• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Evaluation of the HadISST1 and NSIDC 1850 onward sea ice datasets with a focus on the Barents-Kara seas

    2018-12-07 09:28:04RuiBoWANGShuanglinLIandZheHAN

    Rui-Bo WANG,Shuanglin LIand Zhe HAN

    aCollege of Atmospheric Sciences,Chengdu University of Information Technology,Chengdu,China;bClimate Change Research Center and Nansen-Zhu International Research Centre,Institute of Atmospheric Physics,Chinese Academy of Sciences,Beijing,China;cCAS Key Laboratory of Regional Climate-Environment for Temperate East Asia,Institute of Atmospheric Physics,Chinese Academy of Sciences,Beijing,China;dCollege of Earth Science,The University of Chinese Academy of Sciences,Beijing,China

    ABSTRACT In recent years,long-term continuous sea-ice datasets have been developed,and they cover the periods before and after the satellite era.How these datasets differ from one another before the satellite era,and whether one is more reliable than the other,is important but unclear because the sea-ice record before 1979 is sparse and not continuous.In this letter,two sets of sea-ice datasets are evaluated:one is the HadISST1 dataset from the Hadley Centre,and the other is the SIBT1850(Gridded Monthly Sea Ice Extent and Concentration,from 1850 Onward)dataset from the National Snow and Ice Data Center(NSIDC).In view of its substantial importance for climate,the winter sea ice in the Barents and Kara seas(BKS)is of particular focus.A reconstructed BKS sea-ice extent(SIE)is developed using linear regression from the mean of observed surface air temperature at two adjacent islands,Novaya Zemlya and Franz Josef Land(proxy).One validation illustrates that the proxy is substantially coherent with the BKS sea-ice anomaly in the observations and the CMIP5(phase 5 of the Coupled Model Intercomparison Project)historical experiments.This result indicates that the proxy is reasonable.Therefore,the establishment of the reconstructed BKS SIE is also reasonable.The evaluation results based on the proxy suggest that the sea-ice concentration prior to the satellite era in the NSIDC dataset is more realistic and reliable than that in the Hadley Centre dataset,and thus is more appropriate for use.

    KEYWORDS Evaluation;sea-ice dataset;NSIDC;Hadley Centre;proxy

    1.Introduction

    Sea-ice data are of primary importance for understanding climate variability and change.During the past several decades,Arctic warming has been at least twice the global average(Blunden and Arndt 2012).One crucial factor for this amplified Arctic warming is the positive feedback between sea-ice reduction and warming.Physically,sea ice not only blocks solar radiation into the upper ocean but also affects the energy and vapor exchange between the atmospheric and oceanic surfaces(He et al.2018;Li et al.2018).Furthermore,sea ice plays an important role in midlatitude weather and climate(Yang,Xie,and Huang 1994;Huang and Gao 1999;Wu,Su,and Zhang 2011;Li and Wang 2013;Guo et al.2014;Gao et al.2015;Zuo et al.2016;Wu,Yang,and Francis 2016).However,there are still uncertainties regarding the effect of sea ice on climate,because the strong internal variability of the atmosphere at the mid–high latitudes may obscure the effects of sea ice(Walsh 2014;Overland et al.2015).To understand the impact of sea ice more thoroughly and reduce the uncertainty,a longer sea-ice dataset is necessary.

    However,reliable sea-ice data were unavailable until 1979,when satellite observations began.Thus,various sea-ice datasets were extended back to the 19th century and continued to the 21st century.One of the most often used is the sea-ice concentration dataset from the UK Met Office’s Hadley Centre(HadISST1;Rayner et al.(2003);hereafter, ‘Hadley dataset’).It has a horizontal resolution of 1.0°× 1.0°and a time span from 1870 to the present day.HadISST2 is an updated version of HadISST1,constructed by Titchner and Rayner(2014).Another sea-ice dataset is the Gridded Monthly Sea Ice Extent and Concentration dataset(SIBT1850).This dataset is from the National Snow and Ice Data Center(NSIDC)(Walsh,Chapman,and Fetterer2015).Although the NSIDC provides a great number of different datasets,in this letter,‘the NSIDC dataset’refers to the SIBT1850 dataset.In comparison with the Hadley dataset,the NSIDC dataset has a finer horizontal resolution of 0.25°× 0.25°and spans from 1850 to the end of 2013.Additionally,the dataset has more sources(14 in total),such as whaling ship reports.Every source is represented by a specific number.The method used to merge the data sources is based on a ranking hierarchy,where higher numbers outrank lower ones.Each of the potential sources for a sea-ice concentration value at a particular location is given a rank with a specific number.How these datasets differ from one another,and whether one is more reliable than the other,is important but unclear,because the sea-ice record prior to 1979 is sparse and not continuous.Evaluating the quality of these two datasets constitutes the primary aim of this study.

    Evaluation will be conducted only for the period after 1958.This is because,prior to 1958(the first international geophysical year),atmospheric variables upon which the reconstructed sea-ice extent(SIE)is based had a lack of systematic in-situ observations in the polar regions.Particular attention is given to the two sub-periods before and after the satellite era:1958–78 and 1979–2013,respectively.Winter sea ice in the Barents and Kara seas(BKS)is studied,because the sea ice in this region is more active and more closely related to climate anomalies(Wu,Huang,and Gao 1999;Sorokina et al.2016;Wu et al.2016).

    2.Preliminary comparison of sea-ice variability

    Before evaluating the two datasets,we conduct a preliminary comparison of their sea-ice variability.Using a bilinear interpolation method,the data obtained from the NSIDC dataset is interpolated from 0.25°× 0.25°into 1°× 1°,which is the same resolution as the Hadley dataset.The SIE is defined as the sum of the area where the sea-ice concentration is above 15%for a separated grid point.Winterrefersto December through February;for example,the winter of 1979 refers to December 1978 through February 1979.

    Figure 1 displays the historical evolution of the winter mean BKS SIE.Here,the BKS region refers to the domain shown as the green polygon in Figure 2(e)(70.5°–81.5°N,15.5°–90.5°E).For the period of 1958–2013,the two datasets are overall consistent(Figure 1),with a high correlation coefficient of 0.91(Table 1).This consistency is also observed in their standard deviation(not shown).However,when the period is separated into two sub-periods,before and after 1979,there are obvious differences between the two datasets.

    For the satellite era after 1979,the consistency between the two datasets is most evident.From the interannual evolution of BKS SIE(Figure 1),the two datasets share the same years with more(less)sea ice in 2006 and 2010(2007 and 2012).This high consistency is emphasized by the high correlation coefficient(0.95,Table 1).The standard deviation(Figure 2(a,b))displays similar maxima in sea-ice interannual variability in the BKS,Greenland Sea,Labrador Sea,Bering Sea and Okhotsk Sea.

    For the period 1958–78,the consistency reduces substantially.First,the correlation coefficient in BKS SIE between the two datasets reduces to 0.64 from 0.95(Table 1).Second,the standard deviation of the winter monthly sea ice in the Northern Hemisphere exhibits a visually distinct difference over the Okhotsk Sea.This observation suggests a difference and uncertainty between the two datasets for the period prior to 1979.To exclude the potential contribution from the linear trend,we recalculated the correlation of BKS SIE for the detrended data and found the same result.Thus,the difference between the two datasets during the period prior to 1979 is not a result of the different trends in the datasets.

    Figure 1.Time series of winter BKS SIE.The maroon curve is for the NSIDC dataset and the blue curve is for the Hadley dataset.The first year of the satellite era,1979,is marked with the vertical black line.

    Figure 2.(a)Standard deviation of the winter sea-ice concentration calculated for the period 1979–2013 with the Hadley data.(b)As in(a)but for the NSIDC data.(c)Difference between(a)and(b).(d–f)As in(a–c)but for the period 1958–1978.We defined the green polygon in(e)as the BKS area;the yellow polygon is the area we used to calculate the domain-averaged SAT over Novaya Zemlya and Franz Josef Land.

    Table 1.Correlation coefficients of winter BKS SIE between the Hadley and NSIDC datasets for three periods.Bracketed is the result after detrending.

    3.Proxy for BKS sea ice

    In the above section we illustrate the inconsistency in BKS sea-ice variability prior to 1979 between the two datasets.Which dataset is more reliable is an important issue.Here,we develop a reconstructed SIE based on the idea that the sea-ice variation in BKS is not isolated but closely related to surface air temperature(SAT)at adjacent islands.Also,the SAT record over land has a much longer time span and greater reliability.

    First,sea ice is impacted by atmospheric circulation.It also has feedbacks on the atmosphere inducing the SAT anomaly over the adjacent regions(Sorteberg and Kvingedal 2006;Deser and Teng 2008;Zhang et al.2008;Overland,Wood,and Wang 2011;Wu,Overland,and D’Arrigo 2012;Luo et al.2016).In other words,a correlation exists between sea ice and the SAT anomaly in the ice–atmospheric interaction regions.Second,oceanic flow processes can also cause a correlation between the sea ice and the overlying atmosphere.For example,the sea-ice anomaly can act on the overlying atmosphere in a larger domain because of its larger heat content and longer persistence relative to the atmosphere(Wu et al.2013),and the oceanic heat transport influencing sea-ice variation usually leads to warmer SAT over adjacent lands(Schlichtholz 2011;Pavlova,Pavlov,and Gerland 2014).The correlation of sea ice with SAT in adjacent lands provides a physical basis for using adjacent land SAT as a proxy of sea ice.

    Figure 3.Correlation of the winter BKS SIE with(a)near-surface air temperature from the CRU data,(b)SLP and surface horizontal wind(black arrows),and(c)Z500 from JRA-55.The period used to calculate the correlation is 1979–2013.Italics indicate significance at the 0.01 level for a two-sided Student’s t-test.For comparison,the climatological winter mean surface wind is also displayed in(d).Units:m s-1.

    In Figure 3,simultaneous correlations between the winter BKS SIE and some atmospheric variables after 1979 are shown.Here,the BKS SIE is derived from the NSIDC data.Also,the SAT is from the version 3.24.01 timeseriesoftheClimaticResearch Unit(CRU),University of East Anglia,UK(University of East Anglia Climatic Research Unit,I.C.Harris,P.D.Jones 2017),which has a horizontal resolution of 0.5°× 0.5°and a time span of 1900 through 2015.The 10-m above ground wind,sea level pressure(SLP)and 500-hPa geopotential height(Z500)at 1.25°horizontal resolution are from the JRA-55 dataset(Kobayashi et al.2015).Figure 3(a)indicates that BKS SIE is substantially negatively correlated with the SAT at the adjacent islands—namely,Novaya Zemlya and Franz Josef Land(yellow polygon in Figure 2(e)).Two factors may explain this negative correlation.First,the SLP anomalies corresponding to increased BKS seaiceare negative(Figure 3(b)),and the anomalous northerly wind in the northwestern region of the anomalous low-pressure zone transports cold polar air southward and induces colder SAT over the islands.The negative Z500 anomaly overlaps with the anomalous low,suggesting a barotropic atmospheric circulation anomaly(Figure 3(c)).A similar connection between BKS sea ice and the Z500 has been observed in previous studies(Luo et al.2016;Sorokina et al.2016).Second,the anomalous northerly tends to reduce the climatological surface southerly and causes colder SAT(Figure 3(d)).Therefore,the coherence of BKS sea ice with SAT at the islands of Novaya Zemlya and Franz Josef Land may be physically reasonable.

    Table 2 shows the high correlation coefficients between BKS SIE and SAT over the Novaya Zemlya and Franz Josef Land after 1979.The coherence of BKS sea ice with SAT over adjacent lands and the physical basis for this coherence is also seen in the historical runs from 21 coupled models(Table 3)involved in phase5ofthe Coupled Model Intercomparison Project(CMIP5).Here,these models are used for analysis because of their availability.Additionally,for a convenient comparison with the observations in the satellite era,27 years spanning 1979–2005 are used.The multi-model ensemble correlation is calculated based on the extended BKS SIEseries by linking the individual model results into one single long series.From Figure S1(a),BKS SIE is negatively correlated with the SAT over the Arctic and Eurasian high latitudes,similar to the observations(Figure 3(a)).The correlation of SLP also bears some similarity to the observations(cf.Figures S1(b)and 3(b)).There is an east–west dipole in the highlatitude region,with negative correlation in Eurasia but positive correlation in North America,although the negative center over the Eurasian high latitudes shifts somewhat southward.The islands mentioned above are governed by the anomalous northerly windontheeastsideoftheanomaloushigh extending from eastern North America to Greenland and causing a southward transport of cold polar air that results in a colder SAT.The Z500 anomalies at high latitudes(Figure S1(c))also appear similar to the observations,although less significant over Eurasia.

    Table 2.Correlation coefficients of BKS SIE in the Hadley and NSIDC datasets with the domain-averaged SAT over Novaya Zemlya and Franz Josef Land for three periods.Bracketed is the result after detrending.

    Table 3.Correlation coefficients between the BKS SIE and the domain-averaged SAT over Novaya Zemlya and Franz Josef Land in CMIP5 models for 1979–2005 and 1960–1978.

    The above analysis again suggests that the correlation between BKS sea ice and the SAT over Novaya Zemlya and Franz Josef Land is physically reasonable.Thus,the domain-averaged SAT over Novaya Zemlya and Franz Josef Land(70°–82°N,44°–70°E)can be used as a proxy to reconstruct the BKS SIE.Below,we further verify this point by comparing the proxy with the SIE in the observed dataset and the CMIP5 historical runs.

    The winter mean SAT over Novaya Zemlya and Franz Josef Land is calculated from the CRU’s observational global land SAT dataset or the CMIP5 models.Similarly,the BKS SIE can easily be derived.A substantially negative correlation between the BKS SIE and the domainaveraged SAT is seen in the two ice datasets(Table 2)and nearly all of the models(Table 3).The correlation coefficients of the domain-averaged SAT with the BKS SIE in the two observational datasets are-0.74 and-0.78 during the satellite era(1979–2013).Additionally,the correlation coefficients in more than two-thirds of the CMIP5 models(16 of 21 models)is less than-0.6.For 19 models(all models except FGOALS-g2 and IPSL-CM5ALR),the correlation coefficients are smaller than-0.32,meaning that the models are above the 90%confidence level.When the analysis period for the models is extended backward to 1960,the significant negative correlation in most of the models remains.

    Thus,we used the proxy to establish a reconstructed BKS SIE by using linear regression as follows:

    Here,y is the reconstructed BKS SIE,and x is the domain-averaged SAT(proxy).By using least-squaresfitting,the coefficients a and b are calculated based on the observed BKS SIE and the proxy during the period 1979–2013,and have the values-0.035 and 0.456,respectively.

    As a validation,the SAT-based reconstructed BKS SIE using the regression model is compared with the observed sea ice for 1979–2013.Calculation suggests that the reconstructed SIE correlates well with the SIE in the two datasets,with correlation coefficients of 0.74 and 0.78(Table 4),respectively.From Figure 4(b),the reconstructed SIE sufficiently captures the variation of the observed SIE.This agreement indicates that the SAT-based reconstructed SIE is an appropriate representation of the sea ice.Because of the greater reliability and the longer time span of the SAT data than those of the sea-ice data prior to 1979,the proxy provides a valuable approach to evaluate the sea ice prior to the satellite era.In the next section,we use the reconstructed SIE as a benchmark to evaluate the sea ice prior to 1979.

    4.Evaluation result

    Figure 4 compares the BKS SIE in the two datasets with the reconstructed BKS SIE.As seen above,it is unsurprising that the evolution of the SIE prior to 1979(i.e.,1958–78)in the two sea-ice datasets is different.TheBKS SIE in the NSIDC dataset is more strongly correlated with the proxy(-0.64)and the reconstructed SIE(0.64)than the Hadley dataset is(-0.26 and 0.26;Tables 2 and 4).This finding suggests that the quality of the sea-ice data from NSIDC is better than that of the data from Hadley.The lower correlation(0.64)of BKS SIE in the Hadley dataset than that in the NSIDC dataset(0.76)with the reconstructed SIE during the whole period from 1958 to 2013 is in agreement with this assessment.Thus,the interannual BKS sea-ice data in the NSIDC data are relatively more reliable.

    Table 4.Correlation coefficients of BKS SIE in the Hadley and NSIDC datasets with the reconstructed SIE for three periods.Bracketed is the result after detrending.

    Figure 4.Time series of winter BKS SIE(a)with the overlap of the domain-averaged SAT over Novaya Zemlya and Franz Josef Land;(b)with the reconstructed SIE overlap;(c)after detrending with the reconstructed SIE after detrending overlap.The maroon curve is for the NSIDC dataset,the blue curve is for the Hadley dataset and the black curve is for the CRU SAT.The first year of the satellite era,1979,is marked with the vertical black line.

    The greater reliability of the NSIDC sea-ice data prior to 1979 is consistent with the standard deviation distribution.As mentioned in section 2,the standard deviation for the period before 1979 in the two datasets exhibits a substantial difference,particularly in the Okhotsk Sea(Figure 2(f)).When comparing the sea-ice standard deviation before and after 1979,the NSIDC data before 1979 not only bear a greater resemblance to themselves but also to the Hadley data after 1979.To some extent,this result further verifies the greater reliability of the NSIDC data before 1979.

    5.Conclusions and discussion

    In this letter,the quality of sea ice in the BKS before 1979 in two datasets,one from the UK’s Hadley Centre and the other from NSIDC,is investigated.The sea-ice proxy is the average mean of winter(December–January–February)SAT over the islands of Novaya Zemlya and Franz Josef Land.Based on the proxy,the reconstructed sea ice is used as a benchmark.The results suggest that the winter BKS sea-ice quality in the NSIDC data is higher than that in the Hadley data for the period 1958–78,although both datasets are substantially consistent with each other and reasonable after 1979.Here,the quality means the interannual variability of the sea ice.The better quality of the dataset from NSIDC may be related to the data source used and the analog method to fill in temporal gaps.By checking the data sources used in the BKS,we found that both the Walsh and Johnson data(source No.5)and the Russian Arctic and Antarctic Research Institute(AARI)data(source No.10)had values.According to the ranking method introduced in the introduction,the AARI data are used instead of the Walsh and Johnson data,which are different from the Hadley data.The analog method is used to fill in temporal gaps in the NSIDC dataset.It is possible that the different methods used to fill temporal gaps may also lead to different results.

    TheimpactoftheseaiceinBKSontheatmosphereisstill controversial and deserves further study(Wu,Su,and D'Arrigo 2015;Walsh 2014;Kelleher and Screen 2018).There is a need for a reliable sea-ice dataset that encompasses a long time period.The present study suggests that theseaicefromNSIDCismoreappropriateforsuchstudies.

    Semenov and Latif(2015)demonstrated that winter sea-ice concentrations in BKS show an obvious positive bias from1966–1969relative to those during 1971–2000 in the Hadley dataset(Figure S2(a)).When a similar comparison for the two periods using the NSIDC dataset is conducted,no evident positive bias is seen(Figure S2(b)).This result suggests that the bias may result from the Hadley dataset itself.

    Here,we only choose the SAT at the islands of Novaya Zemlya and Franz Josef Land as the proxy.One may wonder why the SAT over Svalbard is not used,because the SAT there is similarly negatively correlated with the BKS sea ice(Figure 3(a)and S1(a)).There are two arguments for our choice.One is that the climatological southerly component around Novaya Zemlya and Franz Josef Land is stronger,and the SAT over the two islands is influenced more easily by local sea ice,even for the period prior to 1979 when the climatological sea-ice boundary is at a more southern location.The other is that there is less of the sea-ice anomaly east of Svalbard before 1979,and the SAT anomaly caused by the sea ice cannot be easily transported to Svalbard.

    Acknowledgments

    The CMIP5 historical experiments are supported by the climate modeling groups on the website http://cmip-pcmdi.llnl.gov/cmip5/data_portal.html.

    Disclosure statement

    No potential conflict of interest was reported by the authors.

    Funding

    This work was jointly supported by the National Natural Science Foundation of China[grant numbers 41790473 and 41421004]and the Strategic Priority Research Program of the Chinese Academy of Sciences[grant number XDA19070402].

    bbb黄色大片| 亚洲第一电影网av| 成人精品一区二区免费| 一区二区三区高清视频在线| 在线观看一区二区三区| 91av网站免费观看| e午夜精品久久久久久久| 九色国产91popny在线| 国产精品一区二区精品视频观看| 啦啦啦免费观看视频1| 嫩草影院精品99| 麻豆成人午夜福利视频| 一级毛片精品| 成人特级黄色片久久久久久久| 男人舔女人下体高潮全视频| 欧美黑人巨大hd| 久久久国产成人精品二区| 人人妻人人看人人澡| 精品国产亚洲在线| 女人高潮潮喷娇喘18禁视频| 亚洲精品一区av在线观看| 嫁个100分男人电影在线观看| 黄色片一级片一级黄色片| 无人区码免费观看不卡| 欧美成人免费av一区二区三区| 级片在线观看| 久久午夜亚洲精品久久| 欧美中文日本在线观看视频| 丁香六月欧美| 少妇 在线观看| 午夜免费成人在线视频| 深夜精品福利| av超薄肉色丝袜交足视频| 欧美日韩福利视频一区二区| 精品午夜福利视频在线观看一区| 精品第一国产精品| 国产免费男女视频| 国产99白浆流出| 神马国产精品三级电影在线观看 | 日本黄色视频三级网站网址| 国产男靠女视频免费网站| 国产精品,欧美在线| 听说在线观看完整版免费高清| 午夜免费激情av| 国产v大片淫在线免费观看| 久久国产精品人妻蜜桃| 亚洲一区中文字幕在线| 大型黄色视频在线免费观看| 国产一卡二卡三卡精品| 精品乱码久久久久久99久播| 成人免费观看视频高清| 51午夜福利影视在线观看| 久久香蕉激情| 欧美国产日韩亚洲一区| 欧美国产日韩亚洲一区| 搞女人的毛片| 老司机靠b影院| 99国产极品粉嫩在线观看| 国产精品久久久av美女十八| 亚洲熟妇熟女久久| 日本免费a在线| 桃红色精品国产亚洲av| 久久精品国产99精品国产亚洲性色| 成人18禁在线播放| 热re99久久国产66热| 久久久久免费精品人妻一区二区 | 国产一区二区三区视频了| 国产成人欧美| 欧美日韩黄片免| 91字幕亚洲| 男人舔奶头视频| 韩国精品一区二区三区| 亚洲欧美日韩无卡精品| 欧美在线黄色| 美女大奶头视频| 午夜a级毛片| 日韩欧美一区视频在线观看| 美女午夜性视频免费| 男女下面进入的视频免费午夜 | 91av网站免费观看| 欧美日韩乱码在线| 99精品久久久久人妻精品| 午夜福利在线观看吧| 无人区码免费观看不卡| 精品第一国产精品| 欧美激情久久久久久爽电影| 国内少妇人妻偷人精品xxx网站 | 在线国产一区二区在线| 美女高潮喷水抽搐中文字幕| 女性生殖器流出的白浆| 亚洲黑人精品在线| bbb黄色大片| 成人18禁在线播放| 久久久久久久久中文| www日本在线高清视频| 精品不卡国产一区二区三区| 欧美三级亚洲精品| 人人妻,人人澡人人爽秒播| 一区福利在线观看| 亚洲av成人av| 露出奶头的视频| 色精品久久人妻99蜜桃| 一级作爱视频免费观看| e午夜精品久久久久久久| 国产久久久一区二区三区| 中文字幕最新亚洲高清| 午夜日韩欧美国产| 精品一区二区三区视频在线观看免费| 女人高潮潮喷娇喘18禁视频| www.999成人在线观看| 亚洲成人国产一区在线观看| 十八禁网站免费在线| 国产三级黄色录像| 成人手机av| 精品久久久久久成人av| 两性午夜刺激爽爽歪歪视频在线观看 | 又大又爽又粗| 无人区码免费观看不卡| 日本在线视频免费播放| 怎么达到女性高潮| 国产视频一区二区在线看| 男人舔奶头视频| 日韩欧美国产一区二区入口| 亚洲一区二区三区色噜噜| 国产一区二区三区视频了| 亚洲人成网站在线播放欧美日韩| 中文字幕精品免费在线观看视频| 在线国产一区二区在线| 国产亚洲精品av在线| 午夜日韩欧美国产| 国产激情偷乱视频一区二区| 国产精品一区二区免费欧美| 国产成人啪精品午夜网站| 国产v大片淫在线免费观看| 正在播放国产对白刺激| 99国产精品99久久久久| 色婷婷久久久亚洲欧美| 12—13女人毛片做爰片一| 男女午夜视频在线观看| 99热只有精品国产| 丝袜美腿诱惑在线| 久久九九热精品免费| 特大巨黑吊av在线直播 | 巨乳人妻的诱惑在线观看| 国产一区二区三区在线臀色熟女| a级毛片a级免费在线| 午夜亚洲福利在线播放| av视频在线观看入口| 国产成人av教育| 国产成人啪精品午夜网站| 日日爽夜夜爽网站| 白带黄色成豆腐渣| 嫩草影视91久久| 神马国产精品三级电影在线观看 | www.自偷自拍.com| 午夜福利欧美成人| 午夜免费观看网址| 91麻豆精品激情在线观看国产| 欧美午夜高清在线| 香蕉av资源在线| 免费高清视频大片| 国产精品精品国产色婷婷| 麻豆av在线久日| 1024视频免费在线观看| 丝袜人妻中文字幕| 哪里可以看免费的av片| 久久精品影院6| 99久久久亚洲精品蜜臀av| 一级a爱片免费观看的视频| 午夜免费观看网址| videosex国产| 欧美乱妇无乱码| 欧美色欧美亚洲另类二区| 91大片在线观看| 超碰成人久久| 一区二区三区高清视频在线| 丰满的人妻完整版| 性色av乱码一区二区三区2| 国产精华一区二区三区| 99精品久久久久人妻精品| 美女 人体艺术 gogo| 中文字幕精品亚洲无线码一区 | 亚洲第一电影网av| 亚洲 欧美一区二区三区| 韩国av一区二区三区四区| 美女国产高潮福利片在线看| 亚洲三区欧美一区| 日韩精品青青久久久久久| 波多野结衣高清无吗| 中文字幕精品免费在线观看视频| 韩国av一区二区三区四区| 黄网站色视频无遮挡免费观看| 999精品在线视频| 男人舔女人的私密视频| 村上凉子中文字幕在线| 日本 av在线| 成人免费观看视频高清| 国产成人精品无人区| 女警被强在线播放| 亚洲天堂国产精品一区在线| 超碰成人久久| 午夜视频精品福利| 国产精品香港三级国产av潘金莲| 嫩草影院精品99| 亚洲狠狠婷婷综合久久图片| 日日干狠狠操夜夜爽| 俺也久久电影网| 欧美日韩一级在线毛片| 日本撒尿小便嘘嘘汇集6| 看免费av毛片| 亚洲中文字幕一区二区三区有码在线看 | 国产熟女xx| 亚洲五月色婷婷综合| 一级黄色大片毛片| 久久久久久免费高清国产稀缺| 亚洲 国产 在线| 一级a爱片免费观看的视频| 欧美日韩中文字幕国产精品一区二区三区| 国产精品 国内视频| 两人在一起打扑克的视频| 窝窝影院91人妻| 久久国产精品影院| 美女大奶头视频| av有码第一页| 男女视频在线观看网站免费 | 国产精品久久视频播放| 国产真实乱freesex| 久久伊人香网站| 亚洲最大成人中文| 欧美又色又爽又黄视频| 国产精品免费一区二区三区在线| 国产成人精品久久二区二区91| 国产真实乱freesex| 亚洲avbb在线观看| 免费一级毛片在线播放高清视频| 亚洲人成网站在线播放欧美日韩| av在线播放免费不卡| 久久久久久国产a免费观看| 一区二区三区精品91| 桃色一区二区三区在线观看| 91在线观看av| 伊人久久大香线蕉亚洲五| 99热只有精品国产| 亚洲精品粉嫩美女一区| 亚洲av熟女| 国产熟女午夜一区二区三区| 成人亚洲精品av一区二区| 日韩大尺度精品在线看网址| 两性午夜刺激爽爽歪歪视频在线观看 | 国产成人精品久久二区二区91| 非洲黑人性xxxx精品又粗又长| 国产成人av激情在线播放| 欧美日韩瑟瑟在线播放| 亚洲专区中文字幕在线| 欧美激情极品国产一区二区三区| 国产麻豆成人av免费视频| 九色国产91popny在线| 久久香蕉精品热| 亚洲成人国产一区在线观看| 久久精品成人免费网站| 人妻久久中文字幕网| 日韩国内少妇激情av| 午夜影院日韩av| 天天添夜夜摸| 在线看三级毛片| 国产精品亚洲美女久久久| 自线自在国产av| 国产黄a三级三级三级人| 欧美成人一区二区免费高清观看 | 中文字幕高清在线视频| 日韩大尺度精品在线看网址| 女性被躁到高潮视频| 国产不卡一卡二| 最近最新免费中文字幕在线| 十分钟在线观看高清视频www| 在线国产一区二区在线| 12—13女人毛片做爰片一| 亚洲国产欧洲综合997久久, | 成人一区二区视频在线观看| 亚洲精品在线美女| 一进一出好大好爽视频| 久9热在线精品视频| 欧美最黄视频在线播放免费| 久久久久久免费高清国产稀缺| 欧美激情 高清一区二区三区| 精品国产乱码久久久久久男人| 国产熟女午夜一区二区三区| 午夜久久久久精精品| 欧美成人午夜精品| 国内揄拍国产精品人妻在线 | 欧美丝袜亚洲另类 | 极品教师在线免费播放| 亚洲一卡2卡3卡4卡5卡精品中文| 人人澡人人妻人| 国产精品1区2区在线观看.| 国产免费av片在线观看野外av| 一级毛片精品| svipshipincom国产片| 欧美乱色亚洲激情| 欧美+亚洲+日韩+国产| 日韩三级视频一区二区三区| 日韩高清综合在线| 我的亚洲天堂| 黄色 视频免费看| 在线永久观看黄色视频| 欧美成人性av电影在线观看| 狂野欧美激情性xxxx| 韩国av一区二区三区四区| 18禁观看日本| 亚洲国产欧洲综合997久久, | 亚洲自偷自拍图片 自拍| 韩国精品一区二区三区| 欧美激情极品国产一区二区三区| 精品欧美国产一区二区三| 中文在线观看免费www的网站 | 在线观看免费视频日本深夜| 亚洲精品美女久久av网站| 日本撒尿小便嘘嘘汇集6| 757午夜福利合集在线观看| 亚洲精品一区av在线观看| 国产精品av久久久久免费| 日本一区二区免费在线视频| 精品高清国产在线一区| 国产精品久久久久久亚洲av鲁大| 国产精品,欧美在线| a在线观看视频网站| 久久午夜综合久久蜜桃| 黄色成人免费大全| 一区二区日韩欧美中文字幕| 啪啪无遮挡十八禁网站| 亚洲avbb在线观看| 激情在线观看视频在线高清| 美女午夜性视频免费| 国产成人精品无人区| 校园春色视频在线观看| 亚洲色图av天堂| 免费av毛片视频| 中文字幕人妻熟女乱码| 久久 成人 亚洲| 成人国产一区最新在线观看| 日韩视频一区二区在线观看| 亚洲精品国产一区二区精华液| 欧美日韩精品网址| 一进一出好大好爽视频| 亚洲精品久久国产高清桃花| 亚洲人成网站高清观看| 亚洲精品中文字幕在线视频| 亚洲国产欧洲综合997久久, | 亚洲精品一卡2卡三卡4卡5卡| 久久精品aⅴ一区二区三区四区| 中国美女看黄片| 成人欧美大片| 老熟妇仑乱视频hdxx| 成在线人永久免费视频| 人妻久久中文字幕网| 黄色成人免费大全| 国产一区二区在线av高清观看| 可以在线观看的亚洲视频| 在线观看舔阴道视频| 国产精品久久久av美女十八| 精品免费久久久久久久清纯| 国产激情久久老熟女| 曰老女人黄片| 国内少妇人妻偷人精品xxx网站 | 精品久久久久久久久久免费视频| 国产亚洲精品久久久久久毛片| 久久精品国产清高在天天线| 一本久久中文字幕| 国产精品 欧美亚洲| 国产精品98久久久久久宅男小说| 男女下面进入的视频免费午夜 | 夜夜夜夜夜久久久久| 国产熟女xx| 2021天堂中文幕一二区在线观 | 精品国内亚洲2022精品成人| 国产一级毛片七仙女欲春2 | 欧美日韩亚洲国产一区二区在线观看| 国产精品乱码一区二三区的特点| 波多野结衣av一区二区av| 久久人妻福利社区极品人妻图片| av片东京热男人的天堂| 女人爽到高潮嗷嗷叫在线视频| 欧美又色又爽又黄视频| 成在线人永久免费视频| 国产97色在线日韩免费| 日韩国内少妇激情av| 在线观看一区二区三区| av超薄肉色丝袜交足视频| 精品久久久久久久久久久久久 | 1024香蕉在线观看| 美女 人体艺术 gogo| 亚洲va日本ⅴa欧美va伊人久久| 亚洲国产毛片av蜜桃av| 十八禁人妻一区二区| 精品一区二区三区av网在线观看| 亚洲国产欧美日韩在线播放| 视频区欧美日本亚洲| 亚洲一区高清亚洲精品| 成人永久免费在线观看视频| 啦啦啦免费观看视频1| 久久亚洲真实| 伦理电影免费视频| 久久精品91蜜桃| 亚洲欧美一区二区三区黑人| 国产精品电影一区二区三区| 男女午夜视频在线观看| 久久亚洲真实| 99国产精品99久久久久| 国产精品影院久久| 国内毛片毛片毛片毛片毛片| 91麻豆av在线| 侵犯人妻中文字幕一二三四区| 91成年电影在线观看| 日韩欧美在线二视频| 免费在线观看影片大全网站| 成人亚洲精品一区在线观看| 亚洲免费av在线视频| 亚洲中文字幕日韩| 亚洲欧美一区二区三区黑人| 高清在线国产一区| 麻豆久久精品国产亚洲av| 欧美性猛交╳xxx乱大交人| 一卡2卡三卡四卡精品乱码亚洲| 不卡一级毛片| 两个人看的免费小视频| 18禁观看日本| 人成视频在线观看免费观看| 午夜免费鲁丝| 搡老岳熟女国产| 青草久久国产| 搡老熟女国产l中国老女人| 黄色女人牲交| 日韩有码中文字幕| 亚洲自偷自拍图片 自拍| 国产私拍福利视频在线观看| 国产成人av教育| 亚洲午夜精品一区,二区,三区| 亚洲精品美女久久av网站| 可以免费在线观看a视频的电影网站| 免费在线观看影片大全网站| 91av网站免费观看| 成人18禁高潮啪啪吃奶动态图| 国产精品影院久久| 久久精品成人免费网站| 99国产精品99久久久久| 国产高清激情床上av| 免费在线观看黄色视频的| 日韩国内少妇激情av| 亚洲男人天堂网一区| 久久青草综合色| 精品电影一区二区在线| 最近最新中文字幕大全免费视频| 久久人妻av系列| 亚洲成人精品中文字幕电影| 久久性视频一级片| 好看av亚洲va欧美ⅴa在| 久久99热这里只有精品18| 午夜精品久久久久久毛片777| 搞女人的毛片| 19禁男女啪啪无遮挡网站| 精品久久久久久成人av| 大型黄色视频在线免费观看| 精品久久久久久久末码| 波多野结衣巨乳人妻| 国产蜜桃级精品一区二区三区| 黄色片一级片一级黄色片| 国产精品一区二区精品视频观看| 国产精品九九99| 婷婷丁香在线五月| 午夜视频精品福利| 精品久久久久久久末码| 亚洲国产日韩欧美精品在线观看 | 成人国产一区最新在线观看| 国产精品久久久久久人妻精品电影| 成人欧美大片| 国产欧美日韩精品亚洲av| 国产亚洲欧美精品永久| 12—13女人毛片做爰片一| 99久久无色码亚洲精品果冻| 日日摸夜夜添夜夜添小说| 国产av一区二区精品久久| 日本撒尿小便嘘嘘汇集6| 亚洲 欧美 日韩 在线 免费| 国内毛片毛片毛片毛片毛片| 精品国产乱子伦一区二区三区| 国产又色又爽无遮挡免费看| 国产成人av教育| 国产亚洲精品久久久久久毛片| 日韩欧美免费精品| 我的亚洲天堂| 巨乳人妻的诱惑在线观看| 在线观看免费午夜福利视频| 日本成人三级电影网站| 狠狠狠狠99中文字幕| 国内精品久久久久精免费| 男人舔奶头视频| 禁无遮挡网站| 亚洲av五月六月丁香网| 亚洲一码二码三码区别大吗| 国产aⅴ精品一区二区三区波| 久久狼人影院| 国内精品久久久久久久电影| 身体一侧抽搐| 中亚洲国语对白在线视频| 国产成+人综合+亚洲专区| 色综合站精品国产| 午夜免费鲁丝| 亚洲成人国产一区在线观看| 欧美中文日本在线观看视频| 精品电影一区二区在线| 国产av又大| 黄网站色视频无遮挡免费观看| 色播亚洲综合网| 国产成+人综合+亚洲专区| 国产精品爽爽va在线观看网站 | 免费无遮挡裸体视频| 俄罗斯特黄特色一大片| 国产1区2区3区精品| 亚洲熟妇中文字幕五十中出| 91老司机精品| 国产精品久久久人人做人人爽| 少妇的丰满在线观看| 亚洲精品在线观看二区| 18禁黄网站禁片午夜丰满| 黄色 视频免费看| 大香蕉久久成人网| 亚洲五月色婷婷综合| 国产精品久久久久久人妻精品电影| 中文字幕精品免费在线观看视频| 90打野战视频偷拍视频| 夜夜躁狠狠躁天天躁| 久久99热这里只有精品18| 熟女少妇亚洲综合色aaa.| 国产男靠女视频免费网站| 热99re8久久精品国产| 999久久久精品免费观看国产| a在线观看视频网站| 婷婷亚洲欧美| 亚洲av第一区精品v没综合| 99久久99久久久精品蜜桃| 波多野结衣高清作品| 最新美女视频免费是黄的| 亚洲精品久久成人aⅴ小说| 国产精品亚洲av一区麻豆| 日韩精品青青久久久久久| 国产真实乱freesex| 一级黄色大片毛片| 亚洲av熟女| 天天一区二区日本电影三级| 国内毛片毛片毛片毛片毛片| 看黄色毛片网站| 变态另类丝袜制服| 夜夜躁狠狠躁天天躁| 亚洲,欧美精品.| 日韩欧美国产在线观看| 久久99热这里只有精品18| 欧美国产日韩亚洲一区| 美女免费视频网站| 久久草成人影院| 国产在线观看jvid| 91麻豆av在线| 亚洲成人精品中文字幕电影| x7x7x7水蜜桃| 亚洲 国产 在线| 国产真实乱freesex| 999久久久精品免费观看国产| 黄片大片在线免费观看| 在线观看www视频免费| 国产成人影院久久av| 色老头精品视频在线观看| 免费搜索国产男女视频| 婷婷精品国产亚洲av| 男女做爰动态图高潮gif福利片| av福利片在线| 999久久久精品免费观看国产| 久久久国产成人免费| 999久久久精品免费观看国产| 午夜精品在线福利| 国产一级毛片七仙女欲春2 | 亚洲国产日韩欧美精品在线观看 | 国产精品久久久久久人妻精品电影| 又黄又爽又免费观看的视频| av超薄肉色丝袜交足视频| 黑人巨大精品欧美一区二区mp4| 亚洲五月婷婷丁香| 精品国产超薄肉色丝袜足j| 最近在线观看免费完整版| 12—13女人毛片做爰片一| 国产成人av教育| 午夜影院日韩av| 午夜福利成人在线免费观看| 久久精品aⅴ一区二区三区四区| 亚洲欧洲精品一区二区精品久久久| 岛国视频午夜一区免费看| 亚洲av中文字字幕乱码综合 | 久久青草综合色| 在线天堂中文资源库| 国产精品野战在线观看| 亚洲人成77777在线视频| 女人爽到高潮嗷嗷叫在线视频| 黄频高清免费视频| 婷婷精品国产亚洲av| 国产亚洲av嫩草精品影院| 国产高清视频在线播放一区| 国产日本99.免费观看| 国产真人三级小视频在线观看| 欧美另类亚洲清纯唯美| 国产一卡二卡三卡精品| 亚洲人成网站高清观看| www.999成人在线观看| 高潮久久久久久久久久久不卡| 亚洲精品美女久久av网站| 99精品在免费线老司机午夜| 国产三级黄色录像| 在线国产一区二区在线|