李廣棟,呂東穎,田秀芝,姬鵬云,郭江鵬,路永強,劉國世
?
組學技術在奶牛乳房炎上應用的相關研究進展
李廣棟1,呂東穎1,田秀芝2,姬鵬云1,郭江鵬3,路永強3,劉國世1
(1中國農(nóng)業(yè)大學動物科學技術學院,北京 100193;2中國農(nóng)業(yè)科學院北京畜牧獸醫(yī)研究所,北京 100193;3北京市畜牧總站,北京 100101)
奶牛乳房炎發(fā)病率較高、病因復雜,是影響世界奶牛業(yè)發(fā)展的主要常見疾病之一。由金黃色葡萄球菌、大腸桿菌、鏈球菌等病原體引起的臨床和隱形乳房炎對動物性食品安全及畜牧業(yè)的正常發(fā)展構成巨大安全隱患,全球每年因奶牛乳房炎導致的經(jīng)濟損失多達數(shù)十億美元。近年來隨著測序技術的不斷突破和測序成本的不斷降低,生命科學的研究進入了多組學時代,其在畜牧業(yè)中的應用也越來越廣泛。對奶牛乳房炎來說,傳統(tǒng)的組織病理學篩查、體細胞計數(shù)、牛乳pH檢測、牛乳電導率檢測、酶活檢驗、紅外熱顯影等診斷技術由于其自身的局限性難以充分全面地闡明其發(fā)病機理,已不能滿足科研人員的需求。組學技術即Omics,主要包括基因組學技術、蛋白質組學技術和代謝組學技術等。通過基因組學研究不僅能從轉錄層面上揭示奶牛乳房炎復雜性狀的表型變異及遺傳基礎,還能從轉錄后調控(miRNAs、LncRNAs等)和表觀遺傳學修飾(DNA甲基化、組蛋白修飾等)層面挖掘出相關的DNA和RNA變化及多分子間的相互作用規(guī)律,能夠幫助我們更好地了解奶牛乳腺組織對病原體的免疫應答機制,篩選鑒定出乳房炎抗性的信號通路及關鍵候選基因,從而提高基因組預測或選擇的準確性。利用蛋白質組學技術能夠對不同環(huán)境不同狀態(tài)的牛乳及乳腺組織的蛋白質種類、表達豐度、蛋白互作、翻譯后修飾等進行比較分析,對差異表達的蛋白質經(jīng)過COG功能注釋、數(shù)據(jù)庫比對、GO和Pathway富集分析,可以從蛋白水平揭示乳房炎發(fā)生及防御過程中的復雜調控機制,同時還能發(fā)現(xiàn)乳房炎診斷的標記分子,進而為乳房炎治療藥物的研發(fā)提供潛在的精準靶點。代謝組學是系統(tǒng)生物學的重要組成部分。通過代謝組學研究,能夠同時對機體在內(nèi)、外環(huán)境等復雜因素作用下及特定生理時期內(nèi)所有低分子量代謝產(chǎn)物(如氨基酸、脂類、碳水化合物等)進行精準、高效的定性和定量分析,從而闡明相關的代謝途徑;其作為基因表達的最下游,能使基因和蛋白質表達的微小變化在代謝物水平上得到放大,進而可以更充分地反映細胞功能。將代謝組學技術應用到奶牛乳房炎研究中,能夠分析出差異代謝物、鑒定出相關的生物標志物,進而揭示奶牛乳腺的生理及病理變化過程。總之,將各組學技術及多組學整合關聯(lián)分析應用到奶牛乳房炎研究中可以更深入地揭示其病原防御機制,進而為乳房炎的預測、診斷和治療提供有價值的參考和借鑒。本文就最近幾年組學技術在奶牛乳房炎領域的研究進展進行綜述,以期為我國奶牛健康及奶業(yè)安全發(fā)展提供指導。
組學技術;奶牛;乳房炎
奶牛乳房炎是乳腺組織發(fā)生的一種炎癥性反應,誘發(fā)因素較多,主要為微生物感染(如細菌、真菌、支原體、病毒等)、環(huán)境因素(如衛(wèi)生條件、溫度濕度、飼料等)、人為因素(如機械性損傷、擠奶應激、飼養(yǎng)管理不當?shù)龋┘芭V蛔陨硪蛩兀ㄈ缒挲g、胎次、產(chǎn)奶量、泌乳階段等)[1-4]。乳房炎的特點為乳腺組織發(fā)生或輕或重的病理學變化,乳汁中的體細胞數(shù)增多,乳品質異常[5]。該病是世界范圍內(nèi)奶牛養(yǎng)殖業(yè)中治療成本最為昂貴的感染疾病,僅對美國畜牧業(yè)造成的影響而言,每年由于牛奶產(chǎn)量及品質下降、獸醫(yī)治療成本飆升及牧場管理費用增加等方面造成的損失高達數(shù)十億美元[6]。根據(jù)乳房及乳汁有無肉眼可見的變化,研究人員通常將奶牛乳房炎分為臨床型乳房炎和亞臨床乳房炎即隱性乳房炎[7-8]。引起奶牛乳房炎的微生物種類繁多,據(jù)報道有137種,較為常見的有20多種[9-10]。其中金黃色葡萄球菌、大腸桿菌和鏈球菌在檢出的致病菌中占有較高比例,為最常見的乳房炎致病菌類型[11-13]。代謝組學、蛋白質組學和基因組學是系統(tǒng)生物學的重要組成部分[14-20],是近年來發(fā)展十分迅速的學科,其不僅在人類醫(yī)學領域占用重要地位,而且也不斷在畜牧業(yè)中的相關研究中嶄露頭角[21-23],一代又一代組學技術的變革讓人們得以探究微觀世界的真理并從分子水平上解析生命的奧秘。在奶牛乳房炎的相關研究中,以往的生物技術因其自身的局限性已經(jīng)不能滿足科研人員的需求,而組學技術的出現(xiàn)恰恰能夠從多個角度深入的解析出奶牛乳房炎的復雜發(fā)病機理,進而能夠篩選出有效的生物學標記從而進行及時準確的預防,同時其還能為相關治療藥物的研發(fā)提供精準的靶點,最終達到防治結合的預期結果。因此,本文從代謝組學、蛋白質組學和基因組學三個方面闡述了組學技術在奶牛乳房炎領域的研究進展,希望能夠為后續(xù)的奶牛健康及奶業(yè)安全的相關研究提供新的思路。
隨著代謝組學相關儀器和分析技術的不斷完善與提高,其在奶牛業(yè)樣品分析中的應用研究越來越多[24-26],牛奶代謝組學一般是通過檢測牛奶中的代謝產(chǎn)物來研究乳品質、乳成分等,進而從側面研究牛只的健康狀況,因此,利用代謝組學的技術可以很好的揭示出奶牛乳房炎的病理代謝機制[27-28]。代謝組學的過程通常包括制備和收集奶樣,利用質譜、氣相色譜-質譜聯(lián)用、液相色譜-質譜聯(lián)用、核磁共振等手段進行檢測,最后對獲得的原始數(shù)據(jù)進行生物信息學分析找出差異標志物,再通過比對相關數(shù)據(jù)庫進行代謝通路的分析,最終明確代謝產(chǎn)物之間的互作關系。
越來越多的專家學者利用代謝組學的方法尋找與奶牛乳房炎相關的活性標記物。THOMAS等[29]以由鏈球菌特異性誘導的奶牛乳房炎作為實驗模型,將采集的奶樣通過液相色譜和質譜聯(lián)用特異性分析了奶樣的代謝組學,結果獲得了3 000個色譜峰,層次聚類分析和主成分分析顯示在誘導乳房炎的81 h后奶樣中的代謝產(chǎn)物變化最大,312 h后才恢復到正常水平,代謝通路分析表明鏈球菌刺激后的前81 h內(nèi)碳水化合物和核苷酸代謝物多數(shù)呈減少趨勢而脂代謝物和二、三和四肽卻截然相反,另外還發(fā)現(xiàn)膽汁酸-核受體FXR信號通路顯著上調,這提示膽汁酸有可能參與了乳腺的炎癥反應,這也可以對乳腺組織在應答外界感染時的反應有了更好的認識。HETTINGA等[30]采用兩種不同的頂空氣相色質譜法(headspace gas chromatography-mass spectrometry, GC-MS)對大多數(shù)病原菌導致的臨床乳房炎的奶樣進行了代謝組學分析,并成功的對奶中的揮發(fā)性代謝物進行了定量,而且還繪制出了特定揮發(fā)性代謝物的表達譜,解決了傳統(tǒng)手段無法解決的難題。SUNDEKILDE等[31]利用核磁共振光譜(nuclear magnetic resonance spectroscopy, NMR)法分析了脫脂牛奶中的代謝組學,結果發(fā)現(xiàn)低、高體細胞數(shù)的樣本之間的代謝產(chǎn)物差異顯著,在高體細胞數(shù)的樣品中乳酸、丁酸、異亮氨酸、乙酸和β-羥基丁酸酯的含量顯著增加,而馬尿酸和富馬酸含量則降低,最終確定了丁酸、β-羥基丁酸酯、異亮氨酸、馬尿酸和富馬酸可以作為牛奶中高體細胞數(shù)的新的標志物,而高體細胞數(shù)也正是隱性乳房炎和臨床乳房炎的典型特征,因此這些代謝物可以間接的反應牛只是否患了乳房炎。而DERVISHI等[32]通過氣相色譜-質譜聯(lián)用的手段對圍產(chǎn)期患隱性乳房炎的荷斯坦奶牛進行了氨基酸、碳水化合物和脂類代謝有關的代謝組分析,確定了纈氨酸、絲氨酸、酪氨酸和苯丙氨酸可以作為產(chǎn)前4到8周的奶牛隱性乳房炎患病與否的標記物,而纈氨酸、異亮氨酸、絲氨酸和脯氨酸則可作為產(chǎn)后4—8周泌乳期的診斷標記物,因此,可以通過氨基酸的代謝變化來預測圍產(chǎn)期奶牛隱性乳房炎的患病風險。Xi[33]等則利用新型的超高效液相色譜四極桿飛行時間質譜(UPLC-Q-TOF-MSE)技術對健康組、臨床乳房炎組和隱性乳房炎組的奶牛乳樣進行了代謝組分析,結果發(fā)現(xiàn)和健康組相比,臨床乳房炎組的葡萄糖、一磷酸甘油、4-羥基苯乳酸、左旋肉堿、甘油- 3 -磷酸膽堿、檸檬酸和馬尿酸顯著減少,而在隱性乳房炎組一磷酸甘油、苯甲酸、左旋肉堿和順烏頭酸顯著減少,同時,精氨酸和亮氨酸含量在隱性乳房炎組中顯著增加,該結果又為乳房炎的診斷提供了更多的標記物。綜上所述,代謝組學不論在隱性乳房炎還是在臨床乳房炎中的應用都取得了理想的效果,為該病的診斷提供了更多的依據(jù)。
傳統(tǒng)的蛋白質組學主要包括二維凝膠電泳、質譜等技術,目前,二維毛細管電泳(2D-CE)、二維色譜(2D-LC)、液相色譜-毛細管電泳(LC-CE)、電噴霧質譜(ESI- MS)和基質輔助激光解吸電離-飛行時間質譜(MALDI-TOF-MS)等新技術異軍突起。目前,隨著科技的發(fā)展和成本的降低,蛋白質組學在動物疾病相關領域的研究越來越廣泛[34],畜牧業(yè)上對于奶牛乳房炎的蛋白質組學研究也逐漸增多[35-36]。
MANSOR等[37]利用毛細管電泳質譜法(CE-MS)對健康奶牛和患臨床乳房炎的奶牛乳樣進行了蛋白質組學分析,結果顯示和對照組相比,患病組的β-乳球蛋白、αS1-酪蛋白、β-酪蛋白、乳過氧化物酶、骨橋蛋白、白細胞介素4受體、成纖維細胞生長因子結合蛋白和糖基化依賴性細胞粘附分子-1差異顯著,另外還發(fā)現(xiàn)αS1-酪蛋白、β酪蛋白和微管α-1C鏈蛋白可以作為區(qū)分由革蘭氏陰性菌(如大腸桿菌等)和革蘭氏陽性菌(如金黃色葡萄球菌等)所致奶牛乳房炎的生物標記物。ZHAO等[38]則利用二維凝膠電泳和無標記定量分析技術對正常奶牛和由大腸桿菌誘導的患乳房炎的奶牛乳腺組織進行了比較蛋白質組分析,通過繪制差異蛋白互作網(wǎng)絡發(fā)現(xiàn)了波形蛋白和α-烯醇化酶為蛋白調控網(wǎng)絡的中心,進而成功揭示了機體在應對大腸桿菌入侵乳腺時的防御機制。JACOB等[39]則利用液相色譜-質譜聯(lián)用(LC-MS)結合二維凝膠電泳和Western Blot技術對隱性乳房炎奶牛和健康奶牛的乳樣中乳清蛋白成分進行了組學分析,結果發(fā)現(xiàn)在乳房炎早期蛋白胨-3前體、胰蛋白酶前體、補體成分-c3、免疫球蛋白重鏈前體、C型凝集素等差異十分顯著,并且確定了補體C3a可以作為診斷奶牛隱性乳房炎的潛在標記物。而HUANG等[40]利用同位素標記相對絕對定量(isobaric tags for relative and absolute quantification,iTRAQ)技術和二維液相色譜-串聯(lián)質譜法(2D-LC- MS/MS)并結合生物信息學分析了由金黃色葡萄球菌導致的奶牛乳房炎感染盛期乳腺組織的蛋白組,結果發(fā)現(xiàn)和對照組相比,I型膠原-α1(COL1A1)和間α-球蛋白抑制劑H4(ITIH4)在感染后的乳腺組織中顯著上調,并且最終通過免疫印跡和免疫組化得到了證實,這為奶牛乳房炎的精準醫(yī)療提供了新的靶點。綜上所述,蛋白質作為中心法則的重要核心,無論是DNA還是RNA最終都要通過蛋白質來行使其功能,因此,在奶牛乳房炎中蛋白質組學的應用可以更加直觀的描繪出相關的抗病機制。
基因組學是人類醫(yī)學、動植物遺傳育種和進化研究中的重要組成部分,隨著高通量深度測序技術的不斷突破和測序平臺的升級換代,基因組學的應用越來越廣泛。復雜性狀的表型變異通常被認為受到許多微效基因和環(huán)境因素的影響,通過評估基因組特征中所有遺傳標記對復雜性狀的整體效應,可以揭示出復雜性狀的遺傳基礎,從而提高基因組預測或選擇的準確性。將相關的基因組學技術運用到奶牛乳房炎的研究中能夠發(fā)現(xiàn)奶牛病理組織和正常組織中的差異表達基因和相關的生物學通路,進而可以鑒定出乳房炎的關鍵候選基因及遺傳標記[41-42]。該技術的運用不僅可以從轉錄水平上反應出功能基因的變化,還能從轉錄后調控(如基因調控原件miRNA)及表觀遺傳學修飾(如DNA甲基化和組蛋白修飾)兩個方面揭示出更深層的互作關系。
TIEZZI等[43]利用Illumina BovineSNP50芯片對103 585頭患臨床乳房炎且處于第一個泌乳期的荷斯坦奶牛和1 361頭公牛進行了全基因組關聯(lián)分析(genome wide association study, GWAS),通過單步基因組BLUP法發(fā)現(xiàn)臨床乳房炎具有多基因遺傳效應,并且其性狀和遺傳變異密切相關,還發(fā)現(xiàn)在2號(IFIH1, LY75, ITGB6, NR4A2 and DPP4)、14號(LY6K, LY6D, LYNX1, LYPD2, SLURP1, PSCA)、20號(GHR, OXCT1, C6, C7, C9, C1QTNF3, DAB2, OSMR, PRLR)染色體上的QTL影響臨床乳房炎的遺傳變異,這些候選QTL在免疫反應中起著十分重要的作用;在8、11、16、19和24號染色體上還發(fā)現(xiàn)了未經(jīng)注釋的基因,這些基因能夠作為臨床乳房炎的潛在候選基因,該研究確定的基因組區(qū)域可作為預測荷斯坦奶牛臨床乳房炎抗性的遺傳學依據(jù)。WANG等[44]將2 093頭中國荷斯坦奶牛體細胞數(shù)估計育種值(SCC EBVs)作為表型性狀,利用GWAS和 MMRA 分析鑒定了與奶牛乳房炎抗性及易感性相關的SNPs和候選基因。結果發(fā)現(xiàn)48個SNPs與奶牛乳房炎抗性顯著相關并且大多數(shù)定位在14號染色體上,有6 個顯著的SNPs 被注釋在TRAPPC9 和ARHGAP39 基因中,其可作為奶牛乳房炎易感性/抗性候選基因。而BRAND等[45]利用高乳房炎易感性牛和低乳房炎易感性牛的乳腺組織為試驗材料通過分子標記輔助選擇結合微陣列表達芯片(marker assisted selection-Microarray chip,MAS)技術發(fā)現(xiàn)了與奶牛金黃色葡萄球菌乳房炎密切相關的候選基因RELB,還發(fā)現(xiàn)與奶牛金黃色葡萄球菌乳房炎易感性相關的候選基因可能潛藏著QTL效應,該結果為金葡菌乳房炎抗性基因的篩選提供了更多的選擇。IM等[46]則以經(jīng)過金黃色葡萄球菌細胞壁成分脂磷壁酸和肽聚糖處理的奶牛乳腺上皮細胞為材料,利用Affymetrix芯片技術檢測了基因的表達譜,共篩選到2 019個差異表達基因,其中801個上調基因,1 218個下調基因;在上調基因中有14個與炎癥調控相關的基因、22個細胞內(nèi)分子信號通路相關的基因還有15 個與轉錄因子相關的基因;而下調基因中有17 個與炎癥相關。最后還通過qPCR對18個差異極顯著的基因進行了驗證,這為金葡菌感染奶牛乳房炎的病理學研究提供了參考。以上的研究表明,盡管奶牛乳房炎性狀存在復雜的遺傳變異效應,但也有一定規(guī)律可尋,顯著差異表達基因的發(fā)現(xiàn)為相關的預測和選擇提供了可能。
XIU等[47]使用金黃色葡萄球菌(S108)、大腸桿菌(E23)及克雷白氏桿菌(K96)分別感染奶牛的乳腺上皮細胞,并對感染后的細胞通過Solexa系統(tǒng)進行了轉錄組測序。GO分析顯示三種病原菌感染組的差異表達基因分別集中在細胞代謝,細胞凋亡和胚胎發(fā)育上,同源蛋白的聚類分析結果表明它們均參與了翻譯,核糖體生物合成和修復等生物過程,而KEGG分析表明三者分別在氧化磷酸化通路、NOD樣受體信號通路和凋亡信號通路顯著富集,還發(fā)現(xiàn)了NRF1、IL8、CXCL5、IL1α、PDCD2L、RAB3A、RAB1B 等基因可作為金葡菌乳房炎抗性候選基因。Wang等[48]利用Illumina系統(tǒng)的Paired-End技術對健康牛和金葡菌乳房炎牛的乳腺組織進行了轉錄組測序,結果篩選到1 352 個差異表達基因,其中一些免疫相關基因ITGB6、MYD88、ADA、ACKR1、TNFRSF1B 與金葡菌乳房炎密切相關,可作為金葡菌乳房炎抗性候選基因,另外還發(fā)現(xiàn)在受感染的乳腺組織中CCL5、Colec2、LTF、CD46和NCF1等基因存在復雜的可變剪接。WANG等[49]則對經(jīng)過S56、S178和S36三種金黃色葡萄球菌誘導的奶牛乳腺上皮組織進行了轉錄組測序,分別篩選到1 720, 427和219個差異表達基因,GO和Pathway分析顯示這些基因顯著地參與炎癥反應、代謝轉化、細胞增殖和凋亡信號通路,IL-1α、TNF、EFNB1、IL-8 和EGR1 等促炎因子顯著上調。而PU等[50]對經(jīng)過無乳鏈球菌誘導的患乳房炎和健康的中國荷斯坦牛乳腺組織進行了miRNA測序,結果發(fā)現(xiàn)和對照組相比,乳房炎組有35個差異表達的miRNA,其中有10個顯著上調(miR-223最高),25個顯著下調(miR-26a最低),這些miRNA的靶基因主要富集在RIG-I-like受體信號通路、胞質DNA傳感通路和Notch信號通路上,該研究為miRNA參與無乳鏈球菌感染奶牛乳房炎的發(fā)病調控提供了有力的證據(jù)。FANG等[51-52]對經(jīng)過高、低濃度金葡菌攻毒24h后的奶牛乳腺組織進行了RNA-seq和miRNA-seq,結果鑒定出194個差異表達基因與高濃度的金葡菌感染有關,這些基因主要參與了先天性免疫反應過程;轉錄組和QTL數(shù)據(jù)庫的聯(lián)合分析發(fā)現(xiàn)了28 個與奶牛金葡菌乳房炎抗性相關的候選基因(如SLC4A11等);他們還發(fā)現(xiàn)高濃度金葡菌感染組β-mir-223和β-mir-21-3p顯著上調,互作分析顯示這兩個miRNA通過抑制CXCL14和KIT來抵抗病原入侵,這些結果從轉錄調控和轉錄后調控的兩個角度綜合分析了金葡菌入侵時的機體免疫機制,具有一定的借鑒意義。JIN等[53]則對經(jīng)金葡菌和大腸桿菌感染的牛乳腺上皮細胞(Mac-T)進行了RNA-Seq和miRNA-Seq,結果發(fā)現(xiàn)兩種菌感染牛乳腺細胞后共有17個miRNA顯著差異,其中金葡菌感染細胞后特有的差異表達miRNA 有4個(bta-miR-2339, miR-499, miR-23a 和miR- 99b),而大腸桿菌感染細胞后的差異表達miRNA 有5 個(bta-miR-184, miR-24-3p, miR-148, miR-486 和let-7a-5p),靶基因預測顯示主要富集在細胞增殖和凋亡生物過程中。以上研究為奶牛乳房炎相關基因的轉錄、轉錄后調控及宿主細胞對病原菌的免疫應答等研究提供了參考,這些新發(fā)現(xiàn)的潛在的靶基因和miRNA可作為奶牛隱性和臨床乳房炎診斷和預防的生物學標記。
目前,靈長類及模式動物的表觀遺傳學研究如火如荼,尤其是疾病相關領域的研究工作甚多,但在家養(yǎng)動物中相關的研究開展相對較晚,奶牛乳房炎因受病原菌和環(huán)境共同影響,若單從病原角度或單從遺傳學角度均難以有效實現(xiàn)對奶牛乳房炎的防治,因此,表觀遺傳學的出現(xiàn)對奶牛乳房炎的研究是一個很好的補充。
VANSELOW等[54]研究發(fā)現(xiàn),在大腸桿菌性乳房炎中酪蛋白的表達受到αS1-酪蛋白基因(CSN1S1)遠端啟動子區(qū)的DNA 甲基化調控,這說明CpG島甲基化變化可能與奶牛乳房炎的發(fā)病有重要關系。WANG等[55]則通過重亞硫酸鹽-焦磷酸測序技術定量檢測了中國健康荷斯坦牛與乳房炎牛CD4基因的啟動子CpG甲基化水平,結果發(fā)現(xiàn)臨床乳房炎牛CD4基因啟動子區(qū)的甲基化水平顯著高于健康奶牛,從而導致該基因的表達水平下降,這表明CD4 基因啟動子區(qū)的高DNA甲基化水平可作為奶牛乳房炎易感性的分子標記。而SONG等[56]通過DNA甲基化免疫共沉淀-芯片(MeDIP-chip)結合亞硫酸氫鹽測序(BSP)技術首次獲得了金葡菌隱性乳房炎牛外周血淋巴細胞的全基因組DNA甲基化圖譜,結果分析鑒定出的58個差異甲基化表達基因中有20.7%的超甲基化基因顯著下調,14.3%顯著上調;KEGG分析表明這些基因參與炎癥反應、ErbB信號通路和DNA錯配修復等;最終獲得了三個新的DNA 甲基化修飾靶基因MST1、NRG1和NAT9,它們可作為潛在的金葡菌隱性乳房炎抗性生物學標記,該研究為奶牛乳房炎易感性的表觀遺傳學研究提供了新的依據(jù)。HE等[57]則采用染色質免疫共沉淀(ChIP-seq)和數(shù)字基因表達譜(DGE-seq)技術對隱性乳房炎奶牛的淋巴細胞進行了測序,獲得了奶牛組蛋白修飾H3K27me3 的全基因組表達譜及金葡菌乳房炎抗性相關的靶基因,發(fā)現(xiàn)隱性乳房炎組的H3K27me3在沉默基因中的表達水平顯著高于健康牛,還確定了金葡菌乳房炎抗性重要候選基因PTX3、IL10等,該研究表明奶牛的金葡菌乳房炎抗性與組蛋白的甲基化調控密切相關。以上研究結果表明DNA、組蛋白甲基化等表觀遺傳因素對于奶牛乳房炎的發(fā)生、發(fā)展和維持等具有重要影響。奶牛產(chǎn)奶性狀的遺傳力屬于中等遺傳力,而奶牛乳房炎遺傳力非常低,因此乳房炎相關基因更易受到環(huán)境影響而使DNA甲基化程度發(fā)生改變。
中國是畜牧業(yè)大國,畜牧業(yè)的可持續(xù)發(fā)展是社會穩(wěn)定的基礎,奶牛在畜牧業(yè)中占用重要的地位,乳房炎是制約奶牛健康及乳品安全的關鍵,三大組學技術從蛋白質、氨基酸、代謝物等深入到基因的轉錄表達、轉錄后調控、表觀修飾、信號通路等,從微觀和分子角度極大地豐富了對于奶牛乳房炎的研究。與此同時,也應當清醒的意識到三大組學技術也存在一定的局限性,比如對于基因組測序而言,仍然是以Illumina等為首的國外公司獨占鰲頭,完全具有自主知識產(chǎn)權的國內(nèi)測序平臺仍然寥寥無幾,而蛋白質組學和代謝組學相對高昂的成本也并非每個實驗室都能夠負擔的起,因此,組學的應用推廣工作任重而道遠,需要每一位科研工作者的不斷努力。
[1] THOMPSON-CRISPI K, ATALLA H, MIGLIOR F, MALLARD B A. Bovine mastitis: frontiers in immunogenetics., 2014, 5: 493.
[2] GODDEN S M, ROYSTER E, KNAUER W, SORG J, LOPEZ- BENAVIDES M, SCHUKKEN Y, LEIBOWITZ S, FRENCH E A. Randomized noninferiority study evaluating the efficacy of a postmilking teat disinfectant for the prevention of naturally occurring intramammary infections., 2016, 99(5): 3675-3687.
[3] DAHL M O, MAUNSELL F P, DE VRIES A, GALVAO K N, RISCO C A, HERNANDEZ J A. Evidence that mastitis can cause pregnancy loss in dairy cows: A systematic review of observational studies., 2017, 100(10): 8322-8329.
[4] FRANCOZ D, WELLEMANS V, DUPRé J P, ROY J P, LABELLE F, LACASSE P, DUFOUR S. Invited review: A systematic review and qualitative analysis of treatments other than conventional antimicrobials for clinical mastitis in dairy cows., 2017, 100(10): 7751-7770.
[5] PILLA R, MALVISI M, SNEL G G, SCHWARZ D, K?NIG S, CZERNY C P, PICCININI R. Differential cell count as an alternative method to diagnose dairy cow mastitis., 2013, 96(3): 1653-1660.
[6] HERTL J A, SCHUKKEN Y H, WELCOME F L, TAUER L W, GR?HN Y T. Pathogen-specific effects on milk yield in repeated clinical mastitis episodes in Holstein dairy cows., 2014, 97(3): 1465-1480.
[7] REYES J, CHAFFER M, SANCHEZ J, TORRES G, MACIAS D, JARAMILLO M, DUQUE P C, CEBALLOS A, KEEFE G P. Targeting human pathogenic bacteria by siderophores A proteomics review., 2015, 98(8): 5294-5303.
[8] ROWBOTHAM R F, RUEGG P L. Associations of selected bedding types with incidence rates of subclinical and clinical mastitis in primiparous Holstein dairy cows., 2016, 99(6): 4707-4717.
[9] TAPONEN S, LISKI E, HEIKKIL? A M, PY?R?L? S. Factors associated with intramammary infection in dairy cows caused by coagulase-negative staphylococci,,,,, or., 2017, 100(1): 493-503.
[10] GAO J, BARKEMA H W, ZHANG L, LIU G, DENG Z, CAI L, SHAN R, ZHANG S, ZOU J, KASTELIC J P, HAN B. Incidence of clinical mastitis and distribution of pathogens on large Chinese dairy farms., 2017, 100(6): 4797-4806.
[11] HERRY V, GITTON C, TABOURET G, RéPéRANT M, FORGE L, TASCA C, GILBERT F B, GUITTON E, BARC C, STAUB C, SMITH D G, GERMON P, FOUCRAS G, RAINARD P. Local immunization impacts the response of dairy cows tomastitis., 2017, 7(1): 3441.
[12] SANTOS R I, ZUNINO P M, GIL A D, LAPORT A, HIRIGOYEN D J. Antibiotic resistance ofassociated with subclinical and clinical mastitis in Uruguay during an eight-year period., 2017, 49(3): 191-194.
[13] LEELAHAPONGSATHON K, SCHUKKEN Y H, PINYOPUMMINTR T, SURIYASATHAPORN W. Comparison of transmission dynamics betweenandintramammary infections., 2016, 99(2): 1418-1426.
[14] ORTEA I, O'CONNOR G, MAQUET A. Review on proteomics for food authentication., 2016, 147: 212-225.
[15] FERREIRA D, SECA A M, C G A D, SILVA A M. Targeting human pathogenic bacteria by siderophores: A proteomics review., 2016, 145: 153-166.
[16] TALWAR D, TSENG T S, FOSTER M, XU L, CHEN L S. Genetics/genomics education for nongenetic health professionals: a systematic literature review., 2017, 19(7): 725-732.
[17] CHEN R, MIAS G I, LI-POOK-THAN J, JIANG L, LAM H Y, CHEN R, MIRIAMI E, KARCZEWSKI K J, HARIHARAN M, DEWEY F E, CHENG Y, CLARK M J, IM H, HABEGGER L, BALASUBRAMANIAN S, O'HUALLACHAIN M, DUDLEY J T, HILLENMEYER S, HARAKSINGH R, SHARON D, EUSKIRCHEN G, LACROUTE P, BETTINGER K, BOYLE A P, KASOWSKI M, GRUBERT F, SEKI S, GARCIA M, WHIRL-CARRILLO M, GALLARDO M, BLASCO M A, GREENBERG P L, SNYDER P, KLEIN T E, ALTMAN R B, BUTTE A J, ASHLEY E A, GERSTEIN M, NADEAU K C, TANG H, SNYDER M. Personal omics profiling reveals dynamic molecular and medical phenotypes., 2012, 148(6): 1293-1307.
[18] JOYCE A R, PALSSON B O. The model organism as a system: integrating 'omics' data sets., 2006, 7(3): 198-210.
[19] GEHLENBORG N, O'DONOGHUE S I, BALIGA N S, GOESMANN A, HIBBS M A, KITANO H, KOHLBACHER O, NEUWEGER H, SCHNEIDER R, TENENBAUM D, GAVIN A C. Visualization of omics data for systems biology., 2010, 7(3 Suppl): S56-S68.
[20] PATTI G J, YANES O, SIUZDAK G. Innovation: Metabolomics: the apogee of the omics trilogy., 2012, 13(4): 263-269.
[21] VAN EMON J M. The Omics Revolution in Agricultural Research., 2016, 64(1): 36-44.
[22] GOBERT M, SAYD T, GATELLIER P, SANTé-LHOUTELLIER V. Application to proteomics to understand and modify meat quality., 2014, 98(3): 539-543.
[23] KAMATH P L, FOSTER J T, DREES K P, LUIKART G, QUANCE C, ANDERSON N J, CLARKE P R, COLE E K, DREW M L, EDWARDS W H, RHYAN J C, TREANOR J J, WALLEN R L, WHITE P J, ROBBE-AUSTERMAN S, CROSS P C. Genomics reveals historic and contemporary transmission dynamics of a bacterial disease among wildlife and livestock., 2016, 7: 11448.
[24] 孫雨航, 許楚楚, 李昌盛, 夏成, 徐闖, 吳凌, 張洪友.基于1H NMR 技術的乳熱奶牛血清代謝組學分析.中國農(nóng)業(yè)科學, 2015, 48(2): 362-369.
SUN Y H, XU C C, LI C S, XIA C, XU C, WU L, ZHANG H Y. 1H NMR-based serum Metabolomics analysis of dairy cows with milk fever., 2015, 48(2): 362-369. (in Chinese)
[25] 李亞娟, 王東升, 張世棟, 嚴作廷, 楊志強, 杜玉蘭, 董書偉, 何寶祥.基于GC-MS 技術的蹄葉炎奶牛血漿代謝譜分析. 中國農(nóng)業(yè)科學, 2016, 49(21): 4255-4264.
LI Y J, WANG D S, ZHANG S D, YAN Z T, YANG Z Q, DU Y L, DONG S W, HE B X.Plasma metabolic profiling analysis of dairy cows with laminitis based on GC-MS., 2016, 49(21): 4255-4264. (in Chinese)
[26] GOLDANSAZ S A, GUO A C, SAJED T, STEELE M A, PLASTOW G S, WISHART D S. Livestock metabolomics and the livestock metabolome: A systematic review., 2017, 12(5): e0177675.
[27] GUILLEMIN N, HORVATI? A, KULE? J, GALAN A, MRLJAK V, BHIDE, M. Omics approaches to probe markers of disease resistance in animal sciences., 2016, 12(7): 2036-2046.
[28] ADDIS M F, TANCA A, UZZAU S, OIKONOMOU G, BICALHO R C, MORONI P. The bovine milk microbiota: insights and perspectives from-omics studies., 2016, 12(8): 2359-2372.
[29] THOMAS F C, MUDALIAR M, TASSI R, MCNEILLY T N, BURCHMORE R, BURGESS K, HERZYK P, ZADOKS R N, ECKERSALL P D. Mastitomics, the integrated omics of bovine milk in an experimental model ofmastitis: 3. Untargeted metabolomics., 2016, 12(9): 2762-2769.
[30] HETTINGA K A, DE BOK F A, LAM T J. Short communication: Practical issues in implementing volatile metabolite analysis for identifying mastitis pathogens., 2015, 98(11): 7906-7910.
[31] SUNDEKILDE U K, POULSEN N A, LARSEN L B, BERTRAM H C. Nuclear magnetic resonance metabonomics reveals strong association between milk metabolites and somatic cell count in bovine milk., 2013, 96(1): 290-299.
[32] DERVISHI E, ZHANG G, DUNN S M, MANDAL R, WISHART D S, AMETAJ B N. GC-MS metabolomics identifies metabolite alterations that precede subclinical mastitis in the blood of transition dairy cows., 2017, 16(2): 433-446.
[33] XI X, KWOK L, WANG Y, MA C, MI Z, ZHANG H. Ultra- performance liquid chromatography-quadrupole-time of flight mass spectrometry MS E-based untargeted milk metabolomics in dairy cows with subclinical or clinical mastitis., 2017, 100(6): 4884-4896.
[34] 徐闖, 朱奎玲, 陳媛媛, 楊威, 夏成, 張洪友, 吳凌, 舒適, 沈泰鈺, 于洪江, 許秋實, 張子揚.應用 SELDI-TOF-MS 技術對患脂肪肝奶牛血漿差異蛋白的分離鑒定及生物信息學特征.中國農(nóng)業(yè)科學, 2016, 49(8): 1585-1598.
XU C, ZHU K L, CHEN Y Y, YANG W, XIA C, ZHANG H Y, WU L, SHU S, SHEN T Y, YU H J, XU Q S, ZHANG Z Y.Isolation identification and bioinformatics of differences protein in plasma of cows suffer from fatty liver with SELDI-TOF-MS techniques., 2016, 49(8): 1585-1598.(in Chinese)
[35] THOMAS F C, MULLEN W, TASSI R, RAMíREZ-TORRES A, MUDALIAR M, MCNEILLY T N, ZADOKS R N, BURCHMORE R, ECKERSALL P D. Mastitomics, the integrated omics of bovine milk in an experimental model of: 1. High abundance proteins, acute phase proteins and peptidomics., 2016, 12(9): 2735-2747.
[36] MUDALIAR M, TASSI R, THOMAS F C, MCNEILLY T N, WEIDT S K, MCLAUGHLIN M, WILSON D, BURCHMORE R, HERZYK P, ECKERSALL P D, ZADOKS R N. Mastitomics, the integrated omics of bovine milk in an experimental model ofmastitis: 2. Label-free relative quantitative proteomics., 2016, 12(9): 2748-2761.
[37] MANSOR R, MULLEN W, ALBALAT A, ZEREFOS P, MISCHAK H, BARRETT D C, BIGGS A, ECKERSALL P D. A peptidomic approach to biomarker discovery for bovine mastitis., 2013, 85: 89-98.
[38] ZHAO X W, YANG Y X, HUANG D W, Cheng G L, Zhao H L. Comparative proteomic analysis of proteins expression changes in the mammary tissue of cows infected withmastitis., 2015, 16(3): 253-263.
[39] JACOB T, SUBRAMANI G, SIVAPRAKASAM P, XAVIER A P, MUKHOPADHYAY H K. Immuno-detection of C3a, a C3 complement activated product in mastitis milk, a potential Diagnostic marker., 2017, 4(1): 13.
[40] HUANG J, LUO G, ZHANG Z, WANG X, JU Z, QI C, ZHANG Y, WANG C, LI R, LI J, YIN W, XU Y, MOISá S J, LOOR J J, ZHONG J. iTRAQ-proteomics and bioinformatics analyses of mammary tissue from cows with clinical mastitis due to natural infection with Staphylococci aureus., 2014, 15: 839.
[41] LIPPOLIS J D, HOLMAN D B, BRUNELLE B W, THACKER T C, BEARSON B L, REINHARDT T A, SACCO1 R E, CASEY T A. Genomic and transcriptomic analysis ofstrains associated with persistent and transient bovine mastitis and the role of Colanic Acid., 2017, IAI: 00566-17.
[42] CAPRA E, CREMONESI P, PIETRELLI A, PUCCIO S, LUINI M, STELLA A, CASTIGLIONI B. Genomic and transcriptomic comparison betweenstrains associated with high and low within herd prevalence of intra-mammary infection., 2017, 17(1): 21.
[43] TIEZZI F, PARKER-GADDIS K L, COLE J B, CLAY J S, MALTECCA C. A genome-wide association study for clinical mastitis in first parity US Holstein cows using single-step approach and genomic matrix re-weighting procedure., 2015, 10(2): e114919.
[44] WANG X, MA P, LIU J, ZHANG Q, ZHANG Y, DING X, JIANG L, WANG Y, ZHANG Y, SUN D, ZHANG S, SU G, YU Y. Genome-wide association study in Chinese Holstein cows reveal two candidate genes for somatic cell score as an indicator for mastitis susceptibility., 2015, 16(1): 111.
[45] BRAND B, HARTMANN A, REPSILBER D, GRIESBECK-ZILCH B, WELLNITZ O, KüHN C, PONSUKSILI S, MEYER H H, SCHWERIN M. Comparative expression profiling ofandinoculated primary mammary gland cells sampled from cows with different genetic predispositions for somatic cell score., 2011, 43(1): 24.
[46] IM J, LEE T, JEON J H, BAIK J E, KIM K W, KANG S S, YUN C H, KIM H, HAN S H. Gene expression profiling of bovine mammary gland epithelial cells stimulated with lipoteichoic acid plus peptidoglycan from., 2014, 21(1): 231-240.
[47] XIU L, FU Y B, DENG Y, SHI XJ, BIAN ZY, RUHAN A, WANG X. Deep sequencing-based analysis of gene expression in bovine mammary epithelial cells after,, andinfection., 2015, 14(4): 16948-16965.
[48] WANG X G, JU Z H, HOU M H, JIANG Q, YANG C H, ZHANG Y, SUN Y, LI R L, WANG C F, ZHONG J F, HUANG J M. Deciphering transcriptome and complex alternative splicing transcripts in mammary gland tissues from cows naturally infected withMastitis., 2016, 11(7): e159719.
[49] WANG X, XIU L, HU Q, CUI X, LIU B, TAO L, WANG T, WU J, CHEN Y, CHEN Y. Deep sequencing-based transcriptional analysis of bovine mammary epithelial cells gene expression in response toinfection withstains., 2013, 8(12): e82117.
[50] PU J, LI R, ZHANG C, CHEN D, LIAO X, ZHU Y, GENG X, JI D, MAO Y, GONG Y, YANG Z. Expression profiles of miRNAs from bovine mammary glands in response to Streptococcus agalactiae- induced mastitis., 2017, 84(3): 300-308.
[51] FANG L, HOU Y, AN J, Li B, SONG M, WANG X, S?RENSEN P, DONG Y, LIU C, WANG Y, ZHU H, ZHANG S, YU Y. Genome-eide transcriptional and post-transcriptional regulation of iInnate immune and defense responses of bovine mammary gland to, 2016, 6: 193.
[52] FANG L, SAHANA G, SU G, YU Y, ZHANG S, LUND M S, S?RENSEN P. Integrating sequence-based GWAS and RNA-Seq provides novel insights into the genetic basis of mastitis and milk production in dairy cattle., 2017, 7: 45560.
[53] JIN W, IBEAGHA-AWEMU E M, LIANG G, BEAUDOIN F, ZHAO X, GUAN L L. Transcriptome microRNA profiling of bovine mammary epithelial cells challenged withorbacteria reveals pathogen directed microRNA expression profiles., 2014, 15(1): 181.
[54] VANSELOW J, YANG W, HERRMANN J, ZERBE H, SCHUBERTH H J, PETZL W, TOMEK W, SEYFERT H M. DNA-remethylation around a STAT5-binding enhancer in the S1-casein promoter is associated with abrupt shutdown of S1-casein synthesis during acute mastitis., 2006, 37(3): 463-477.
[55] WANG X S, ZHANG Y, HE Y H, MA P P, FAN L J, WANG Y C, ZHANG Y I, SUN D X, ZHANG S L, WANG C D, SONG J Z, YU Y. Aberrant promoter methylation of the CD4 gene in peripheral blood cells of mastitis dairy cows., 2013, 12(4): 6228-6239.
[56] SONG M, HE Y, ZHOU H, ZHANG Y, LI X, YU Y. Combined analysis of DNA methylome and transcriptome reveal novel candidate genes with susceptibility to bovinesubclinical mastitis., 2016, 6(1): 29390.
[57] HE Y, SONG M, ZHANG Y, LI X, SONG J, ZHANG Y, YU Y. Whole-genome regulation analysis of histone H3 lysin 27 trimethylation in subclinical mastitis cows infected by., 2016, 17(1): 565.
Research Progress of Omics Technologies in Cow Mastitis
LI GuangDong1, Lü DongYing1, TIAN XiuZhi2, JI PengYun1, GUO JiangPeng3, LU YongQiang3, LIU GuoShi1
(1College of Animal Science and Technology,China Agriculture University,Beijing 100193;2Institute of Animal Sciences,Chinese Academy of Agricultural Sciences,Beijing 100193;3Beijing Animal Husbandry Station,Beijing 100101)
Dairy mastitis, a common and complex disease with a high incidence, takes its toll on the development of world dairy industry, brings economic losses of billions of dollars per year. Clinical and subclinical mastitis, caused by pathogens such as,and, posed a huge security risk to milk industry. In recent years, with the continuous breakthrough of sequencing technology and decline of sequencing cost, the research of life science has entered into the Omics era. The traditional methods such as histopathological screening, somatic cell counting, milk PH value detection, detection of milk conductivity, enzyme activity test, infrared thermal imaging can be employed for clinical diagnosis of dairy cow mastitis, but these methods are not powerful enough to elucidate the pathogenesis in a cellular or molecular view. Omics technologies are mainly composed of genomics, proteomics and metabolomics. Genomics can not only reveal the phenotypic variation and genetic basis of the complex trait of dairy mastitis at the transcriptional level, but also reveal the molecular patterns of the mastitis from the aspects of transcriptional regulation (miRNAs, LncRNAs, etc.) and epigenetic modification (DNA methylation, histone modification, etc.). Genomic analysis of mastitis can also dig out the related changes of DNA, RNA and the rules of multi-molecule interaction, which accounts for a better understanding of the immune mechanism of the host against the pathogen, so as to screen and identify the signal pathways and key candidate genes of mastitis resistance, thus improving the accuracy of genome prediction or selection. Proteomics can not only compare milk protein type and abundance but also analyze protein interaction and post-translational modification in breast tissues under different states and environments. The differentially expressed proteins are annotated by COG (Cluster of Orthologous Groups of protein) function followed by database comparison, GO and Pathway enrichment analysis, which help bring to light the complex regulatory mechanism of mastitis occurrence and defense process at protein level. Proteomic analysis can also be used to find molecular marker of mastitis diagnosis, which will provide a potential precise target for the development of therapeutic drugs. Metabolomics, an important part of the system biology, can detect metabolites of low molecular weight (such as amino acids, lipids, carbohydrates, etc.) of the specific tissues or organs in specific environment or specific physiological states. Efficient qualitative and quantitative analysis will elucidate the relevant metabolic pathways. As the ultimate downstream of gene expression, metabolomics technology enables small changes in gene expression and protein synthesis to be amplified at metabolite levels to fully reflect cellular functions, whose application in dairy mastitis will be able to identify related biomarkers and reveal the physiological and pathological changes of dairy breasts. In conclusion, applying Omics or multi-Omics association analysis techniques to mastitis can further reveal the pathogenic defense mechanism, which will provide valuable reference for disease prediction, diagnosis and treatment. This paper reviews the latest research progress about application of Omics in the field of cow mastitis, aiming to provide solid theoretical bases and practical references for cow health and safety of dairy industry in China.
Omics; cow; mastitis
10.3864/j.issn.0578-1752.2019.02.013
2017-12-05;
2017-12-22
轉基因生物新品種培育重大專項(2014ZX0800802B)、北京市奶牛創(chuàng)新團隊(BAIC06-2017)
李廣棟,E-mail:15600911225@cau.edu.cn。通信作者劉國世,E-mail:gshliu@cau.edu.cn
(責任編輯 林鑒非)