ⅰ):第8版[M].北京:高等教育出版社,2016.
[18] 顏丙新,張東興,崔濤,等. 吸種盤和負(fù)壓腔室同步旋轉(zhuǎn)氣吸式玉米精量排種器設(shè)計(jì)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2017,33(23):15-23. Yan Bingxin, Zhang Dongxing, Cui Tao, et al. Design of pneumatic maize precision seed-metering device with synchronous rotating seed plate and vacuum chamber[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(23): 15-23. (in Chinese with English abstract)
[19] 中國(guó)農(nóng)業(yè)機(jī)械科學(xué)研究院. 農(nóng)業(yè)機(jī)械手冊(cè):上冊(cè)[M]. 北京:中國(guó)農(nóng)業(yè)科學(xué)技術(shù)出版社,2007.
[20] 劉曉輝. 小粒徑作物氣力滾筒式精量集排器設(shè)計(jì)與試驗(yàn)研究[D]. 武漢:華中農(nóng)業(yè)大學(xué),2013. Liu Xiaohui. Design and Experiment of Pneumatic Cylinder-type Centralized Precision Metering Device for Small Seeds[D]. Wuhan: Huazhong Agricultural University, 2013. (in Chinese with English abstract)
[21] Van liedekerke P, Tijskens E, Dintwa E, et al. DEM simulations of the particle flow on a centrifugal fertilizer spreader[J]. Powder Technology, 2009, 190(3): 348-360.
[22] Li J, Webb C, Pandiella S S, et al. Discrete particle motion on sieves-a numerical study using the DEM simulation[J]. Powder Technology, 2003(133): 190-202.
[23] Zhao Zhan, Li Yaoming, Liang Zhenwei, et al. DEM simulation and physical testing of rice seed impact against agrain loss sensor[J]. Biosystem Engineering, 2013(116): 410-419.
[24] Lenaerts B, Aertsen T, Tijskens E, et al. Simulation of grain-straw separation by discrete element modeling with bendable straw particles[J]. Computers and Electronics in Agriculture, 2014(101): 24-33.
[25] 賴慶輝,高筱鈞,張智泓. 三七氣吸滾筒式排種器充種性能模擬與試驗(yàn)[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2016,47(5):27—37. Lai Qinghui, Gao Xiaojun, Zhang Zhihong. Simulation and experiment of seed-filling performance of pneumatic cylinder seed-metering device for panax notoginseng[J]. Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(5): 27—37. (in Chinese with English abstract)
[26] 李耀明,趙湛,陳進(jìn),等. 氣吸振動(dòng)式排種器種盤內(nèi)種群運(yùn)動(dòng)的離散元分析[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2009,40(3):56-59. Li Yaoming, Zhao Zhan, Chen Jin, et al. Discrete element method simulation of seeds motion in vibrated bed of precision vacuum seeder[J]. Transactions of The Chinese Society for Agricultural Machinery, 2009, 40(3): 56-59. (in Chinese with English abstract)
[27] 雷小龍,廖宜濤,李兆東,等. 油菜小麥兼用氣送式集排器攪種裝置設(shè)計(jì)及充種性能試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2016,32(18):26-34. Lei Xiaolong, Liao Yitao, Li Zhaodong, et al. Design of seed churning device in air-assisted centralized metering device for rapeseed and wheat and experiment on seed filling performance[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(18): 26-34. (in Chinese with English abstract)
[28] 丁力,楊麗,劉守榮,等. 輔助充種種盤玉米氣吸式高速精量排種器設(shè)計(jì)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2018,34(22):1-11. Ding Li, Yang Li, Liu Shourong, et al. Design of air suction high speed precision maize seed metering device with assistant seed filling plate[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(22): 1-11. (in Chinese with English abstract)
[29] 史嵩,張東興,楊麗,等. 基于EDEM 軟件的氣壓組合孔式排種器充種性能模擬與驗(yàn)證[J]. 農(nóng)業(yè)工程學(xué)報(bào),2015,31(3):62-69. Shi Song, Zhang Dongxing, Yang Li, et al. Simulation and verification of seed-filling performance of pneumatic-combined holes maize precision seed-metering device based on EDEM[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(3): 62-69. (in Chinese with English abstract)
[30] 廖慶喜,張朋玲,廖宜濤,等. 基于EDEM的離心式排種器排種性能數(shù)值仿真[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2014,45(2):109-114. Liao Qingxi, Zhang Pengling, Liao Yitao, et al. Numerical simulation on seeding performance of centrifugal rape-seed metering device based on EDEM[J]. Transactions of the Chinese Society for Agricultural Machinery, 2014, 45(2): 109-114. (in Chinese with English abstract)
[31] 曹秀英,廖宜濤,廖慶喜,等. 油菜離心式精量集排器枝狀閥式分流裝置設(shè)計(jì)與試驗(yàn)[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2015,46(9):77-84. Cao Xiuying, Liao Yitao, Liao Qingxi, et al. Design and experiment on value-branch distributor of centrifugal precision metering device for rapeseed[J]. Transactions of the Chinese Society for Agricultural Machinery, 2015, 46(9): 77-84. (in Chinese with English abstract)
[32] 雷小龍. 油麥兼用型氣送式集排器設(shè)計(jì)及其工作機(jī)理[D]. 武漢:華中農(nóng)業(yè)大學(xué),2017.Lei Xiaolong. Design and Working Mechanism of Air-assisted Centralized Metering Device for Rapeseed and Wheat[D]. Wuhan: Huazhong Agricultural University, 2017. (in Chinese with English abstract)
Design and suction performance test of sucking-seed plate combined with groove-tooth structure on high speed precision metering device of rapeseed
Li Zhaodong1,2, Yang Wenchao1, Zhang Tian1, Wang Weiwei1, Zhang Shun1,2, Chen Liqing1,2※
(1.230036,; 2.230036,)
Rapeseed is an important oil crop in China. High-speed precision direct-seeding technology, which has the advantages of cost saving and efficiency increasing, low lodging risk and suitable for mechanized harvest, is one of the important ways to promote the sustainable development of rapeseed industry.Aiming at the problems that the seeds of the existing pneumatic rape seed metering device are difficult to be separated quickly and sucked accurately from the seed-group during the high-speed working process, which result in leakage suction, and reducing the performance of seed metering, a sucking-seed plate combined with groove-tooth to improve the filling performance of rape high-speed direct seeding was designed in this paper, and the key structures of sucking-seed plate combined with groove-tooth were analysed and determined, the mechanical model of the seed suction for groove-tooth interference was constructed, EDEM numerical simulation was used to analyze the effects of 3 kinds of sucking-seed plates: smooth plate, groove plate and groove-tooth plate on the intensity of directional disturbance for seed-group. Combined with bench test, the optimum selection of seed sucking plate structure was carried out. The test results showed that adding of grooves and disturbing teeth on the traditional smooth plate could significantly increase the disturbance intensity of the seed-group and reduce the seed leakage suction rate. Taking the sum of average kinetic energy as the quantitative index of the seed-group disturbance intensity, the order of the sum of average kinetic energy at the same speed from large to small was: grooved tooth plate, grooved plate and smooth plate. Taking Deyouaizao as the experimental variety, suction performance tests of groove-tooth plate, groove plate and smooth plate were carried out under the work condition that negative pressure of 1.5-2.5 kPa, rotation speed in 10-150 r/min. The test results showed that leakage suction rate and the suction qualification rate of groove-tooth plate were obviously better than those of groove plate and smooth plate. There was no obvious change in the multiple suction rate of groove-tooth plate, groove plate and smooth plate. When rotation speed was greater than 90 r/min, the maximum leakage suction rate of groove-tooth plate was 7.4%, and the minimum leakage suction rate of groove plate was 14.02%, the minimum leakage suction rate of smooth plate was 30.4%, leakage suction rate was reduced by 47.2% compared with groove plate, and leakage suction rate was reduced by 75.7% compared with smooth plate. The performance test of directional disturbance suction showed that with the variety of rapeseed named Deyouaizao and Zhong Shuang 11, under the same work negative pressure, leakage suction rate was increasing, suction qualified rate was decreasing, and multiple suction rate had no obvious change with plate speed increasing. Under the same plate speed, suction qualified rate increased, and leakage suction rate decreased with the increase of negative pressure. Under the plate speed in 10-110 r/min and negative pressure in 1.5-2.5 kPa, suction qualified rate was not less than 92.0%, and the sum of leakage and re-suction rate was not more than 8.0%. Despite the variety of commonly used rapeseed seeds, the difference in sphericity and average grain size is not large, there was no suction hole blockage in the test of the high-speed precision seed metering rack of the rapeseed with groove plate, groove-tooth plate and smooth plate. Through the reasonable design of the diameter of the suction cell, the multiple suction rate and the blocking rate could be well controlled, increasing the average kinetic energy of the seed-group (the disturbance intensity) could significantly improve the filling performance, thereby improving the suction performance of the rapeseed pneumatic high-speed seed metering device and reduce the leakage suction rate. The research results showed that groove and tooth composition plate had a high suction precision and could be provide reference for structural improvement and optimization of pneumatic rapeseed high speed precision seed metering device.
agricultural machinery; design; seeds; pneumatic seed metering device; precision suction; disturbance of groove- tooth; rapeseed
2018-07-06
2018-11-20
國(guó)家自然科學(xué)基金資助項(xiàng)目(51805004);安徽省自然科學(xué)基金資助項(xiàng)目(1808085QE170);安徽省教育廳科學(xué)研究項(xiàng)目(KJ2018A0135)
李兆東,博士,講師,主要從事旱作農(nóng)業(yè)裝備設(shè)計(jì)與智能測(cè)控研究。Email:Lizd@ahau.edu.cn
陳黎卿,博士,教授,主要從事玉米機(jī)械與秸稈處理機(jī)械、智能農(nóng)機(jī)裝備研究。Email:lqchen@ahau.edu.cn
10.11975/j.issn.1002-6819.2019.01.002
S223.2+3
A
1002-6819(2019)-01-0012-11
李兆東,楊文超,張 甜,王韋韋,張 順,陳黎卿. 油菜高速精量排種器槽齒組合式吸種盤設(shè)計(jì)與吸附性能試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2019,35(1):12-22. doi:10.11975/j.issn.1002-6819.2019.01.002 http://www.tcsae.org
Li Zhaodong, Yang Wenchao, Zhang Tian, Wang Weiwei, Zhang Shun, Chen Liqing.Design and suction performance test of sucking-seed plate combined with groove-tooth structure on high speed precision metering device of rapeseed[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(1): 12-22. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2019.01.002 http://www.tcsae.org