• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Classification of wintertime large-scale tilted ridges over the Eurasian continent and their influences on surface air temperature

    2018-12-07 09:28:06WeiLINCholwBUEHndZuoWeiXIE

    D-Wei LIN,Cholw BUEHnd Zuo-Wei XIE

    aInternational Center for climate and Environment Sciences,Institute of Atmospheric Physics,Chinese Academy of Sciences,Beijing,China;

    bCollege of Earth Science,University of Chinese Academy of Sciences,Beijing,China

    ABSTRACT This study investigates the major patterns of large-scale tilted ridges(LSTRS)over the Eurasian continent and their connections with large-scale surface air temperature during boreal winter.A total number of 134 LSTR events with zonal extent exceeding 90°of longitude on the peak day are identified.Using self-organizing map(SOM),the LSTRs are classified into five clusters that are characterized by different spatial distributions and orientations.The leading two clusters are closely associated with extensive and persistent cold events over different places.Considering the first cluster,LSTRs extend from the Ural Mountains to Northeast Asia and are favorable for the amplification and southeastward extension of the Siberian high.Therefore,this cluster is closely associated with the occurrence of extensive and persistent cold events in china.In comparison with the first cluster,the LSTRs of second group are situated to the west,with starting points from the Kola Peninsula,and cause extensive and persistent cold events over Eastern Europe,central Asia,and central Siberia.The results suggest that the vertical coupling between LSTRs and the corresponding anomalous sea level pressure is crucial for the persistent cold temperature events associated with the leading two SOM clusters.

    KEYWORDS Large-scale tilted ridges;self-organizing map;extensive and persistent cold event;Siberian high

    1.Introduction

    Wintertime extensive and persistent extreme cold events(EPECEs)in China have become more recurrent in the early 21st century,during the so-called‘global warming hiatus’period(Chen and Zhang 2016).An unprecedented EPECE hit China with rainy,snowy,and icy weather in South China during January 2008,posing a substantial threat to human lives,traffic,societies,and economies(Tao and Wei 2008;Ji et al.2008;Zhou et al.2009).Given their importance,EPECEs have received increasing attention from the public and scientists alike(Ding et al.2009;Wang,Yang,and Zhou 2017;Song and Wu 2017).

    Unlike ordinary cold waves,EPECEs are characterized by broader areal coverage and longer duration of cold surface air temperature(SAT)(Peng and Bueh 2011,2012;Xie and Bueh 2015;Song and Wu 2017;Bueh et al.2018).In the troposphere,large-scale tilted ridges(LSTRs)overthemid-and high-latitude Eurasian continent are the key circulation system for EPECEs in China(Fu and Bueh 2013;Bueh,Fu,and Xie 2011;Bueh,Shi,and Xie 2011).Xie and Bueh(2015)showed that an LSTR consists of an ordinary ridge,an isolated high and an anticyclonic wave breaking,and thus exhibits a planetary-scale feature.However,knowledge regarding LSTRs is still lacking.

    LSTRs over the Eurasian continent exhibit a variety of types in terms of their location and wave-breaking feature,thus having different influences on weather(Bueh and Xie 2015).Although it has been recognized that the key circulation for EPECEs is the LSTR,not all LSTRs are conducive to the occurrence of large-extent cold-air activities in China.For example,even though an LSTR system maintained stably during 15–22 February 2016,the SAT was above normal in China.From the dynamic perspective,the impacts of different types of LSTRs on the surface Siberian high(SH)vary considerably(Bueh et al.2018).Therefore,it is necessary to classify LSTRs over the Eurasian continent and clarify the association of large-extent cold air activities with different LSTR groups.

    This paper seeks to answer the following two questions:(1)How many LSTR patterns are there over the Eurasian continent?(2)Whatisthe relationship between the LSTR patterns and SAT over the Eurasian continent?The answers to these two questions could provide a basis for the medium-and extended-range forecasting of wintertime large-scale cold air activities(ordinary cold waves and EPECEs)in China.

    2.Data and methods

    The data used in this study are daily mean reanalys data from the National Centers for Environmental Prediction and National Center for Atmospheric Research(Kalnay et al.1996)for the winters(1 November to 31 March)of 1948–2017.The meteorological fields include geopotential height,horizontal wind,sea level pressure(SLP),and 2-m air temperature.Here,we chose the 2-m air temperature to represent SAT.

    We adopt the objective detection method of LSTRs developed by Bueh and Xie(2015)to identify all wintertime LSTRs over the Eurasian continent(10°–80°N,0°–180°E).This detection isolates each contour and identifies each ridge point of the contour.The ridge axes are identified by successively connecting the nearest ridge points of the neighboring contours under a minimum distance constraint.Therefore,each LSTR is represented by a set of grid points with longitudes and latitudes.

    In the present study,an LSTR event is identified at 500 hPa if the following three criteria are satisfied simultaneously:(1)the ridge slope is positive(i.e.,the ridge is tilted in a southwest–northeast orientation);(2)the zonal extent of the ridge is larger than 90°of longitude;(3)the ridge lasts for at least five consecutive days.A total number of 134 LSTR events are identified during the 69 winters.The average duration of an LSTR event is 9.8 days.For each LSTR event,we define the peak day as the day when the zonal extent is largest.

    We use the self-organizing map(SOM)technique(Kohonen 1990,1997)to categorize the LSTR events based on the ridge axes on their peak days.SOM is a neural network analysis tool characterized by an unsupervised training process with its networks learning to self-classify clusters from training data without external help.For more detailed descriptions,refer to Kohonen(1990,1997)and Liu,Weisberg,and Mooers(2006).The SOM procedure in the present study is analogous to the one that Kim and Seo(2016)designed for tropical cyclone tracks.In this clustering method,all input ridge axes are interpolated into those with the same number of segments.Here,we chose 30 equal segments for each LSTR.The input data for the SOM are vectors of longitudes and latitudes,which correspond to all LSTRs on the peak days.At the same time,we provide the number of nodes as an input parameter.For each LSTR,the best matching SOM pattern can be identified in terms of the smallest distance between itself and a specific SOM pattern(Lee et al.2017).Obviously,the SOM patterns would capture the patterns of the LSTR cases more accurately with a higher number of SOM patterns.However,in practice the number of SOM patterns is expected to be sufficiently small.To determine the appropriate number of SOM patterns,we repeat the SOM procedure with the number of nodes ranging from 2 to 20,and calculate the average correlations between LSTRs and their best matching SOM pattern as well as the Ward’s distances between different SOM patterns,as in Lee et al.(2017).

    Composite analysis is applied to derive the SAT and circulation anomaly fields.An ‘a(chǎn)nomaly’is defined by removing its annual cycle(1948–2017).The Student’s t-test(Wilks 1995)is employed to assess the statistical significance of the results in the composite analysis.

    3.Results

    3.1.SOM patterns

    Figure 1 displays the mean correlations between the LSTRs and their best matching SOM pattern and the Ward’s distances between SOM patterns as a function of the number(N)of SOM clusters.The correlation increases(Figure1(a))and the Ward’s distance decreases(Figure1(b))with the increase ofN.Specifically,the average correlation increases markedly as N increases from three to five,and increases slightly after five.Simultaneously,the distance decreases notably as N increases from two to five,and thereafter decreases slightly.Thus,the appropriate number of SOM clusters would be five.With five clusters,SOM patterns are accurate enough to represent the LSTR patterns,and differences among SOM patterns are big enough to distinguish themselves from one another.Figure 2 shows five SOM patterns of LSTRs and their corresponding500-hPageopotentialheight(Z500)fields.The leading three patterns have close numbers of LSTR cases(21,24,and 24).Their LSTRs locate along the sub-Arctic coast(Figure 2(a–c)),and they are less tilted than those of the fourth and fifth SOM patterns(Figure 2(d,e)).It is shown that the average starting points of LSTRs in the leading three clusters are situated over the Ural Mountains,the Kola Peninsula,and the Norwegian coast,respectively,being arranged longitudinally from east to west.A significant negative Z500 anomaly band is seen to the southeastern side of the LSTRs for the leading three patterns(Figure 2(f–h)),while such a negative anomaly band is absent for the fourth patterns and weak for the fifth patterns(Figure 2(i,j)).On the one hand,the LSTR and trough pairing is conducive to a more meridional distribution for the leading three patterns.On the other hand,the LSTR and trough pairing favors more pronounced vertical coupling between the LSTR and the corresponding anomalous SLP,which is discussed below.The starting points of LSTRs in the fourth and fifth patterns distribute around Lake Balkhash and in southern Europe,respectively(Figure 2(d,e)).

    Figure 1.(a)Mean pattern correlations between the LSTRs and their corresponding SOM pattern.(b)Mean Ward’s distances between each SOM pattern with other SOM patterns as a function of the number of SOM clusters.

    The average onset day,ending day,and duration of LSTR events have been calculated for each SOM pattern.For brevity,day 0 denotes the peak day and day m(-m)refers to the day that is m days after(before)the peak day.The average onset days of the first and second clusters are day-4.2 and-2.7,respectively.On average,they persist for 9.2 days and 10.7 days,both showing a long-lived feature.

    To identify the influence of LSTRs on SAT anomalies over China,we define LSTR indices based on the composite results and calculate their correlation with SAT anomalies over eastern China.First,an LSTR index is constructed by projecting each daily Z500 pattern(Z’)upon the composite Z500 anomaly of each SOM pattern(ZSOM)over the domain(10°–90°N,0°–180°E)according to

    Second,linear regression maps of Z500 anomaly patterns based upon the five daily LSTR indices(not shown)areconsistentwith thecomposite result shown in Figure 2.Third,the correlation coefficients are calculated between the LSTR indices and the SAT anomaly averaged over days 0 to 4 and over eastern China(20°–50°N,100°–130°E).The correlation coeffi-cients for clusters 1–5 are-0.43,0.31,0.18,-0.29,and 0.14,respectively.Therefore,the leading two clusters are more closely associated with the SAT anomalies over China.Moreover,42.9%of the first cluster is associated with EPECEs in China.Given the primary concern of the linkage between LSTR events and SAT in China,we focus on the leading two SOM patterns to analyze their individual impacts.

    3.2.First SOM cluster

    Figure 3 displays composite daily evolutions of Z500(Figure 3(a–e)),SAT(Figure 3(f–j)),and SLP(Figure 3(k–o))fields for the first group of LSTR events.The composite analyses are performed according to the peak day(day 0)of each LSTR event.On day-4,a ridge locates over the Ural Mountains,with the corresponding amplitude of the Z500 anomaly center reaching 120 gpm(Figure 3(a)).On day 0,the ridge becomes a southwest–northeast-oriented LSTR and extends from the UralMountains to the East Siberian Sea.To the south of the LSTR,there is a zonally elongated trough over Mongolia,which yields the meridional configuration(Figure 3(b)).After the peak day,the ridge and trough move slowly southeastward and gradually weaken(Figure 3(c–e)).After day 4,the zonal extent of the ridge decreases considerably,and thus the LSTR is replaced by an ordinary ridge(Figure 3(d)).

    Figure 2.SOM clusters of LSTR events:(a–e)ridges on the peak day of LSTR events(black lines)and their average position(red line);(f–j)500-hPa geopotential height(contours;drawn every 100 gpm)and its anomaly(color-shaded).The thick black line is the same as the red line in(a–e)((a,f)Cluster 1;(b,g)cluster 2;(c,h)cluster 3;(d,i)cluster 4;(e,j)cluster 5).

    In line with the evolution of Z500,the SH also experiences a process of gradual amplification and decay(Figure 3(k–o)).The SH amplifies remarkably from day-4 to 4,and then weakens and displaces southward afterwards.Consequently,the whole of China is dominated by positive SLP anomalies from day 4 to 12.As shown in Figure 3(f,g),the cold air mass is accumulated and expanded around Lake Baikal from day-4 to 0.After becoming strong enough,the accumulated cold air spills out southwards anddominates China(Figure 3(h–j)).With the control of the SH,China experiences a persistent cold SAT event from day 0 to 12(Figure 3(g–j)).

    Figure 3.Composite meteorological fields for the first SOM pattern:(a–e)500-hPa geopotential height(contours;drawn every 100 gpm)and its anomaly(color-shaded;units:gpm);(f–j)925-hPa horizontal wind anomaly(vectors;units:m s-1)and the 2-m temperature anomaly(color-shaded;units:°C);(k–o)SLP(contours;drawn every 5 hPa)and its anomaly(color-shaded;units:hPa).Areas above 90%confidence level are dotted;green lines in(k–o)represent 1025 hPa;(a,f,k)day-4;(b,g,l)day 0;(c,h,m)day 4;(d,i,n)day 8;(e,j,o)day 12.

    A natural question that immediately arises is how the LSTR is associated with the amplified SH and thus the persistent cold SAT over China.Takaya and Nakamura(2005)investigated the amplification process of the SH using the potential vorticity(PV)inversion technique.They pointed out that an upper-tropospheric blocking ridge over western and central Siberia acts to reinforce the SH via the cold air advection by the upper-tropospheric blocking ridge.It suggests that the LSTR,an even larger-scale system of the upper troposphere,could possibly cause an extensive amplification of the SH.In fact,this hypothesis is further supported by observational evidence(Bueh and Xie 2015).On the other hand,Bueh et al.(2018)verified that an amplified and expanded SH also maintains the LSTR,making it even more long-lived.Next,we look at how the SH anomaly in turn intensifies the LSTRs of the first SOM cluster from the PV perspective(Hoskins,Mcintyre,and Robertson 1985).As shown in Figure 3(g,h),with the amplification and expansion of the SH,the intensified anomalous southerly in the western portion of the SH at 925 hPa can extend upward to theuppertroposphere,advectingalow PVfromsouthto the LSTR at 500 hPa(Hoskins,Mcintyre,and Robertson 1985).As a result,the low PV advection serves to replenish thesouthwestern portion of the LSTRs and also keeps the anisotropic disturbance feature of the LSTR(Bueh et al.2018).This dynamical process is crucial for the barotropic development of LSTRs,because once the disturbance becomes isotropic,the LSTR starts to decay(Black and Dole 2000;Bueh et al.2018).Therefore,the amplified and westward-expanded SH is essential for a long-livedLSTRevent.Inshort,LSTRsextendingfromthe Ural Mountains provide a key mid-tropospheric circulation system for the development and southward invasion of the SH,facilitating the occurrence of persistent cold air activity in China.In turn,the amplified and westward-expanded SH helps to maintain the LSTRs.Such a vertical coupling process is closely associated with EPECEs in China.

    3.3.Second SOM cluster

    Figure 4.Composite meteorological fields for the second SOM pattern:(a–e)500-hPa geopotential height(contours;drawn every 100 gpm)and its anomaly(color-shaded;units:gpm);(f–j)925-hPa horizontal wind anomaly(vectors;units:m s-1)and the 2-m temperature anomaly(color-shaded;units:°C);(k–o)SLP(contours;drawn every 5 hPa)and its anomaly(color-shaded;units:hPa).Areas above 90%confidence level are dotted;green lines in(k–o)represent 1025 hPa;(a,f,k)day-3;(b,g,l)day 0;(c,h,m)day 3;(d,i,n)day 6;(e,j,o)day 9.

    Figure 4 displays composite daily evolutions of Z500(Figure 3(a–e)),SAT(Figure 4(f–j))and SLP(Figure 4(k–o))fields for the second cluster of LSTR events.Since the average onset day in this cluster is day-2.7,the time interval in this figure is three days,instead of four days inFigure3.Fromday-3to6,asignificantLSTRdominates over the northwestern Eurasia and sub-Arctic region(Figure 4(a–d)).To the southeast of LSTRs,a pronounced negative Z500 anomaly band extends from the Caspian Sea to Northeast Asia(Figure 4(b–d)).In response,negative SAT and northerly wind anomalies prevail over the northern Eurasian continent(Figure 4(g–i)).The life cycle of LSTR events in the second SOM cluster is relatively similar to that of the first SOM cluster,except that the starting points of LSTRs are over the Kola Peninsula.In other words,the LSTRs are located too far west with respect to the LSTRs of the first SOM cluster.In contrast with the first SOM cluster(Figure 3(b,c)),a moderate positive Z500 anomaly can be observed over the Sea of Japan(Figure4(b,c),bringingsoutherlywindanomaliesto North China(Figure 4(g,h)).In accordance with the westward distribution of LSTRs,the SH center and the corresponding positive SLP anomaly center exhibit westward positions,compared to those of the first SOM groups(Figure 4(k–m)).The southeastward extension of the SH to China is substantially weak,and the SAT in China is abnormally warm,from day 0 to 3(Figure 4(g,h)).Instead,an extensive and persistent cold SAT anomaly can be found over a broad region extending from eastern Europe,via central Asia,to central Siberia(Figure 4(f–i)).In this situation,the vertically coupled dynamical process between the LSTRs and the corresponding anomalous SLP,which has been presented in Section 3.2,is also true for the extensive cold SAT anomalies over eastern Europe–central Asia–central Siberia(Figure 4(f–i)).

    It is interesting to compare the first and second SOM clusters and their SAT influences.They share many common features,such as the LSTR pattern,related persistent SATanomaly,andverticalcouplingbetweentheLSTRsand the anomalous SLP.In these two clusters,the mid-tropospheric circulation patterns,which primarily consist of the LSTRsand the accompanying large-scaletilted troughs,are phase shifted.Therefore,their influences on SAT differ in differentregions.Forexample,the first clusterisassociated with persistent cold SAT in China,whereas the second cluster with above-normal SAT in China.

    4.Conclusions and discussion

    Thisstudysystematicallyinvestigatesthe wintertime LSTR patterns over the Eurasian continent and their individual SAT influences over the period 1948–2017.We identify 134 LSTR events withthe zonal extent exceeding than 90°of longitude.By applying the SOM method to the LSTRs on the peak day of each event,the LSTRs are categorized into five SOM clusters.The LSTRs of the leading three clusters exhibit a less tilted structure compared with the fourth and fifth groups.Moreover,an evident negative Z500 height anomaly band is seen in the leading three clusters,whereas the negative Z500 anomaly is absent in the fourth group and relatively weak in the fifth group.The configuration of the LSTR and trough on the one hand yields the circulation having a more meridional distribution;whilston the otherhand,such a configurationfavorsamore pronounced verticalcoupling between LSTRs and the corresponding anomalous SLP.For the first cluster,the LSTRs extend from the Ural Mountains to Northeast Asia.During the amplification of these LSTRs,the cold SAT anomalies are accumulated over Siberia,which intensifies the SH.Afterwards,the SH extendssoutheastwardtoChinawithacoldSAToutbreak.As a result,this cluster is closely associated with the occurrence of EPECEs in China.Compared with the first cluster,theLSTRs ofthe second SOM cluster are displaced westward,with starting points from the Kola Peninsula,and are thus closely associated with persistent cold temperature events over eastern Europe,central Asia,and central Siberia.The LSTRs of this cluster are concurrent with an abnormally warm SAT condition in China.For both clusters,the vertical coupling between the LSTRs and the corresponding anomalous SLP is crucial.

    Although the LSTR is considered to be the key circulation system for EPECEs in China(Bueh,Fu,and Xie 2011;Bueh et al.2018),the results of this study suggest their occurrence does not always guarantee the appearance of an EPECE in China.We speculate that the close link between the wintertime midtroposphericLSTR system and EPECEsin China depends on at least two prerequisite conditions:(1)LSTRs must be positioned appropriately,being not too far west or too far north from mainland China;(2)the prior cold-air accumulation over the key region must be sufficiently strong and large enough in extent to cover central Asia and central Siberia.These two conditions are necessary for an effective vertical coupling between the LSTR and the corresponding anomalous SH.However,the detail of the corresponding physical mechanisms needs to be elucidated in future work.

    This study has mainly focused on LSTR patterns and their SAT influence on the intraseasonal time scale.The related dynamics,including internal atmospheric processes and remote forcing,responsible for LSTRs,remain unexplored.Our follow-up research in the future will explore these aspects.

    Disclosure statement

    No potential conflict of interest was reported by the authors.

    Funding

    This work was jointly supported by the National Natural Science Foundation of China[grant number 41375064 and 41675086]and the National Key Technology Research and DevelopmentProgram oftheMinistryofScienceand Technology of China[grant number 2015BAC03B03].

    天天一区二区日本电影三级| 晚上一个人看的免费电影| 国产中年淑女户外野战色| 国产乱人偷精品视频| 国产精品一二三区在线看| 老女人水多毛片| 亚洲欧美日韩东京热| 成人亚洲欧美一区二区av| 91av网一区二区| 亚洲欧洲日产国产| 乱系列少妇在线播放| 精品久久久久久久久久久久久| 亚洲最大成人中文| 国产真实伦视频高清在线观看| 精品久久国产蜜桃| 高清毛片免费观看视频网站| 精品人妻一区二区三区麻豆| 白带黄色成豆腐渣| 波野结衣二区三区在线| 国产精品永久免费网站| 亚洲中文字幕一区二区三区有码在线看| 插逼视频在线观看| 高清午夜精品一区二区三区 | 97人妻精品一区二区三区麻豆| 久久婷婷人人爽人人干人人爱| 97超视频在线观看视频| 久久久久久国产a免费观看| 国国产精品蜜臀av免费| а√天堂www在线а√下载| 国产精品三级大全| 国产成人精品婷婷| 天堂√8在线中文| 一级毛片电影观看 | 亚洲精品日韩av片在线观看| 久久精品夜夜夜夜夜久久蜜豆| 久久精品国产清高在天天线| 国产高清视频在线观看网站| 男女边吃奶边做爰视频| 听说在线观看完整版免费高清| 校园人妻丝袜中文字幕| 欧美在线一区亚洲| 精品日产1卡2卡| 久久久久久久久久成人| av国产免费在线观看| 舔av片在线| 国产美女午夜福利| 日韩成人伦理影院| 国产三级在线视频| 嫩草影院新地址| 久久精品久久久久久久性| 免费一级毛片在线播放高清视频| 亚洲精品日韩在线中文字幕 | 欧美激情国产日韩精品一区| 亚洲国产精品sss在线观看| 久久精品影院6| 哪个播放器可以免费观看大片| 一级毛片电影观看 | 91久久精品电影网| 亚洲av成人av| 久久九九热精品免费| 精品久久久久久久久久久久久| 亚洲色图av天堂| 看非洲黑人一级黄片| 观看美女的网站| 欧美丝袜亚洲另类| 亚洲最大成人中文| 国产精品久久久久久精品电影| 卡戴珊不雅视频在线播放| 亚洲人与动物交配视频| 亚洲精品国产av成人精品| 久久久久久久久久成人| 成年女人看的毛片在线观看| 搡女人真爽免费视频火全软件| 日本爱情动作片www.在线观看| 麻豆av噜噜一区二区三区| 日韩大尺度精品在线看网址| 国产成人精品久久久久久| 亚洲一级一片aⅴ在线观看| 日韩高清综合在线| 黄色欧美视频在线观看| 日韩一本色道免费dvd| 国产一区二区在线av高清观看| av女优亚洲男人天堂| 成人美女网站在线观看视频| 日本免费一区二区三区高清不卡| av在线天堂中文字幕| 一进一出抽搐动态| 国产伦理片在线播放av一区 | 久久综合国产亚洲精品| 精品无人区乱码1区二区| 成人欧美大片| 波多野结衣高清无吗| 国国产精品蜜臀av免费| 99热这里只有是精品在线观看| 精品国内亚洲2022精品成人| 欧美极品一区二区三区四区| 精品人妻视频免费看| 亚洲真实伦在线观看| 国产午夜精品论理片| 国产精品1区2区在线观看.| 免费无遮挡裸体视频| 12—13女人毛片做爰片一| 亚洲欧美精品专区久久| 九九久久精品国产亚洲av麻豆| 国产高清视频在线观看网站| 亚洲欧美中文字幕日韩二区| 国产激情偷乱视频一区二区| 99国产极品粉嫩在线观看| 狂野欧美激情性xxxx在线观看| 国产中年淑女户外野战色| 久久久久免费精品人妻一区二区| 男女下面进入的视频免费午夜| 卡戴珊不雅视频在线播放| 高清毛片免费看| 波野结衣二区三区在线| 有码 亚洲区| 在线观看午夜福利视频| 久久久久久久亚洲中文字幕| 国产高潮美女av| 九九热线精品视视频播放| 国产中年淑女户外野战色| 色5月婷婷丁香| 日产精品乱码卡一卡2卡三| 日本免费a在线| 国产精品久久久久久久久免| 黄色日韩在线| 精品久久久久久久久av| 免费看日本二区| 黄色一级大片看看| 亚洲国产欧洲综合997久久,| 久久久久性生活片| 99久久九九国产精品国产免费| 午夜a级毛片| 日韩欧美精品免费久久| 青春草视频在线免费观看| 22中文网久久字幕| 国产国拍精品亚洲av在线观看| 亚洲四区av| 久久久久久久亚洲中文字幕| 国产老妇女一区| 爱豆传媒免费全集在线观看| 麻豆成人午夜福利视频| 国产精品乱码一区二三区的特点| avwww免费| 精品久久久久久久末码| 级片在线观看| 亚洲精品自拍成人| 成人午夜高清在线视频| 国产大屁股一区二区在线视频| 成人特级黄色片久久久久久久| 深夜精品福利| 国产精品一二三区在线看| 网址你懂的国产日韩在线| 亚洲av.av天堂| 久久九九热精品免费| 免费观看精品视频网站| 国产一区二区三区av在线 | 国产日韩欧美在线精品| 神马国产精品三级电影在线观看| 少妇猛男粗大的猛烈进出视频 | 日日撸夜夜添| 春色校园在线视频观看| 狂野欧美白嫩少妇大欣赏| 久久人人精品亚洲av| 久久这里只有精品中国| 超碰av人人做人人爽久久| 免费黄网站久久成人精品| 黄色日韩在线| 五月玫瑰六月丁香| 免费看av在线观看网站| 国产亚洲精品久久久久久毛片| 黑人高潮一二区| 国产精品嫩草影院av在线观看| 看片在线看免费视频| 人人妻人人澡欧美一区二区| 精品久久久久久久末码| 中国美白少妇内射xxxbb| 久久精品夜夜夜夜夜久久蜜豆| 日韩高清综合在线| 在线播放无遮挡| 国产 一区精品| 性插视频无遮挡在线免费观看| 亚洲av成人精品一区久久| 男女啪啪激烈高潮av片| 国模一区二区三区四区视频| 欧美变态另类bdsm刘玥| 午夜a级毛片| 禁无遮挡网站| 国产在线男女| 色综合亚洲欧美另类图片| 国产老妇伦熟女老妇高清| 国产成人午夜福利电影在线观看| 婷婷六月久久综合丁香| 能在线免费观看的黄片| 白带黄色成豆腐渣| 久久久久久久午夜电影| 欧洲精品卡2卡3卡4卡5卡区| 99国产极品粉嫩在线观看| 亚洲高清免费不卡视频| 在线播放无遮挡| 99久久精品热视频| av女优亚洲男人天堂| 日韩国内少妇激情av| 日韩欧美三级三区| 精品日产1卡2卡| 不卡一级毛片| 一个人观看的视频www高清免费观看| 国产色爽女视频免费观看| 男人舔奶头视频| 男女视频在线观看网站免费| 天堂av国产一区二区熟女人妻| 黄片wwwwww| 男人和女人高潮做爰伦理| 麻豆成人av视频| 国产成人91sexporn| 精品一区二区三区视频在线| 色5月婷婷丁香| 高清日韩中文字幕在线| 成人鲁丝片一二三区免费| 一级黄色大片毛片| av在线天堂中文字幕| 国产在视频线在精品| 亚洲精品乱码久久久久久按摩| 69av精品久久久久久| 国产色爽女视频免费观看| 国产一区二区三区av在线 | 婷婷亚洲欧美| 亚洲无线在线观看| 99久久人妻综合| 一区二区三区高清视频在线| 久久婷婷人人爽人人干人人爱| 国产黄a三级三级三级人| 你懂的网址亚洲精品在线观看 | 国产探花极品一区二区| 亚洲真实伦在线观看| 欧美性猛交黑人性爽| 简卡轻食公司| 国产色婷婷99| 成人亚洲欧美一区二区av| 欧美日韩精品成人综合77777| 舔av片在线| 可以在线观看的亚洲视频| 99热精品在线国产| 天堂中文最新版在线下载 | 久久久久久久久久黄片| 亚洲最大成人手机在线| 欧美一级a爱片免费观看看| 天堂√8在线中文| 嫩草影院新地址| 99热6这里只有精品| 蜜桃久久精品国产亚洲av| 国产毛片a区久久久久| 免费观看a级毛片全部| 一夜夜www| 91精品国产九色| 不卡视频在线观看欧美| 久久人人精品亚洲av| 免费看美女性在线毛片视频| 美女高潮的动态| 尾随美女入室| 91av网一区二区| 岛国在线免费视频观看| 女的被弄到高潮叫床怎么办| 黄色日韩在线| 国产高清视频在线观看网站| 亚洲人与动物交配视频| 亚洲欧美日韩高清在线视频| 中文字幕制服av| 亚洲丝袜综合中文字幕| 亚洲精品乱码久久久久久按摩| 国产亚洲91精品色在线| 成人av在线播放网站| 国产探花在线观看一区二区| 最好的美女福利视频网| 亚洲18禁久久av| 欧美一区二区亚洲| 又爽又黄无遮挡网站| 精品国内亚洲2022精品成人| 亚洲第一区二区三区不卡| 亚洲综合色惰| 99riav亚洲国产免费| 国内久久婷婷六月综合欲色啪| 在线观看66精品国产| 99久久精品热视频| 午夜福利在线观看吧| 级片在线观看| 久久精品91蜜桃| 又粗又硬又长又爽又黄的视频 | 熟女人妻精品中文字幕| 成人美女网站在线观看视频| av在线蜜桃| 一边亲一边摸免费视频| 亚洲成人久久爱视频| 日韩欧美在线乱码| 2021天堂中文幕一二区在线观| 国产成人精品婷婷| 一边亲一边摸免费视频| 亚洲成人精品中文字幕电影| 丰满乱子伦码专区| 久久精品国产亚洲网站| 日韩一区二区视频免费看| 亚洲精品乱码久久久久久按摩| 国产av不卡久久| 国产真实乱freesex| 少妇的逼水好多| 亚洲真实伦在线观看| 观看美女的网站| 精品99又大又爽又粗少妇毛片| av天堂中文字幕网| 亚洲美女视频黄频| 在线观看午夜福利视频| 午夜精品一区二区三区免费看| ponron亚洲| 日韩强制内射视频| 亚洲精品456在线播放app| 搞女人的毛片| 婷婷六月久久综合丁香| 99久国产av精品国产电影| 欧美日本视频| АⅤ资源中文在线天堂| 高清在线视频一区二区三区 | 自拍偷自拍亚洲精品老妇| 精品欧美国产一区二区三| 网址你懂的国产日韩在线| 免费看美女性在线毛片视频| 在线播放无遮挡| 少妇的逼好多水| 国产综合懂色| 国产精品免费一区二区三区在线| 国内久久婷婷六月综合欲色啪| 免费观看a级毛片全部| 韩国av在线不卡| 三级国产精品欧美在线观看| 亚洲欧美日韩高清专用| 身体一侧抽搐| 给我免费播放毛片高清在线观看| 亚洲电影在线观看av| 美女内射精品一级片tv| 人人妻人人澡人人爽人人夜夜 | 26uuu在线亚洲综合色| 国产精品久久久久久精品电影小说 | 天美传媒精品一区二区| 亚洲欧美中文字幕日韩二区| 国产探花在线观看一区二区| 最好的美女福利视频网| 校园人妻丝袜中文字幕| 午夜久久久久精精品| 国产精品综合久久久久久久免费| 日产精品乱码卡一卡2卡三| 91久久精品国产一区二区成人| 精品久久久久久久久久久久久| 12—13女人毛片做爰片一| 欧美性猛交╳xxx乱大交人| 内地一区二区视频在线| 国产 一区精品| 久久99热6这里只有精品| 蜜臀久久99精品久久宅男| 熟女人妻精品中文字幕| 男女啪啪激烈高潮av片| 99热6这里只有精品| 12—13女人毛片做爰片一| 毛片女人毛片| 亚洲中文字幕一区二区三区有码在线看| 免费看a级黄色片| 久久精品夜色国产| 欧美日本亚洲视频在线播放| 99热这里只有是精品在线观看| 亚洲精品自拍成人| 麻豆乱淫一区二区| 国产三级在线视频| 男人狂女人下面高潮的视频| 五月伊人婷婷丁香| 日本三级黄在线观看| 最新中文字幕久久久久| 欧美高清性xxxxhd video| 日韩中字成人| 亚洲精品乱码久久久v下载方式| 免费观看a级毛片全部| 99热这里只有是精品在线观看| 人人妻人人澡欧美一区二区| 女人被狂操c到高潮| 麻豆久久精品国产亚洲av| 超碰av人人做人人爽久久| 久久精品综合一区二区三区| 男女视频在线观看网站免费| 久久久久久久久久久丰满| 亚洲乱码一区二区免费版| 禁无遮挡网站| 白带黄色成豆腐渣| 舔av片在线| 乱码一卡2卡4卡精品| 国产一区二区三区av在线 | 国产伦在线观看视频一区| 国产精品一区二区三区四区久久| 国产一级毛片在线| 高清午夜精品一区二区三区 | 国产精品野战在线观看| 亚洲成人精品中文字幕电影| 久久综合国产亚洲精品| 嘟嘟电影网在线观看| 久久久久久久久久久免费av| 又粗又硬又长又爽又黄的视频 | 一个人看视频在线观看www免费| 亚洲av男天堂| 久久久久性生活片| 日本成人三级电影网站| 国产精品一区二区三区四区久久| 桃色一区二区三区在线观看| 亚洲国产精品sss在线观看| 国产一级毛片在线| 在线观看一区二区三区| 国产亚洲av片在线观看秒播厂 | 亚洲最大成人中文| 一边亲一边摸免费视频| 最近视频中文字幕2019在线8| 99热全是精品| 内射极品少妇av片p| 美女国产视频在线观看| 国产精品一二三区在线看| 白带黄色成豆腐渣| 久久精品影院6| 亚洲精品456在线播放app| 在线观看免费视频日本深夜| 舔av片在线| 内地一区二区视频在线| 日本五十路高清| 老司机影院成人| 1000部很黄的大片| 99热这里只有是精品在线观看| 欧美日韩在线观看h| 特大巨黑吊av在线直播| 99久久精品热视频| 欧美一级a爱片免费观看看| 一边亲一边摸免费视频| 国产成人一区二区在线| 综合色丁香网| 国产黄片美女视频| 禁无遮挡网站| 在线观看av片永久免费下载| 男人狂女人下面高潮的视频| 久久这里只有精品中国| 亚洲av成人精品一区久久| 九色成人免费人妻av| 久久久久久久久中文| 一级二级三级毛片免费看| 亚洲,欧美,日韩| 亚洲七黄色美女视频| 亚洲经典国产精华液单| 国产精华一区二区三区| 在线观看av片永久免费下载| 免费看av在线观看网站| 男女下面进入的视频免费午夜| 尤物成人国产欧美一区二区三区| АⅤ资源中文在线天堂| 国产精品免费一区二区三区在线| 成人美女网站在线观看视频| a级毛片a级免费在线| 伊人久久精品亚洲午夜| 亚洲五月天丁香| 日本-黄色视频高清免费观看| 国产精品一区www在线观看| 国产精品福利在线免费观看| 亚洲不卡免费看| 99热只有精品国产| 99精品在免费线老司机午夜| 乱人视频在线观看| 免费无遮挡裸体视频| 99久久精品国产国产毛片| 22中文网久久字幕| 欧美3d第一页| 午夜福利高清视频| 1024手机看黄色片| 亚洲经典国产精华液单| 亚洲七黄色美女视频| 亚洲精华国产精华液的使用体验 | 99热全是精品| 一区二区三区高清视频在线| 18禁裸乳无遮挡免费网站照片| 国产亚洲精品av在线| 丰满人妻一区二区三区视频av| 亚洲国产精品久久男人天堂| 美女大奶头视频| 久久人人爽人人片av| 一进一出抽搐gif免费好疼| 男人和女人高潮做爰伦理| 日韩av不卡免费在线播放| 国产单亲对白刺激| 亚洲av.av天堂| 亚洲av中文字字幕乱码综合| 日本av手机在线免费观看| kizo精华| 亚洲无线在线观看| 黄色欧美视频在线观看| 日韩欧美一区二区三区在线观看| 男人狂女人下面高潮的视频| 久久久午夜欧美精品| 日韩亚洲欧美综合| 天堂中文最新版在线下载 | 日韩成人av中文字幕在线观看| 国产午夜精品一二区理论片| 国产亚洲91精品色在线| 国产乱人偷精品视频| 亚洲欧美日韩无卡精品| 国产黄色视频一区二区在线观看 | 国产极品精品免费视频能看的| 国产高清有码在线观看视频| 91狼人影院| 中国国产av一级| 免费av观看视频| a级毛片a级免费在线| 成人午夜精彩视频在线观看| АⅤ资源中文在线天堂| 国产色爽女视频免费观看| 91麻豆精品激情在线观看国产| 日韩大尺度精品在线看网址| 超碰av人人做人人爽久久| 国产毛片a区久久久久| 亚洲欧美清纯卡通| 22中文网久久字幕| 中出人妻视频一区二区| 国产伦精品一区二区三区视频9| 免费观看精品视频网站| 偷拍熟女少妇极品色| 成人亚洲欧美一区二区av| 麻豆成人午夜福利视频| av免费观看日本| 尤物成人国产欧美一区二区三区| 国产黄a三级三级三级人| 黄色配什么色好看| 午夜爱爱视频在线播放| 少妇被粗大猛烈的视频| 国产av麻豆久久久久久久| 熟女电影av网| 午夜激情欧美在线| 亚洲综合色惰| 日日摸夜夜添夜夜添av毛片| 99riav亚洲国产免费| 只有这里有精品99| 日本一本二区三区精品| 校园人妻丝袜中文字幕| 国产免费一级a男人的天堂| 男人狂女人下面高潮的视频| 亚洲熟妇中文字幕五十中出| 看免费成人av毛片| 成人av在线播放网站| 日韩精品有码人妻一区| 日韩一区二区视频免费看| 青青草视频在线视频观看| 欧美日韩一区二区视频在线观看视频在线 | 国产色婷婷99| 日本爱情动作片www.在线观看| 亚洲中文字幕一区二区三区有码在线看| 男人狂女人下面高潮的视频| 久久人人爽人人爽人人片va| 人妻制服诱惑在线中文字幕| 美女内射精品一级片tv| 成人亚洲欧美一区二区av| 一本久久中文字幕| 久久精品91蜜桃| 麻豆国产av国片精品| 日韩欧美 国产精品| 午夜激情欧美在线| 深夜a级毛片| 欧美高清性xxxxhd video| 国产精品免费一区二区三区在线| 亚洲,欧美,日韩| 欧美色视频一区免费| 午夜a级毛片| 午夜免费男女啪啪视频观看| 国产成人影院久久av| 波多野结衣高清无吗| 极品教师在线视频| 菩萨蛮人人尽说江南好唐韦庄 | 男人和女人高潮做爰伦理| 22中文网久久字幕| 欧美丝袜亚洲另类| av国产免费在线观看| 久久久久久久久久久丰满| 乱人视频在线观看| 永久网站在线| 精品99又大又爽又粗少妇毛片| 久久久久久大精品| 欧美日韩一区二区视频在线观看视频在线 | 两个人的视频大全免费| 一级毛片电影观看 | 日日摸夜夜添夜夜爱| 天堂中文最新版在线下载 | 亚洲精品久久国产高清桃花| 只有这里有精品99| 亚洲成人久久爱视频| 国产成人91sexporn| 色尼玛亚洲综合影院| 人妻夜夜爽99麻豆av| 在线免费观看不下载黄p国产| 哪个播放器可以免费观看大片| 精品99又大又爽又粗少妇毛片| 日韩强制内射视频| 91狼人影院| 亚洲欧美中文字幕日韩二区| 丰满的人妻完整版| 亚洲欧美日韩高清在线视频| 夜夜爽天天搞| 欧美日韩综合久久久久久| 久久草成人影院| 久久久精品94久久精品| 亚洲在久久综合| 亚洲人与动物交配视频| 97超视频在线观看视频| 国产探花在线观看一区二区| 18禁在线无遮挡免费观看视频| 国产精品久久久久久久电影| 国产精品蜜桃在线观看 | 少妇熟女欧美另类| 在线观看av片永久免费下载| 国产色爽女视频免费观看|