楊緒升, 尹文進(jìn)
?
基于潛射自導(dǎo)魚(yú)雷射擊優(yōu)化模型的發(fā)現(xiàn)概率仿真計(jì)算
楊緒升, 尹文進(jìn)
(中國(guó)人民解放軍 91388部隊(duì), 廣東 湛江, 524022)
射擊三角形是計(jì)算潛射魚(yú)雷發(fā)射提前角的理論依據(jù), 隨魚(yú)雷技術(shù)的發(fā)展和戰(zhàn)場(chǎng)需要, 傳統(tǒng)的魚(yú)雷射擊三角形的應(yīng)用局限性日益顯現(xiàn)。據(jù)此, 文中充分考慮了魚(yú)雷實(shí)航速度變化和目標(biāo)輻射噪聲對(duì)魚(yú)雷自導(dǎo)作用距離的影響, 提出有利于貼近實(shí)戰(zhàn)的潛射聲自導(dǎo)魚(yú)雷的射擊要素解算優(yōu)化模型, 推導(dǎo)出提前角解算方法, 并依該模型進(jìn)行魚(yú)雷攻擊彈道仿真和發(fā)現(xiàn)概率計(jì)算。結(jié)果顯示, 該模型適用于廣泛的戰(zhàn)場(chǎng)態(tài)勢(shì), 可為工程應(yīng)用提供有益參考。
魚(yú)雷; 射擊模型; 彈道仿真; 發(fā)現(xiàn)概率
魚(yú)雷作為潛艇攜帶的主要武器之一, 其發(fā)射時(shí)機(jī)和作戰(zhàn)效能[1]在一定程度上影響著海戰(zhàn)進(jìn)程。命中概率作為表征魚(yú)雷作戰(zhàn)能力的重要參數(shù), 是發(fā)現(xiàn)概率、追蹤概率的綜合參數(shù), 受多方面因素影響[2-3]。但現(xiàn)實(shí)中命中概率無(wú)法通過(guò)大量魚(yú)雷試驗(yàn)獲取數(shù)據(jù)來(lái)計(jì)算, 仿真計(jì)算成為有效手段, 因此仿真模型的建立顯得非常重要。文獻(xiàn)[1]和[2]中的仿真時(shí)提前角的計(jì)算都是按照典型的射擊三角形, 這符合早期潛射魚(yú)雷使用的規(guī)定程序, 即潛艇發(fā)現(xiàn)目標(biāo)并解算目標(biāo)運(yùn)動(dòng)要素后首先占位機(jī)動(dòng)[4-5], 然后按提前角瞄準(zhǔn)發(fā)射魚(yú)雷。但在占位機(jī)動(dòng)過(guò)程中存在被敵方發(fā)現(xiàn)鎖定、先我攻擊, 從而喪失最佳射擊窗口的可能性, 因此, 發(fā)現(xiàn)即發(fā)射的戰(zhàn)術(shù)應(yīng)用成為潛艇戰(zhàn)的迫切需求, 文獻(xiàn)[6]~[9]討論符合潛艇作戰(zhàn)規(guī)律的魚(yú)雷射擊模型可以很好地滿足這一需求。在上述研究的基礎(chǔ)上, 文中充分考慮了實(shí)射魚(yú)雷實(shí)航速度和目標(biāo)輻射噪聲對(duì)魚(yú)雷自導(dǎo)作用距離的影響, 對(duì)潛射自導(dǎo)魚(yú)雷射擊模型進(jìn)一步優(yōu)化, 并據(jù)此進(jìn)行魚(yú)雷發(fā)現(xiàn)概率仿真。結(jié)果顯示, 其可應(yīng)用到更多貼近實(shí)戰(zhàn)的戰(zhàn)場(chǎng)態(tài)勢(shì), 具有一定的工程應(yīng)用價(jià)值。
在經(jīng)典的魚(yú)雷射擊三角形中, 如圖1所示, 對(duì)相距為D的點(diǎn)目標(biāo), 發(fā)射艇以提前角或有利提前角對(duì)目標(biāo)相遇點(diǎn)方向發(fā)射魚(yú)雷, 經(jīng)過(guò)魚(yú)雷和目標(biāo)各自一定時(shí)間的航行, 通過(guò)解相遇來(lái)計(jì)算魚(yú)雷發(fā)現(xiàn)目標(biāo)的概率。S和S分別是目標(biāo)和魚(yú)雷在魚(yú)雷發(fā)射時(shí)刻到它們相遇期間分別以V和V的速度航行的距離,Q和分別為敵舷角和命中角。
在計(jì)算此概率的過(guò)程中, 根據(jù)構(gòu)成的三角形邊角關(guān)系, 解析解算魚(yú)雷提前角或有利提前角是其關(guān)鍵環(huán)節(jié)。但在潛艇作戰(zhàn)時(shí), 由于戰(zhàn)場(chǎng)環(huán)境復(fù)雜, 情勢(shì)緊急時(shí)潛艇可能來(lái)不及進(jìn)行航向調(diào)整發(fā)射魚(yú)雷, 魚(yú)雷的出管方向必定是潛艇航向, 這樣, 魚(yú)雷常須經(jīng)過(guò)一次轉(zhuǎn)角甚至二次轉(zhuǎn)角, 才能導(dǎo)向瞄點(diǎn)。因此, 魚(yú)雷航跡應(yīng)是直線—曲線—直線甚至再曲線的形式。如果在攻擊過(guò)程中再需要魚(yú)雷變速行進(jìn), 如圖1所示的模型將不再適合用來(lái)分析這種情況下的魚(yú)雷發(fā)現(xiàn)概率問(wèn)題。
坐標(biāo)系的建立是建立聲自導(dǎo)魚(yú)雷射擊模型的基礎(chǔ), 不同的坐標(biāo)系下會(huì)得出不同的函數(shù)表達(dá)式, 得到的參數(shù)形式也必有所區(qū)別。
2.1.1 魚(yú)雷聲自導(dǎo)方式時(shí)的坐標(biāo)系
對(duì)于魚(yú)雷的聲自導(dǎo)方式, 建立如圖2所示的直角坐標(biāo)系。以發(fā)射魚(yú)雷時(shí)刻目標(biāo)瞬時(shí)位置點(diǎn)為坐標(biāo)原點(diǎn),軸與魚(yú)雷直航方向平行,軸與軸垂直。
2.1.2 魚(yú)雷尾流自導(dǎo)方式時(shí)的坐標(biāo)系
這里所說(shuō)的尾流自導(dǎo), 是特指在大舷角或小舷角特殊情況下的尾流自導(dǎo)方式。由于尾流自導(dǎo)檢測(cè)尾流機(jī)理的原因, 為保證尾流自導(dǎo)魚(yú)雷獲得最佳射擊效果, 魚(yú)雷進(jìn)入目標(biāo)尾流的角度需要限制在一定范圍內(nèi), 當(dāng)超出此界限時(shí)通常會(huì)提前矯正魚(yú)雷航向以垂直或接近垂直于目標(biāo)航向進(jìn)入尾流, 此時(shí)建立的坐標(biāo)系與圖2所示的坐標(biāo)系稍有不同, 如圖3所示。對(duì)比發(fā)現(xiàn), 魚(yú)雷進(jìn)入目標(biāo)尾流前進(jìn)行了二次轉(zhuǎn)角2。為便于2的計(jì)算, 該坐標(biāo)系以發(fā)射魚(yú)雷時(shí)刻的目標(biāo)瞬時(shí)位置點(diǎn)為坐標(biāo)原點(diǎn),軸方向?yàn)槟繕?biāo)的航行方向,軸與之垂直。
2.2.1 聲自導(dǎo)方式時(shí)的提前角
根據(jù)圖2射擊模型, 推導(dǎo)提前角表達(dá)式。其中(X,Y)表示魚(yú)雷坐標(biāo), (x,y) 表示目標(biāo)坐標(biāo)。
發(fā)現(xiàn)目標(biāo)并按下魚(yú)雷發(fā)射按鈕時(shí), 魚(yú)雷坐標(biāo)
魚(yú)雷完成變速時(shí)魚(yú)雷坐標(biāo)
目標(biāo)坐標(biāo)
式中:為魚(yú)雷回旋半徑;R為魚(yú)雷沿軸向滯后目標(biāo)或其方位線的距離;為魚(yú)雷執(zhí)行完一次轉(zhuǎn)角到變速完成時(shí)的航行距離;為發(fā)射魚(yú)雷時(shí)刻到魚(yú)雷第一次轉(zhuǎn)角前的直線距離。
式中:1為基線修正距離;2為魚(yú)雷直航距離;t為出管延遲時(shí)間。
式中:為目標(biāo)在按下魚(yú)雷發(fā)射按鈕至魚(yú)雷變速完成時(shí)的航行距離;3為聲速滯后修正距離;4為瞄點(diǎn)修正距離。
式中,t為魚(yú)雷出管變速時(shí)間。
魚(yú)雷一次轉(zhuǎn)角
魚(yú)雷命中角
相遇時(shí), 目標(biāo)和魚(yú)雷的坐標(biāo)重合, 即
魚(yú)雷變速完成時(shí)至此時(shí)經(jīng)過(guò)的時(shí)間內(nèi), 存在以下關(guān)系式
且魚(yú)雷坐標(biāo)為
現(xiàn)令()=Y-y, 相遇時(shí)必有()=0。將以上各變量代入并整理有
式中,為目標(biāo)和魚(yú)雷的速度比, 令分子為
2.2.2 大舷角或小舷角尾流自導(dǎo)方式時(shí)的提前角
根據(jù)圖3射擊模型, 建立提前角表達(dá)式。魚(yú)雷、目標(biāo)坐標(biāo)表示同2.2.1節(jié)中一致。
發(fā)現(xiàn)目標(biāo)并按下魚(yú)雷發(fā)射按鈕時(shí), 魚(yú)雷坐標(biāo)
此時(shí)目標(biāo)坐標(biāo)為(0, 0)。
一次轉(zhuǎn)角前1處的坐標(biāo)
一次轉(zhuǎn)角完成時(shí)2處的坐標(biāo)
式中,1為魚(yú)雷回旋半徑, 為能表示一次轉(zhuǎn)角的方向, 該值具有方向性, 以下式(20)中的2與其考慮方式相同。且
二次轉(zhuǎn)角完成時(shí)4處坐標(biāo)
按照魚(yú)雷發(fā)現(xiàn)目標(biāo)的瞄準(zhǔn)原則, 瞄距并不是自魚(yú)雷本身到目標(biāo)的距離, 而是瞄點(diǎn)到目標(biāo)的距離, 此瞄點(diǎn)可以是在魚(yú)雷自導(dǎo)搜索扇面的形心處。若再加上一定的修正量, 這樣圖3所示的魚(yú)雷射擊模型應(yīng)該校正為如圖4所示的模型, 相當(dāng)于魚(yú)雷二次轉(zhuǎn)角后直航一段距離垂直進(jìn)入目標(biāo)尾流。相應(yīng)地,4處的魚(yú)雷坐標(biāo)也應(yīng)該校正為
式中, sign(m)為舷別函數(shù), 左舷取–1, 右舷取+1, 或者左轉(zhuǎn)向取–1, 右轉(zhuǎn)向取+1,2為瞄點(diǎn)修正。
此時(shí), 目標(biāo)的航行距離即為魚(yú)雷橫坐標(biāo)。
二次轉(zhuǎn)角前3處的坐標(biāo)
其中
3和4處的橫坐標(biāo)存在如式(22)的關(guān)系, 這是推導(dǎo)大舷角或小舷角時(shí)尾流自導(dǎo)方式時(shí)的提前角關(guān)系式的出發(fā)點(diǎn)。
由上述可知, 魚(yú)雷提前角的表達(dá)式是一個(gè)非線性的超越方程, 因此必須考慮超越方程的求解問(wèn)題??紤]到工程上的實(shí)際問(wèn)題, 這里采用二分法求解超越方程, 具體求法如下。
針對(duì)不同的導(dǎo)引方式對(duì)應(yīng)的不同超越方程, 選取初值也分為2種情況, 即單雷射擊時(shí)聲自導(dǎo)方式和大舷角或小舷角并采用尾流自導(dǎo)方式。
a. 聲自導(dǎo)方式
b. 大舷角或小舷角時(shí)的尾流自導(dǎo)方式
式中
式中,S為目標(biāo)在按下魚(yú)雷發(fā)射按鈕至魚(yú)雷變速完成時(shí)的直航距離。
2) 迭代過(guò)程
否則, 轉(zhuǎn)入下一步;
b. 利用迭代方法求解
①令
3) 收斂問(wèn)題
如果在迭代過(guò)程的第1步隔根區(qū)間查找中, 次數(shù)超過(guò)一定限度(如10次)還沒(méi)找到時(shí), 則不再進(jìn)行隔根區(qū)間的查找和第2步的迭代求解, 以迭代初值為最終解; 如果在第2步迭代過(guò)程中也超過(guò)一定次數(shù)(如10次)仍不滿足收斂條件時(shí), 則不再進(jìn)行迭代求解, 以迭代初值作為最終解。
通常情況下, 只要目標(biāo)處于魚(yú)雷的自導(dǎo)作用扇面和自導(dǎo)作用距離內(nèi), 即可認(rèn)為魚(yú)雷發(fā)現(xiàn)目標(biāo)。
但對(duì)某些特殊型號(hào)的魚(yú)雷, 不僅要滿足式(32)、式(33)判決條件, 還需同時(shí)滿足下述限定條件時(shí)才能認(rèn)為魚(yú)雷發(fā)現(xiàn)目標(biāo)
1) 參數(shù)輸入(初始化)
需要輸入的參數(shù)包括射擊要素及誤差、雷型選擇、攻擊目標(biāo)位置和類(lèi)型、自導(dǎo)方式、海況選擇、射擊方式、聲吶探測(cè)方式等。
為方便操作, 采用面板輸入模式。
2) 計(jì)算提前角、命中角、一次轉(zhuǎn)角(二次轉(zhuǎn)角)
3) 計(jì)算自導(dǎo)開(kāi)機(jī)距離D
4) 進(jìn)行一次發(fā)現(xiàn)概率計(jì)算仿真
a. 自導(dǎo)開(kāi)機(jī)后, 魚(yú)雷參數(shù)附加誤差, 彈道模擬, 同時(shí)目標(biāo)彈道按真值仿真;
b. 計(jì)算目標(biāo)方位, 包括雷目距離、目標(biāo)舷角;
c. 根據(jù)聲吶方程, 計(jì)算目標(biāo)輻射聲源級(jí)、目標(biāo)強(qiáng)度;
d. 進(jìn)行魚(yú)雷自導(dǎo)作用距離折算;
e. 計(jì)算魚(yú)雷航程及剩余航程;
f. 據(jù)判決條件進(jìn)行自導(dǎo)檢測(cè)判決;
g. 輸出判決結(jié)果;
h. 統(tǒng)計(jì)判決結(jié)果, 計(jì)算發(fā)現(xiàn)概率。
圖5是假定我潛艇以6 kn速度巡航時(shí), 對(duì)正前方相距5 550 m的18 kn水面目標(biāo)(長(zhǎng)寬分別為100 m和20 m)發(fā)射某型雷以50 kn速度、尾流自導(dǎo)方式攻擊的一次彈道仿真圖, 仿真所用魚(yú)雷其余各參數(shù)見(jiàn)圖6參數(shù)裝訂對(duì)話框。在此參數(shù)系的情況下, 對(duì)模擬精度為0.03及3級(jí)海況下的1 000次魚(yú)雷模擬攻擊進(jìn)行結(jié)果統(tǒng)計(jì), 魚(yú)雷發(fā)現(xiàn)概率為91.3%。
改變?yōu)槁曌詫?dǎo)方式, 魚(yú)雷發(fā)射艇航向、目標(biāo)舷角及仿真彈道如圖7、圖8所示, 這4種情況下都能完全準(zhǔn)確地發(fā)現(xiàn)目標(biāo)。
查閱國(guó)軍標(biāo)GJB 2686-1996發(fā)現(xiàn), 自導(dǎo)魚(yú)雷的發(fā)現(xiàn)概率計(jì)算基于典型的射擊三角形, 沒(méi)有考慮目標(biāo)舷別問(wèn)題, 使用場(chǎng)合相對(duì)單一, 模式固定, 在適用性方面存在一定缺陷。文中射擊模型更多地考慮了實(shí)戰(zhàn)因素, 如發(fā)射基線修正、瞄點(diǎn)修正、魚(yú)雷出管延遲修正以及魚(yú)雷的自導(dǎo)作用距離受水面艦艇輻射噪聲隨舷角的影響等, 相比較于典型的射擊三角形, 能適應(yīng)于更多的作戰(zhàn)場(chǎng)景, 為我艇先敵發(fā)射、搶得制勝先機(jī)提供必要條件。
觀察發(fā)現(xiàn), 聲自導(dǎo)魚(yú)雷射擊模型和大舷角或小舷角時(shí)尾流自導(dǎo)魚(yú)雷射擊模型在彈道上有了一個(gè)二次轉(zhuǎn)角的變化, 其余的基本相同, 即使坐標(biāo)系選擇有所區(qū)別。這是因?yàn)? 大舷角或小舷角時(shí)尾流自導(dǎo)前, 是靠魚(yú)雷程序彈道將魚(yú)雷自身垂直或接近垂直導(dǎo)向目標(biāo)瞄點(diǎn)(尾流區(qū)域), 以便于魚(yú)雷進(jìn)入目標(biāo)尾流后真正實(shí)施尾流探測(cè)。
根據(jù)敵我戰(zhàn)場(chǎng)態(tài)勢(shì)求解魚(yú)雷發(fā)射提前角或有利提前角是計(jì)算魚(yú)雷發(fā)現(xiàn)概率的關(guān)鍵步驟?;跐撏?shí)戰(zhàn)應(yīng)用, 文中構(gòu)建了不同于以往的數(shù)學(xué)模型, 從原理上推導(dǎo)出魚(yú)雷提前角表達(dá)式, 并利用迭代法求解。然后, 對(duì)比分析了該模型和典型射擊模型的射擊效果并予以仿真計(jì)算。針對(duì)目標(biāo)輻射噪聲對(duì)魚(yú)雷自導(dǎo)作用距離的影響隨目標(biāo)舷角呈蝶形分布的特點(diǎn), 在仿真計(jì)算中通過(guò)魚(yú)雷自導(dǎo)作用距離折算一定程度上降低了魚(yú)雷虛警概率, 從而提高了發(fā)現(xiàn)概率。驗(yàn)證結(jié)果顯示, 該模型可適用于更廣泛的戰(zhàn)場(chǎng)環(huán)境, 具有一定的工程實(shí)用價(jià)值和參考, 但文中仿真計(jì)算只是對(duì)優(yōu)化模型的初步驗(yàn)證, 沒(méi)有針對(duì)各射擊要素和戰(zhàn)場(chǎng)態(tài)勢(shì)對(duì)魚(yú)雷作戰(zhàn)效能的影響特點(diǎn)作進(jìn)一步深入研究和分析。今后將以此為目標(biāo)深入探討, 找出不同戰(zhàn)場(chǎng)態(tài)勢(shì)下有效發(fā)揮魚(yú)雷最大作戰(zhàn)效能的方法途徑, 用以輔助作戰(zhàn)決策, 以期獲得良好的軍事應(yīng)用價(jià)值。
[1] 孟慶玉, 張靜遠(yuǎn), 宋保維. 魚(yú)雷作戰(zhàn)效能分析[M]. 北京: 國(guó)防工業(yè)出版社, 2003.
[2] 楊緒升, 劉建兵, 周慶飛. 聲自導(dǎo)魚(yú)雷射擊諸元及誤差對(duì)其捕獲概率的影響[J]. 指揮控制與仿真, 2009, 31 (5): 93-97.Yang Xu-sheng, Liu Jian-bing, Zhou Qing-fei. Effect on Acoustic Homing Torpedo Capture Probability of Fire Elements and Errors[J]. Command Control & Simulation, 2009, 31(5): 93-97.
[3] 曹慶剛, 田恒斗, 楊緒升, 等. 不同導(dǎo)引方式下影響潛載魚(yú)雷命中概率的主要因素[J]. 魚(yú)雷技術(shù), 2014, 22(3): 204-209.Cao Qing-gang, Tian Heng-dou, Yang Xu-sheng, et al. Main Factors Influencing Submarine-Bome Torpedo Hit Probability in Different Guidance Modes[J]. Torpedo Technology, 2014, 22(3): 204-209.
[4] 嚴(yán)代彪, 王樹(shù)宗, 李俊年. 潛艇魚(yú)雷攻擊時(shí)占位機(jī)動(dòng)參數(shù)的確定[J]. 魚(yú)雷技術(shù), 2005, 29(3): 339-341.Yan Dai-biao, Wang Shu-zong, Li Jun-nian. Calculation of Maneuver Parameters of Submarine Shooting Torpedo[J]. Torpedo Technology, 2005, 29(3): 339-341.
[5] 宋保維, 姜軍, 王鵬, 等. 基于Markov過(guò)程的潛艇占位能力模型研究[J]. 魚(yú)雷技術(shù), 2007, 15(4): 45-48.Song Bao-wei, Jiang Jun, Wang Peng, et al. Modelling Taking-up Position Capability of Submarine Based on Markov Chain[J]. Torpedo Technology, 2007, 15(4): 45-48.
[6] 雷震撼, 袁富宇. 自導(dǎo)魚(yú)雷轉(zhuǎn)角射擊諸元簡(jiǎn)化計(jì)算[J]. 四川兵工學(xué)報(bào), 2014, 35(1): 41-44.Lei Zhen-han, Yuan Fu-yu. Simplified Computing of Parameters with Turn Angle Shooting of Homing Torpedo[J]. Journal of Sichuan Ordnance, 2014, 35(1): 41-44.
[7] 周濤. 聲自導(dǎo)魚(yú)雷自導(dǎo)開(kāi)機(jī)距離計(jì)算模型研究[J].指揮控制與仿真, 2013, 35(3): 36-38.Zhou Tao. Research on Model of Torpedo Initiative Acoustic Homing Equipment Start-up Distance[J]. Command Control & Simulation, 2013, 35(3): 36-38.
[8] 張選東, 代志恒. 聲自導(dǎo)魚(yú)雷射擊模型優(yōu)化研究[J]. 指揮控制與仿真, 2010, 32(4): 49-51.Zhang Xuan-dong, Dai Zhi-heng. Optimizatiion of Firing Model for Acoustic Homing Torpedo[J]. Command Control & Simulation, 2010, 32(4): 49-51.
[9] 閆巖, 趙向濤. 水面艦艇采用不同規(guī)避方式對(duì)潛射聲自導(dǎo)魚(yú)雷命中概率影響研究[J]. 艦船電子工程, 2015, 35(8): 134-139.Yan Yan, Zhao Xiang-tao. Simulation Research of Sub-launched Acoustic Homing Torpedo’s Hit Probability Based on Different Vessel Evasive Maneuver[J]. Ship Electronic Engineering, 2015, 35(8): 134-139.
Simulation on Detection Probability of Submarine-Launched Homing Torpedo Based on the Optimized Firing Model
YANG Xu-sheng, YIN Wen-jin
(91388thUnit, the People’s Liberation Army of China, Zhanjiang 524022, China)
The firing triangle is the theoretical basis for calculating the firing advance angle of submarine-launched torpedo. With the development of torpedo technology and the need of battlefield, the application of traditional torpedo firing triangle becomes more and more limited. In this paper, the effects of torpedo velocity variation and target radiated noise on torpedo homing distance are considered, and an optimization model of the firing elements of submarine-launched acoustic homing torpedo, which is close to actual combat, is established, and a method for calculating the advance angle is deduced. According to this model, simulation of torpedo attack trajectory and calculation of detection probability are conducted, and the results show that this model is applicable to comprehensive battlefield situations.
torpedo; firing model; trajectory simulation; detection probability
TJ631.5; E843
A
2096-3920(2018)06-0568-07
10.11993/j.issn.2096-3920.2018.06.010
2017-06-09;
2017-07-29.
楊緒升(1976-), 男, 工程師, 研究方向?yàn)槲淦飨到y(tǒng)試驗(yàn)數(shù)據(jù)處理.
楊緒升, 尹文進(jìn). 基于潛射自導(dǎo)魚(yú)雷射擊優(yōu)化模型的發(fā)現(xiàn)概率仿真計(jì)算[J]. 水下無(wú)人系統(tǒng)學(xué)報(bào), 2018, 26(6): 568-574.
(責(zé)任編輯: 許 妍)