• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Modulation of the Aleutian–Icelandic Low Seesaw and Its Surface Impacts by the Atlantic Multidecadal Oscillation

    2018-12-06 07:35:53FeiLIYvanORSOLINIHuijunWANGYongqiGAOandShengpingHE63NILUNorwegianInstituteforAirResearchKjeller2007Norway
    Advances in Atmospheric Sciences 2018年1期

    Fei LI,Yvan J.ORSOLINI,Huijun WANG,Yongqi GAO,and Shengping HE6,4,3NILU—Norwegian Institute for Air Research,Kjeller 2007,Norway

    2Nansen-Zhu International Research Centre,Institute of Atmospheric Physics,Chinese Academy of Sciences,Beijing 100029,China

    3Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters/Key Laboratory of Meteorological Disaster,

    Ministry of Education,Nanjing University of Information Science and Technology,Nanjing 210044,China

    4Climate Change Research Center,Chinese Academy of Sciences,Beijing 100029,China

    5Nansen Environmental and Remote Sensing Center and Bjerknes Center for Climate Research,Bergen 5006,Norway

    6Geophysical Institute,University of Bergen and Bjerknes Center for Climate Research,Bergen 5007,Norway

    Modulation of the Aleutian–Icelandic Low Seesaw and Its Surface Impacts by the Atlantic Multidecadal Oscillation

    Fei LI?1,2,Yvan J.ORSOLINI1,Huijun WANG3,4,2,Yongqi GAO5,2,and Shengping HE6,4,31NILU—Norwegian Institute for Air Research,Kjeller 2007,Norway

    2Nansen-Zhu International Research Centre,Institute of Atmospheric Physics,Chinese Academy of Sciences,Beijing 100029,China

    3Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters/Key Laboratory of Meteorological Disaster,

    Ministry of Education,Nanjing University of Information Science and Technology,Nanjing 210044,China

    4Climate Change Research Center,Chinese Academy of Sciences,Beijing 100029,China

    5Nansen Environmental and Remote Sensing Center and Bjerknes Center for Climate Research,Bergen 5006,Norway

    6Geophysical Institute,University of Bergen and Bjerknes Center for Climate Research,Bergen 5007,Norway

    Early studies suggested that the Aleutian–Icelandic low seesaw(AIS)features multidecadal variation.In this study,the multidecadal modulation of the AIS and associated surface climate by the Atlantic Multidecadal Oscillation(AMO)during late winter(February–March)is explored with observational data.It is shown that,in the cold phase of the AMO(AMO|-),a clear AIS is established,while this is not the case in the warm phase of the AMO(AMO|+).The surface climate over Eurasia is significantly in fluenced by the AMO’s modulation of the Aleutian low(AL).For example,the weak AL in AMO|-displays warmer surface temperatures over the entire Far East and along the Russian Arctic coast and into Northern Europe,but only over the Russian Far East in AMO|+.Similarly,precipitation decreases over central Europe with the weak AL in AMO|-,but decreases over northern Europe and increases over southern Europe in AMO|+.

    The mechanism underlying the influence of AMO|-on the AIS can be described as follows:AMO|-weakens the upward component of the Eliassen–Palm flux along the polar waveguide by reducing atmospheric blocking occurrence over the Euro–Atlantic sector,and hence drives an enhanced stratospheric polar vortex.With the intensified polar night jet,the wave trains originating over the central North Pacific can propagate horizontally through North America and extend into the North Atlantic,favoring an eastward-extended Pacific–North America–Atlantic pattern,and resulting in a significant AIS at the surface during late winter.

    Aleutian–Icelandic low seesaw,Atlantic Multidecadal Oscillation,Pacific–North America–Atlantic pattern,stratospheric polar vortex

    1.Introduction

    During boreal winter,there are two major climatological surface low-pressure cells in the Northern Hemisphere:the Aleutian low(AL)and the Icelandic low(IL).Early studies indicated that the AL and IL vary in an anti-phase seesaw pattern on the interannual timescale,particularly during late winter(February–March)(Honda et al.,2001;Honda and Nakamura,2001;Orsolini,2004).Honda et al.(2001)named this pattern the Aleutian and Icelandic low seesaw(AIS).Combining both observations and simulations with an atmospheric general circulation model(AGCM),Honda et al.(2005a)put forward a dynamical pathway for the formation of the AIS,consisting of a three-step process:(1)the AIS starts with the North Pacific variability associated with the AL;(2)the North Pacific influence extends across North America through the eastward propagation of stationary Rossby wave trains,which corresponds to the Pacific–North America(PNA)pattern(Wallace and Gutzler,1981);and(3)IL anomalies form as part of the Atlantic edge of the PNA-like wave trains.Typically,the formation of the AIS begins with an anomalous AL and ends with the Pacific–North America–Atlantic(PNAA)pattern(Honda et al.,2005b;focused on 1973–94),as well as upward propagation from the surface into the stratosphere during late winter(Nakamura and Honda,2002;focus on 1966/67–1996/97).Orsolini et al.(2008)used AGCM simulations to demonstrate that El Ni?no can extend its influence into the Icelandic sector,forming a PNAA pattern,and into the stratosphere,via the horizontal and vertical propagation of planetary waves modulated by the maturation of the AIS during late winter.

    Honda et al.(2005b)showed a significant influence of the AIS on surface air temperature(TS)and precipitation over the extratropical Northern Hemisphere during late winter,except in central continental regions.The AIS modulates the storm-track activity over both Pacific and Atlantic basins,which produces a downstream increase in eddy activity and precipitation(Garreaud,2007).However,they also noted that the anti-correlation between the AL and IL is not always significant during the 20th century,but undergoes multidecadal modulations.Sun and Tan(2013)explored the formation of the AIS pattern and attributed it to a stronger stratospheric polar vortex,which may act to reflect the eastern North Pacific wave trains(EPWs)in December–March(focused on 1948–2009).The role of the polar vortex in linking the Aleutian and North Atlantic variability was also noted by Castanheira and Graf(2003).

    The Atlantic Multidecadal Oscillation(AMO)is a basinscale oceanic pattern of sea surface temperature(SST)variability on a multidecadal timescale[~60–70 years(Kerr,2000)].Cold AMO phases(AMO|-)occur in the 1900s–1920s and 1970s–1990s,while warm AMO phases(AMO|+)occur in the 1930s–1950s and after the mid-1990s.The fluctuations of the AMO are associated with numerous climatic phenomena.For example,the AMO induces North Atlantic Oscillation(NAO)–like anomalies during late winter(Omrani et al.,2014).Peings and Magnusdottir(2016)also explored the wintertime atmospheric response to the Atlantic multidecadal variability,based on three different configurations of version 5 of the Community Atmosphere Model(lowtop,high-top,and low-top coupled to a slab ocean).They suggested different timings of the NAO-like response,which they attributed to an earlier occurrence of the polar warming in the stratosphere in the high-top configuration.Remotely,the AMO modulates the East Asian monsoon through coupled atmosphere–ocean feedbacks in the western Pacific and Indian oceans(Lu et al.,2006;Li and Bates,2007).Moreover, AMO|+increases the frequency of atmospheric blocking highs over the Euro–Atlantic sector by changing the baroclinicity and the transient eddy activity(H?kkinen et al.,2011;Peings and Magnusdottir,2014).The increased blocking highs over the Euro–Atlantic sector can further enhance upward planetary wave propagation, resulting in stratospheric warming(i.e.,a weaker polar vortex)(Nishii et al.,2011).

    Despite our incomplete understanding of the connection between the AMO and the stratosphere(Reichler et al.,2012),we try in this study to determine whether the AMO is linked to the multi-decadal variability of the AIS and the associated surface climate during the 20th century using observational/reanalysis data,and whether the potential driver is the AMO’s modulation of the stratospheric polar vortex.

    2.Data,climatic index and method

    We use five monthly mean datasets:(1)sea level pressure(SLP)from HadSLP2r(Allan and Ansell,2006)during 1860–2016;(2)atmospheric fields from NCEP/NCAR Reanalysis 1(Kalnay et al.,1996)during 1948–2016;(3)TS from CRU TS3.24(Harris et al.,2014)during 1901–2015;(4)precipitation from GPCC Reanalysis 7.0(Schneider et al.,2015)during 1901–2016;and(5)SST from Kaplan Extended SST V2(Kaplan et al.,1998)during 1856–2017.The analyzed period extends from 1948 to 2011,which allows for atmospheric fields from the relatively reliable NCEP-1 to be used.Besides,our analysis focuses on late winter(February–March),when the AIS is mature and stable(Honda et al.,2001;also see Fig.S2).

    The AL and IL indices are defined as the average anomalies of SLP over(50°–60°N,185°–215°E)and(55°–65°N,315°–345°E),respectively(Orsolini et al.,2008;derived from HadSLP2r).The AIS index is the difference between the normalized AL and IL indices.A positive value of the AL(AIS)index corresponds to a weak AL(a weak AL and a stronger IL).The AIS index used here differs slightly from the one defined by Honda et al.(2005b).The main difference is the geographical sector used for the AL definition,which in our case is situated farther north,in the region of strongest SLP variance in February.The correlation coefficient between the AIS index used here and that used by Honda et al.(2005b)is 0.94(over the 99%confidence level)(Fig.S1).The smoothed AMO index is based upon the average SST anomaly(SSTA)in the North Atlantic basin(0°–70°N)during 1861–2011(available at https://www.esrl.noaa.gov/psd/data/timeseries/AMO/).Weak(strong)AL years are determined when the normalized AL index is above (below) a standard deviation from the mean of 0.8(-0.8).The AMO|+and AMO|-phases correspond to cases in which the smoothed AMO index is above and below zero,respectively.The classification of weak and strong AL years according to the different phases of the AMO,used for the composite analysis,is shown in Table 1.

    Regarding the statistical methods used in this study,we employ correlation analysis,linear regression,and compositeanalysis.The statistical significance of correlation is assessed using the two-tailed Student’s t-test.The wave activity flux(WAF)is used to identify the origin and propagation of Rossby wave–like perturbations,which are calculated in the quasi-geostrophic framework(Plumb,1985).The Eliassen–Palm(EP)flux(Andrews,1987)is used to measure the planetary wave(wavenumbers 1–3)activity propagation.Blocking high events are defined as intervals in which daily 500-hPa height from the reanalysis exceeds a standard deviation of 1 above the monthly mean for each grid cell over five consecutive days(Thompson and Wallace,2001;Liu et al.,2012;Tang et al.,2013).The incidence of blocking highs is measured as(1)the percentage relative to the blocking climatology during 1948–2011 or(2)the ratio of the number of days when a certain grid point is blocked to the total number of days.

    Table 1.Classification of weak and strong AL years in AMO|+and AMO|-.

    3.AIS connection to the AMO

    Figure 1a illustrates the time series of the AL and IL indices from 1860 to 2016,February–March.The AL and IL indices have been detrended by removing the long-term linear trend.Year-to-year variations in the AL and IL show an anticorrelation over the 157 years,with a coefficient of-0.26(over the 99%confidence level).The correlations between the AL and IL indices,computed over a 25-year moving window,are presented in Fig.1b.The main result is that the AL–IL relationship displays multidecadal non-stationarity.The anti-correlation significance is higher than the 95%confidence level,over the 1900s–1920s and 1970s–1990s approximately.It is statistically insignificant before the 1900s and after the mid-1990s,and even changes sign over the 1930s–1950s.Note that the significant anti-correlation period(the 1970s–1990s)revealed by the present study is in good agreement with the analyzed period(1973–94)in Honda et al.(2001).

    Fig.1.(a)The AL(orange bars)and IL(blue line)indices from 1860 to 2016,February–March.(b)Correlations in a 25-year moving window between the AL and IL indices.The 90%and 95%confidence level for the correlations is indicated by the horizontal dashed lines.(c)Smoothed AMO index from 1861 to 2011,February–March.The vertical dashed lines reflect the analyzed period(1973–94)in Honda et al.(2001).(d)Composite differences of February–March SST(units:°C)restricted to the Atlantic region between AMO|-and AMO|+years.Crosshatched region is statistically significant at the 95%confidence level.

    Figure 1c illustrates the time series of the smoothed AMO from 1861 to 2011,February–March.Composite analysis of February–March SSTAs between AMO|-and AMO|+years(Fig.1d)shows cold anomalies over the North Atlantic,with a minimum of-0.30°C over the subpolar region,and warm anomalies over the South Atlantic(up to 0.13°C).Interestingly,significant anti-correlations between the AL and IL exist only in AMO|-.The period of AMO|+shows no significant correlation.

    To investigate the effects of AMO phases on the intensity of the AL and IL and on the formation of the AIS,we conduct a composite analysis for the whole period,as well as for each phase of the AMO.The upper panel of Fig.2 illustrates the composite differences of February–March SLP(derived from HadSLP2r)between weak and strong AL years for 1861–2011,as well as in AMO|+and AMO|-.For the whole period,the weak AL is associated with positive SLP anomalies over the North Pacific,and negative SLP anomalies over the polar cap and Iceland(Fig.2a).In AMO|+,the negative SLP anomalies retreat to the polar cap and even change to positive sign over the Barents Sea(Fig.2b).There is no AL–IL correlation.In AMO|-,the negative SLP anomalies occupy the polar cap and subpolar North Atlantic,with the minimum located in the climatological center of the IL(Fig.2c).A clear AIS pattern appears.The same conclusion is reached when using NCEP-1(1948–2011)(Figs.2d–f)instead of HadSLP2r.

    Fig.2.Composite differences of February–March SLP(units:hPa)(derived from HadSLP2r)between weak and strong AL years for(a)1861–2011,and for(b)AMO|+and(c)AMO|-.(d–f)As in(a–c),but for SLP(derived from NCEP-1,1948–2011).Shaded regions indicate significance at the 95%confidence level.

    The upper panel of Fig.3 illustrates the composite differences of February–March 250-hPa geopotential height(Z250)and horizontal WAF(departures from zonal means)between weak and strong AL years for 1948–2011,as well as in AMO|+and AMO|-.In the following analysis,our description particularly focuses on the composites for AMO|+and AMO|-.In AMO|+,the weak AL is associated with positive Z250 anomalies over the North Pacific and southern United States,and there is a negative Z250 center in central Canada(Fig.3b).Meanwhile,the PNA-like stationary Rossby wave trains originate over the central North Pacific and stretch horizontally across North America.In AMO|-,the negative Z250 center in central Canada extends considerably farther across Newfoundland,past the south of Greenland(i.e.,the subpolar North Atlantic;Fig.3c),as another wave train emanates from the leading edge of the PNA-like Rossby wave to form the PNAA pattern(Honda et al.,2001,2005a).This pattern is analogous to the EPWs in Sun and Tan(2013),which originate over the central North Pacific and propagate horizontally through North America and into the North Atlantic.

    The lower panel of Fig.3 is the same as the upper panel,but for zonally averaged zonal wind.In AMO|+,anomalous westward flow is significant along the midlatitudes(30°–40°N)from the surface into the lower stratosphere(Fig.3e).However,in AMO|-,both anomalous westward and eastward flows are significant,and of stronger magnitude,along the midlatitudes(30°–40°N)and high latitudes(north of 50°N),respectively,from the surface into the upper stratosphere(Fig.3f),suggesting a stronger stratospheric polar vortex.Thus,the clear AIS seen in the SLP in AMO|-is strongly coupled with the PNAA pattern and EPWs in the upper troposphere,and the stronger stratospheric polar vortex;whereas,in AMO|+,there is no established AIS with the upper-tropospheric PNA pattern.

    4.AIS-based surface climate

    Fig.3.Composite differences of February–March Z250(contours;units:gpm)/horizontal WAF(vectors;scale in m2s-2)(departures from zonal means)between weak and strong AL years for(a)1948–2011,and for(b)AMO|+and(c)AMO|-.(d–f)As in(a-c),but for zonally averaged zonal wind(units:m s-1).Shaded regions indicate significance at the 95%confidence level.

    We extend our investigation into how the AL’s impact on surface climate is influenced by the AMO phase.Figure4 illustrates the composite differences of February–March TS and 1000-hPa horizontal temperature advection between weak and strong AL years for 1948–2011,as well as in AMO|+and AMO|-.In AMO|+,the weak AL-related anticyclonic anomalies induce cold advection along the west coast of North America and warm advection along the Russian Far East coast;anticyclonic anomalies over the Barents Sea contribute to cold advection over Europe(Fig.4e).Cold anomalies are pronounced over Canada and Europe(Fig.4b).In AMO|-,cold anomalies over Canada are much weaker,and warm anomalies extend over the entire Far East and along the Russian Arctic coast(Fig.4c).Besides,the intensified IL-related cyclonic anomalies(Fig.4f)lead to cold anomalies over the Middle East,and warm anomalies over northern Europe stretching along the Russian Arctic coast.Figure 5 is the same as Fig.4,but for precipitation and 300-hPa zonal wind(U300)/variance of bandpass-filtered(3–7 days)300-hPa meridional wind(V300).The monthly variance of V300 is calculated from daily mean values,which are then band-pass filtered(3–7 days),to reflect the transient eddy activity.In AMO|+,positive band-passed U300 anomalies occur over the Bering Sea/Aleutian Islands and the United States,and negative band-passed U300 anomalies over the midlatitude North Pacific and Arctic Canada/Europe(Fig.5e,contours),favoring enhanced(diminished)eddy activity downstream(Fig.5e,vectors).Correspondingly,positive precipitation anomalies are over western Canada,and negative precipitation anomalies over the western United States and northern Europe(Fig.5b).In AMO|-,the positive band-passed U300 anomalies over the United States extend eastwards through the North Atlantic,with opposite bandpassed U300 anomalies over the Mediterranean Sea,which corresponds to diminished eddy activity and precipitation over southern Europe(Figs.5c and f).

    5.How does the AMO modulate the AIS?

    How can the AMO be linked to the AIS multidecadal fluctuations through an anomalous stratospheric polar vortex?To answer this,the composite-differences of daily geopotential height averaged north of 60°N(pressure versus time)between AMO|-and AMO|+years are presented in Fig.6a.The subpolar North Atlantic cold SSTAs(see Fig.1d)are associated with a precursory strengthening of the stratospheric polar vortex during early winter(November–January),which propagates downwards into the troposphere during late winter(February–March).The strengthening of the stratospheric polar vortex(i.e.,stratospheric cooling)is mainly maintained by anomalous negative quasi-stationary eddy heat flux(Fig.6b).

    Fig.4.Composite differences of February–March TS(units:°C)(derived from CRU)between weak and strong AL years for(a)1948-2011,and for(b)AMO|+,and(c)AMO|-.(d–f)As in(a–c),but for 1000-hPa horizontal temperature advection(scale in m K s-1).Dotted(a–c)and shaded(d–f)regions indicate significance at the 95%confidence level.

    Fig.5.Composite differences of February–March precipitation(units:mm)(derived from GPCC)between weak and strong AL years for(a)1948–2011,and for(b)AMO|+and(c)AMO|-.(d–f)As in(a–c),but for U300(contours;unit:m s-1)/variance of bandpass-filtered(3–7 days)V300(shaded,units:m s-1).Dotted regions indicate significance at the 95%confidence level.

    Fig.6.(a)Temporal evolution of daily geopotential height(units:gpm)averaged north of 60°N for the composite difference between AMO|-and AMO|+years.(b)Temporal evolution of monthly quasi-stationary eddy heat flux(units: °C m s-1)averaged north of 60°N in the lowermost stratosphere(150 hPa)for the composite difference with both AMO|+(red line)and AMO|-(blue line)years.

    Figure 7 illustrates the composite differences of November–January 20-hPa geopotential height(Z20)and February–March Z250/horizontal WAF(departures from zonal means)between AMO|-and AMO|+years.The Z20 pattern related to AMO|-shows negative anomalies over the polar cap and positive anomalies in the midlatitudes(Fig.7a),suggesting an enhanced stratospheric polar vortex during early winter,consistent with Omrani et al.(2014).The negative Z20 anomalies in the Arctic extend downwards to 250 hPa during late winter,accompanied by EPWs that emanate over the eastern North Pacific and stretch horizontally through the western North America–North Atlantic–Europe sector(Fig.7b).

    The composite differences of November–January and February–March EP flux cross sections and zonally averaged zonal wind between AMO|+and AMO|-years are presented in Figs.8a and b,respectively.In AMO|-,during early winter,the polar night jet accelerates(Fig.8a,contours)because of anomalous equator ward-pointing EP flux in the uppermost stratosphere(20 hPa),and anomalous down ward-pointing EP flux along the polar waveguide(Dickinson,1968;Fig.8a,vectors).During late winter,the anomalous upper-stratospheric equator ward-pointing EP flux disappears,while the anomalous downward-pointing EP flux is stronger in magnitude,moving directly from the upper stratosphere in the high latitudes to reach the surface(Fig.8b,vectors).The high-latitude zonal wind anomaly strengthens not only in the stratosphere but also in the troposphere(Fig.8b,contours).

    To better understand the spatial modulation of planetary waves associated with the anomalous downward-pointing EP flux at different levels,we calculate the February–March 50-hPa and 250-hPa vertical WAFs in the climatology and the composite difference between AMO|-and AMO|+years(Figs.8c and d).The positive(negative)contours represent the upward(downward) climatological stationary wave activity(Plumb,1985).At 50 hPa,the anomalous downward stationary wave flux over the subpolar North Atlantic related to AMO|-(Fig.8c,shaded)collocates with the climatological negative center(Fig.8c,contours).This center of anomalous downward flux is also apparent over northeastern North America and Greenland at 250 hPa(Fig.8d,shaded),and may superimpose on the horizontal EPWs(Fig.7b), contributing to an eastward-extended PNAA pattern and the formation of the AIS(Sun and Tan,2013).

    The results mentioned above indicate that the AMO|-phase has the potential to drive an intensified polar night jet because of anomalous downward-pointing EP flux along the polar waveguide(Figs.8a and b)or,equivalently,because of the negative quasi-stationary eddy heat flux anomalies in the high latitudes(Fig.6b).It is suggested that the EPWs propagate zonally along the intensified polar night jet in late winter(Fig.7b).The central question remains as to why AMO|-is associated with an intensified polar vortex,and the an-swer can be found in how the AMO modulates the occurrence of atmospheric blockings over the Atlantic(H?kkinen et al.,2011;Peings and Magnusdottir,2014).Reduced occurrence of blocking highs over the Euro–Atlantic sector would imply a lessening of the upward wave activity flux,resulting in a stronger stratospheric polar vortex(Nishii et al.,2011).

    Fig.7.Composite differences between AMO|-and AMO|+years of(a)November–January Z20(units:gpm)and(b)February–March Z250(contours;units:gpm)/WAF(vectors;scale in m2s-2;departures from zonal means).Shaded regions indicate significance at the 95%confidence level.

    Fig.8.Composite differences between AMO|-and AMO|+years of(a)November–January and(b)February–March EP flux cross sections(vectors;scale in m2s-2)and zonally averaged zonal wind(contours;units:m s-1).Shaded regions indicate significance at the 95%confidence level.In order to display the EP flux throughout the stratosphere,the vectors are scaled by and the inverse of air density.Additionally,the vertical component is multiplied by 125.February–March(c)50-hPa and(d)250-hPa vertical stationary WAFs in the climatology(1948–2011;contours;unit:103m2s-2)and the composite difference between AMO|-and AMO|+years(shaded;units:103m2s-2).Crosshatched regions indicate significance at the 95%confidence level.

    Fig.9.Composite differences between AMO|-and AMO|+years of the incidence of(a)November–March,(b)November–January and(c)February–March blocking highs(measured as the percentage relative to the blocking climatology during 1948–2011)restricted to the Euro-Atlantic sector(25°–80°N,85°W–30°E).(d)Distribution of seasonal regime frequencies(40°–80°N,85°W–30°E;measured as the ratio of the number of days when a certain grid point is blocked to the total number of days)in AMO|+(red boxplots)and AMO|-(blue boxplots)for November–March,November–January and February–March.Boxplots indicate the maximum,upper-quartile,median,lower-quartile and minimum of the distribution(horizontal bars).The mean of the distribution is shown by black diamonds,and asterisks indicate the significance level of the difference of the mean between AMO|-and AMO|+:one star,p<0.05;two stars,p<0.01.

    To test this,we re-examine the composite differences of the incidence of November–March,November–January and February–March blockings highs(measured as the percentage relative to the blocking climatology during 1948–2011)between AMO|-and AMO|+years(Fig.9,left panel).In AMO|-,in early winter,the frequency of blocking highs decreases over the subpolar North Atlantic,while it increases in southern Europe(Fig.9b).During late winter,the reduced blocking highs are of stronger magnitude over most parts of the Euro–Atlantic sector,except the midlatitude North Atlantic where increased blocking highs are found(Fig.9c).Figure 9d further confirms that the frequency of blocking highs over the Euro–Atlantic sector(40°–80°N,85°W–30°E)is lower in AMO|-compared to in AMO|+,especially during late winter.These findings on the occurrence of blockings are in agreement with Peings and Magnusdottir(2014),and support the association of AMO|-with a strengthened stratospheric vortex.

    6.Discussion and conclusions

    The present study,based on observations,shows:

    (1)The significant anti-correlation between the AL and IL in February–March is not a consistent feature during the 20th century, and emerges only in AMO|-.The AIS is clearly established and is strongly coupled with the PNAA pattern and EPWs in the upper troposphere,and the intensified polar night jet.On the contrary,in AMO|+occurs,the AIS is not established, featuring the upper-tropospheric PNA pattern only.

    (2)The surface climate over Eurasia is sensitive to the establishment of the AIS.With an established AIS(weak AL and strong IL),the Middle East(Far East)is colder(warmer)than normal,and southern Europe experiences less rain.However,without an established AIS(weak AL only),Europe(the Russian Far East)is colder(warmer)than normal,and northern Europe receives less rain.

    (3)The AMO|-phase favors a clear AIS mainly because of its in fluence on the intensified polar night jet,via weakening the EP flux along the polar waveguide/negative quasistationary eddy heat flux anomalies in the high latitudes,which can be achieved by atmospheric blocking modulation(H?kkinen et al.,2011;Peings and Magnusdottir,2014;see also Fig.9).The EPWs propagate zonally along the intensified polar night jet during late winter,favoring an eastward extended PNAA pattern and resulting in a significant AIS at the surface.

    It is important to note that,within a decadal period of AMO|-,the interannually varying AIS can be of either phase,with a concomitant weak or strong AL and an out-of-phase IL.By itself,AMO|-would favor a strong stratospheric polar vortex and IL(Omrani et al.,2014).Hence,the AMO may modulate the stratospheric polar vortex and IL superimposed on the active AIS.In this paper,we select the AMO phases based on the smoothed AMO index above and below zero,and hence the modulation of IL intensity is much weaker(Fig.7c)compared to the results in Omrani et al.(2014).

    In addition,the AIS’connection to different phases of the AMO and to the winter surface climate over Eurasia warrants a study using an AGCM externally forced with observed SST and extending into the stratosphere.This issue will be addressed in future work.

    Acknowledgements.The authors are supported by the Research Council of Norway(Grant Nos.EPOCASA#229774/E10 and SNOWGLACE#244166),the National Natural Science Foundation of China(Grant No.41605059),and the Young Talent Support Plan launched by the China Association for Science and Technology(Grant No.2016QNRC001).

    Allan,R.,and T.Ansell,2006:A new globally complete monthly historical gridded mean sea level pressure dataset(HadSLP2):1850-2004.J.Climate,19,5816–5842,https://doi.org/10.1175/JCLI3937.1.

    Andrews,D.G.,1987:On the interpretation of the eliassen-palm flux divergence.Quart.J.Roy.Meteor.Soc.,113(475),323–338,https://doi.org/10.1002/qj.49711347518.

    Castanheira,J.M.,and H.-F.Graf,2003:North Pacific-North Atlantic relationships under stratospheric control?J.Geophys.Res.,108,ACL 11-1–ACL 11-10,https://doi.org/10.1029/2002JD002754.

    Dickinson,R.E.,1968:Planetary Rossby waves propagating vertically through weak westerly wind wave guides.J.Atmos.Sci.,25,984–1002,https://doi.org/10.1175/1520-0469(1968)025<0984:PRWPVT>2.0.CO;2.

    Garreaud,R.D.,2007:Precipitation and circulation covariability in the extratropics.J.Climate,20(18),4789–4797,https://doi.org/10.1175/JCLI4257.1.

    H?kkinen,S.,P.B.Rhines,and D.L.Worthen,2011:Atmospheric blocking and Atlantic Multidecadal Ocean variability.Science,334,655–659,https://doi.org/10.1126/science.1205683.

    Harris,I.,P.D.Jones,T.J.Osborn,and D.H.Lister,2014:Updated high-resolution grids of monthly climatic observationsthe CRU TS3.10 Dataset.International Journal of Climatology,34(3),623–642,https://doi.org/10.1002/joc.3711.

    Honda,M.,and H.Nakamura,2001:Interannual seesaw between the Aleutian and Icelandic lows.Part II:Its significance in the interannual variability over the wintertime Northern Hemisphere.J.Climate,14,4512–4529,https://doi.org/10.1175/1520-0442(2001)014<4512:ISBTAA>2.0.CO;2.

    Honda,M.,H.Nakamura,J.Ukita,I.Kousaka,and K.Takeuchi,2001:Interannual seesaw between the Aleutian and Icelandic lows.Part I:Seasonal dependence and life cycle.J.Climate,14,1029–1042,https://doi.org/10.1175/1520-0442(2001)014<1029:ISBTAA>2.0.CO;2.

    Honda,M.,Y.Kushnir,H.Nakamura,S.Yamane,and S.E.Zebiak,2005a:Formation,mechanisms,and predictability of the Aleutian-Icelandic low seesaw in ensemble AGCM simulations.J.Climate,18,1423–1434,https://doi.org/10.1175/JCLI3353.1.

    Honda,M.,S.Yamane,and H.Nakamura,2005b:Impacts of the Aleutian-Icelandic low seesaw on surface climate during the twentieth century.J.Climate,18(14),2793–2802,https://doi.org/10.1175/JCLI3419.1.

    Kalnay,E.,and Coauthors,1996: The NCEP/NCAR 40-year reanalysis project. Bull. Amer. Meteor. Soc.,77,437–471,https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    Kaplan,A.,M.A.Cane,Y.Kushnir,A.C.Clement,M.B.Blumenthal,and B.Rajagopalan,1998:Analyses of global sea surface temperature 1856-1991.J.Geophys.Res.,103,18 567–18 589,https://doi.org/10.1029/97JC01736.

    Kerr,R.A.,2000:A North Atlantic climate pacemaker for the centuries.Science,288,1984–1986,https://doi.org/10.1126/science.288.5473.1984.

    Li,S.L.,and G.T.Bates,2007:In fluence of the Atlantic multidecadal oscillation on the winter climate of East China.Adv.Atmos.Sci.,24(1),126–135,https://doi.org/10.1007/s00376-007-0126-6.

    Liu,J.,J.A.Curry,H.Wang,M.Song,and R.M.Horton,2012:Impact of declining Arctic sea ice on winter snowfall.Proceedings of the National Academy of Sciences of the United States of America,109,4074–4079,https://doi.org/10.1073/pnas.1114910109.

    Lu,R.Y.,B.W.Dong,and H.Ding,2006:Impact of the At-lantic Multidecadal Oscillation on the Asian summer monsoon.Geophys.Res.Lett.,33(24),https://doi.org/10.1029/2006GL027655.

    Nakamura,H.,and M.Honda,2002:Interannual seesaw between the Aleutian and Icelandic lows Part III:Its influence upon the stratospheric variability.J.Meteor.Soc.Japan,80(4B),1051–1067,https://doi.org/10.2151/jmsj.80.1051.

    Nishii,K.,H.Nakamura,and Y.J.Orsolini,2011:Geographical dependence observed in blocking high influence on the stratospheric variability through enhancement and suppression of upward planetary-wave propagation.J.Climate,24(24),6408–6423,https://doi.org/10.1175/JCLI-D-10-05021.1.

    Omrani,N.-E.,N.S.Keenlyside,J.Bader,and E.Manzini,2014:Stratosphere key for wintertime atmospheric response to warm Atlantic decadal conditions.Climate Dyn.,42,649–663,https://doi.org/10.1007/s00382-013-1860-3.

    Orsolini,Y.J.,2004:Seesaw fluctuations in ozone between the North Pacific and North Atlantic.J.Meteor.Soc.Japan,82(3),941–949,https://doi.org/10.2151/jmsj.2004.941.

    Orsolini,Y.J.,N.G.Kvamst?,I.T.Kindem,M.Honda,and H.Nakamura,2008:Influence of the Aleutian-Icelandic low seesaw and ENSO onto the Stratosphere in ensemble winter hindcasts.J.Meteor.Soc.Japan,86(5),817–825,https://doi.org/10.2151/jmsj.86.817.

    Peings,Y.,and G.Magnusdottir,2014:Forcing of the wintertime atmospheric circulation by the multidecadal fluctuations of the North Atlantic ocean.Environmental Research Letters,9(3),034018,https://doi.org/10.1088/1748-9326/9/3/034018.

    Peings,Y.,and G.Magnusdottir,2016:Wintertime atmospheric response to Atlantic multidecadal variability:Effect of stratospheric representation and ocean-atmosphere coupling.Climate Dyn.,47,1029–1047,https://doi.org/10.1007/s00382-015-2887-4.

    Plumb,R.A.,1985:On the three-dimensional propagation of stationary waves.J.Atmos.Sci.,42,217–229,https://doi.org/10.1175/1520-0469(1985)042<0217:OTTDPO>2.0.CO;2.

    Reichler,T.,J.Kim,E.Manzini,and J.Kr¨oger,2012:A stratospheric connection to Atlantic climate variability.Nature Geoscience,5(11),783–787,https://doi.org/10.1038/ngeo1586.

    Schneider,U.,A.Becker,P.Finger,A.Meyer-Christoffer,B.Rudolf,and M.Ziese,2015:GPCC Full Data Reanalysis Version 7.0 at 1.0°:Monthly Land-Surface Precipitation from Rain-Gauges built on GTS based and Historic Data,https://doi.org/10.5065/D6000072.

    Sun,J.,and B.Tan,2013:Mechanism of the wintertime Aleutian low-Icelandic low seesaw.Geophys.Res.Lett.,40(15),4103–4108,https://doi.org/10.1002/grl.50770.

    Tang,Q.H.,X.J.Zhang,X.H.Yang,and J.A.Francis,2013:Cold winter extremes in northern continents linked to Arctic sea ice loss.Environmental Research Letters,8(1),014036,https://doi.org/10.1088/1748-9326/8/1/014036.

    Thompson,D.W.J,and J.M.Wallace,2001:Regional climate impacts of the Northern Hemisphere annular mode.Science,293(5527),85–89,https://doi.org/10.1126/science.1058958.

    Wallace,J.M.,and D.S.Gutzler,1981:Teleconnections in the geopotential height field during the Northern Hemisphere winter.Monthly Weather Review,109(4),784–812,https://doi.org/10.1175/1520-0493(1981)109<0784:TITGHF>2.0.CO;2

    1 February 2017;revised 30 May 2017;accepted 22 June 2017)

    :Li,F.,Y.J.Orsolini,H.J.Wang,Y.Q.Gao,and S.P.He,2018:Modulation of the Aleutian–Icelandic low seesaw and its surface impacts by the Atlantic Multidecadal Oscillation.Adv.Atmos.Sci.,35(1),95–105,https://doi.org/10.1007/s00376-017-7028-z.?

    Fei LI

    Email:lifei-715@163.com

    ?Institute of Atmospheric Physics/Chinese Academy of Sciences,and Science Press and Springer-Verlag GmbH Germany 2018

    12—13女人毛片做爰片一| 免费看美女性在线毛片视频| 极品人妻少妇av视频| 亚洲熟女毛片儿| 人成视频在线观看免费观看| 成人欧美大片| 久久亚洲精品不卡| av福利片在线| 老司机深夜福利视频在线观看| 免费高清在线观看日韩| 在线播放国产精品三级| 黄色女人牲交| 性欧美人与动物交配| 久久人妻av系列| 亚洲成av片中文字幕在线观看| 欧美一级a爱片免费观看看 | 在线观看日韩欧美| 亚洲成人免费电影在线观看| 精品国产一区二区久久| 日本免费一区二区三区高清不卡 | 精品日产1卡2卡| 长腿黑丝高跟| 热re99久久国产66热| cao死你这个sao货| 亚洲 欧美 日韩 在线 免费| 男人的好看免费观看在线视频 | 丁香六月欧美| 91成年电影在线观看| 麻豆一二三区av精品| 精品欧美国产一区二区三| 欧洲精品卡2卡3卡4卡5卡区| 99国产极品粉嫩在线观看| 成熟少妇高潮喷水视频| 久热这里只有精品99| 一级毛片女人18水好多| a在线观看视频网站| 国产一卡二卡三卡精品| 国产乱人伦免费视频| 久久久久久亚洲精品国产蜜桃av| 国产精品日韩av在线免费观看 | 长腿黑丝高跟| 女性被躁到高潮视频| 夜夜夜夜夜久久久久| 久久狼人影院| 怎么达到女性高潮| 亚洲七黄色美女视频| 日本黄色视频三级网站网址| 两人在一起打扑克的视频| 欧美老熟妇乱子伦牲交| 亚洲av片天天在线观看| 69av精品久久久久久| 免费在线观看影片大全网站| 操出白浆在线播放| 久久亚洲精品不卡| 日韩欧美国产在线观看| 在线观看午夜福利视频| 巨乳人妻的诱惑在线观看| 午夜免费鲁丝| АⅤ资源中文在线天堂| 色综合婷婷激情| 母亲3免费完整高清在线观看| 老汉色∧v一级毛片| 操美女的视频在线观看| 国产欧美日韩一区二区三| 精品久久久久久久人妻蜜臀av | 少妇裸体淫交视频免费看高清 | 一级作爱视频免费观看| av天堂在线播放| 美女扒开内裤让男人捅视频| 成在线人永久免费视频| 丝袜美足系列| 午夜福利在线观看吧| 999久久久国产精品视频| 两个人看的免费小视频| 叶爱在线成人免费视频播放| 在线观看免费视频日本深夜| 色av中文字幕| 性色av乱码一区二区三区2| 人人妻,人人澡人人爽秒播| 欧洲精品卡2卡3卡4卡5卡区| 亚洲精品中文字幕一二三四区| 亚洲少妇的诱惑av| 亚洲情色 制服丝袜| 免费看十八禁软件| 亚洲成人国产一区在线观看| 欧美激情久久久久久爽电影 | 色尼玛亚洲综合影院| 极品教师在线免费播放| 涩涩av久久男人的天堂| 免费久久久久久久精品成人欧美视频| 99国产精品免费福利视频| 久久久久久人人人人人| 亚洲av电影不卡..在线观看| 美女高潮到喷水免费观看| 午夜激情av网站| 夜夜夜夜夜久久久久| 久久香蕉国产精品| 少妇熟女aⅴ在线视频| 亚洲精品国产一区二区精华液| 91成年电影在线观看| 欧美中文日本在线观看视频| 欧美黄色片欧美黄色片| 777久久人妻少妇嫩草av网站| aaaaa片日本免费| 日韩欧美免费精品| 一区二区三区高清视频在线| 免费久久久久久久精品成人欧美视频| 国产三级黄色录像| 亚洲人成网站在线播放欧美日韩| 婷婷丁香在线五月| 中文字幕人妻丝袜一区二区| 国产精品亚洲美女久久久| 女人精品久久久久毛片| 亚洲欧美日韩无卡精品| 一二三四在线观看免费中文在| 777久久人妻少妇嫩草av网站| 又大又爽又粗| 日本欧美视频一区| 91在线观看av| 亚洲欧美一区二区三区黑人| 国产午夜福利久久久久久| 亚洲欧美日韩高清在线视频| 久久天躁狠狠躁夜夜2o2o| 成人av一区二区三区在线看| 亚洲色图综合在线观看| 69精品国产乱码久久久| 午夜福利,免费看| 亚洲电影在线观看av| 色精品久久人妻99蜜桃| 欧美av亚洲av综合av国产av| 日韩大尺度精品在线看网址 | av有码第一页| 午夜激情av网站| 麻豆av在线久日| 人人妻,人人澡人人爽秒播| 精品第一国产精品| 长腿黑丝高跟| 亚洲专区国产一区二区| 精品欧美一区二区三区在线| 性色av乱码一区二区三区2| 久久久久久人人人人人| 国产欧美日韩综合在线一区二区| 天堂动漫精品| 老熟妇乱子伦视频在线观看| 老司机午夜福利在线观看视频| 国产黄a三级三级三级人| 亚洲va日本ⅴa欧美va伊人久久| tocl精华| 亚洲片人在线观看| 久久久久久久久中文| 一区二区日韩欧美中文字幕| 色综合欧美亚洲国产小说| 黄色视频不卡| 一区二区三区激情视频| 久久久久精品国产欧美久久久| 精品免费久久久久久久清纯| 亚洲精品在线观看二区| 精品第一国产精品| 男人舔女人的私密视频| 法律面前人人平等表现在哪些方面| 亚洲国产欧美一区二区综合| 亚洲熟女毛片儿| 色尼玛亚洲综合影院| 三级毛片av免费| 亚洲av电影在线进入| 亚洲欧美激情在线| 亚洲欧美精品综合久久99| videosex国产| 亚洲精品在线观看二区| 国产日韩一区二区三区精品不卡| 69av精品久久久久久| 人人妻,人人澡人人爽秒播| 亚洲精品国产一区二区精华液| 免费看美女性在线毛片视频| 91字幕亚洲| 日日夜夜操网爽| 别揉我奶头~嗯~啊~动态视频| 午夜福利欧美成人| 国产熟女xx| 男人操女人黄网站| 亚洲熟妇中文字幕五十中出| 久久婷婷成人综合色麻豆| 一边摸一边抽搐一进一出视频| 国产熟女xx| 男男h啪啪无遮挡| 99国产精品99久久久久| 久久国产亚洲av麻豆专区| 国内精品久久久久精免费| 久久午夜综合久久蜜桃| 中文字幕人妻熟女乱码| 亚洲精品中文字幕一二三四区| 亚洲av美国av| 日本五十路高清| 9热在线视频观看99| 精品第一国产精品| 麻豆国产av国片精品| 一二三四社区在线视频社区8| 久久人人97超碰香蕉20202| 久久久久久亚洲精品国产蜜桃av| 黑人操中国人逼视频| 18禁黄网站禁片午夜丰满| 免费高清在线观看日韩| 婷婷六月久久综合丁香| 精品国产亚洲在线| 国产在线精品亚洲第一网站| 久久精品91无色码中文字幕| 欧美日韩瑟瑟在线播放| 精品日产1卡2卡| 国产精品久久久久久人妻精品电影| 啦啦啦免费观看视频1| 日韩精品中文字幕看吧| 国产亚洲欧美在线一区二区| 免费无遮挡裸体视频| 精品一区二区三区av网在线观看| 久久久久久亚洲精品国产蜜桃av| 久久中文字幕一级| 每晚都被弄得嗷嗷叫到高潮| 一级毛片女人18水好多| 少妇裸体淫交视频免费看高清 | 18禁裸乳无遮挡免费网站照片 | 久久人人97超碰香蕉20202| 女警被强在线播放| 天堂√8在线中文| 老熟妇仑乱视频hdxx| 国产1区2区3区精品| 亚洲一码二码三码区别大吗| 日本精品一区二区三区蜜桃| 999久久久国产精品视频| 亚洲自偷自拍图片 自拍| 成人三级做爰电影| 亚洲av熟女| 国产精品日韩av在线免费观看 | 纯流量卡能插随身wifi吗| 真人做人爱边吃奶动态| 自拍欧美九色日韩亚洲蝌蚪91| 久久精品成人免费网站| 一进一出好大好爽视频| 国产欧美日韩一区二区三区在线| 国产乱人伦免费视频| 99久久99久久久精品蜜桃| 久久影院123| av超薄肉色丝袜交足视频| 在线观看免费视频网站a站| 日韩大尺度精品在线看网址 | 亚洲一卡2卡3卡4卡5卡精品中文| av天堂在线播放| 97超级碰碰碰精品色视频在线观看| 国产高清有码在线观看视频 | 免费在线观看亚洲国产| 视频区欧美日本亚洲| 在线视频色国产色| 亚洲成人久久性| 一级毛片高清免费大全| 国产精品 国内视频| 日本精品一区二区三区蜜桃| 男女午夜视频在线观看| 午夜福利影视在线免费观看| 女人被狂操c到高潮| 丝袜人妻中文字幕| 亚洲无线在线观看| 欧美av亚洲av综合av国产av| 亚洲专区国产一区二区| 欧美久久黑人一区二区| 亚洲人成伊人成综合网2020| 精品国产乱码久久久久久男人| 人人妻人人澡欧美一区二区 | 久久影院123| 国产精品美女特级片免费视频播放器 | 在线国产一区二区在线| 久久香蕉精品热| 欧美日韩福利视频一区二区| 变态另类成人亚洲欧美熟女 | 欧美在线黄色| 国产成人啪精品午夜网站| 午夜精品久久久久久毛片777| 色播亚洲综合网| 搡老妇女老女人老熟妇| 久久精品人人爽人人爽视色| 久久久水蜜桃国产精品网| 欧美日本中文国产一区发布| 亚洲男人天堂网一区| 1024香蕉在线观看| 91麻豆精品激情在线观看国产| 国产主播在线观看一区二区| 欧美在线黄色| 啦啦啦 在线观看视频| 日韩三级视频一区二区三区| 深夜精品福利| 国产高清视频在线播放一区| 亚洲国产高清在线一区二区三 | 国产午夜精品久久久久久| 亚洲av成人av| 欧美黑人欧美精品刺激| 在线永久观看黄色视频| 亚洲精品久久成人aⅴ小说| 涩涩av久久男人的天堂| 最好的美女福利视频网| 在线视频色国产色| 一级a爱片免费观看的视频| 欧美日本亚洲视频在线播放| 97人妻精品一区二区三区麻豆 | 9色porny在线观看| 国产精品永久免费网站| 夜夜夜夜夜久久久久| 一级作爱视频免费观看| 99香蕉大伊视频| 国产欧美日韩综合在线一区二区| 99久久国产精品久久久| 午夜老司机福利片| 桃色一区二区三区在线观看| 亚洲av电影不卡..在线观看| www.熟女人妻精品国产| 久久 成人 亚洲| 99久久99久久久精品蜜桃| 亚洲专区字幕在线| 亚洲精品一卡2卡三卡4卡5卡| 女同久久另类99精品国产91| 麻豆久久精品国产亚洲av| 免费在线观看影片大全网站| av天堂在线播放| 久久狼人影院| 国产aⅴ精品一区二区三区波| 别揉我奶头~嗯~啊~动态视频| 日本一区二区免费在线视频| 国产麻豆69| 婷婷丁香在线五月| 怎么达到女性高潮| 成人欧美大片| 少妇熟女aⅴ在线视频| 国产视频一区二区在线看| 久久精品91蜜桃| 波多野结衣高清无吗| 一级a爱片免费观看的视频| 一进一出好大好爽视频| 一二三四社区在线视频社区8| 亚洲成av片中文字幕在线观看| 色综合站精品国产| 国产精品av久久久久免费| 久久亚洲真实| 大香蕉久久成人网| 三级毛片av免费| 国产精品一区二区在线不卡| 国产色视频综合| 国内毛片毛片毛片毛片毛片| 午夜a级毛片| 夜夜看夜夜爽夜夜摸| 成人国语在线视频| 欧美av亚洲av综合av国产av| 国产精品久久电影中文字幕| 国产精品久久久人人做人人爽| 久久伊人香网站| 欧美老熟妇乱子伦牲交| 精品国产乱子伦一区二区三区| 一进一出好大好爽视频| 99香蕉大伊视频| 嫩草影视91久久| 激情在线观看视频在线高清| 久久久久久久久中文| 啦啦啦观看免费观看视频高清 | 欧美乱色亚洲激情| 黄色毛片三级朝国网站| 丰满人妻熟妇乱又伦精品不卡| 久久国产亚洲av麻豆专区| 在线播放国产精品三级| 亚洲欧美激情综合另类| 亚洲人成电影观看| 一个人观看的视频www高清免费观看 | 日本三级黄在线观看| 国产精品美女特级片免费视频播放器 | 女人爽到高潮嗷嗷叫在线视频| 成人国语在线视频| 日韩大码丰满熟妇| 丰满的人妻完整版| 乱人伦中国视频| 国产午夜福利久久久久久| 成人永久免费在线观看视频| 我的亚洲天堂| 久久影院123| 精品午夜福利视频在线观看一区| 欧美成狂野欧美在线观看| 给我免费播放毛片高清在线观看| 亚洲第一欧美日韩一区二区三区| 精品国产乱子伦一区二区三区| 51午夜福利影视在线观看| 999久久久精品免费观看国产| 非洲黑人性xxxx精品又粗又长| 婷婷六月久久综合丁香| 波多野结衣巨乳人妻| 99riav亚洲国产免费| 亚洲成人精品中文字幕电影| 脱女人内裤的视频| 1024视频免费在线观看| 免费少妇av软件| 国产亚洲精品综合一区在线观看 | 99国产精品99久久久久| 高清毛片免费观看视频网站| 色在线成人网| 国产在线精品亚洲第一网站| 日韩大码丰满熟妇| 麻豆av在线久日| 日本vs欧美在线观看视频| 国产成人免费无遮挡视频| 精品少妇一区二区三区视频日本电影| 波多野结衣高清无吗| 久久国产精品男人的天堂亚洲| 国产欧美日韩精品亚洲av| 久久久久久久久久久久大奶| 久久久久久亚洲精品国产蜜桃av| 一级毛片精品| 12—13女人毛片做爰片一| 波多野结衣av一区二区av| 国产真人三级小视频在线观看| 不卡一级毛片| 色综合婷婷激情| 国产高清videossex| 精品欧美一区二区三区在线| 电影成人av| 久久精品91无色码中文字幕| 日本撒尿小便嘘嘘汇集6| 国产成人免费无遮挡视频| 999精品在线视频| 亚洲久久久国产精品| 两性夫妻黄色片| 成人18禁高潮啪啪吃奶动态图| 黄色成人免费大全| 国产免费av片在线观看野外av| 两个人视频免费观看高清| 国产欧美日韩综合在线一区二区| 欧美最黄视频在线播放免费| 少妇粗大呻吟视频| 天堂√8在线中文| 一区二区三区精品91| 久久人妻av系列| 精品福利观看| 国产成人系列免费观看| 搡老妇女老女人老熟妇| 亚洲一区高清亚洲精品| 欧美性长视频在线观看| 亚洲成人精品中文字幕电影| 少妇裸体淫交视频免费看高清 | 免费人成视频x8x8入口观看| 免费在线观看亚洲国产| 亚洲av电影不卡..在线观看| 亚洲最大成人中文| 国产精品久久久av美女十八| 丁香欧美五月| 午夜a级毛片| 亚洲熟妇中文字幕五十中出| 久久久国产精品麻豆| cao死你这个sao货| 成人手机av| 日韩一卡2卡3卡4卡2021年| 老司机午夜福利在线观看视频| 级片在线观看| 亚洲中文日韩欧美视频| 欧美日韩精品网址| 国产精品综合久久久久久久免费 | 女人被躁到高潮嗷嗷叫费观| av中文乱码字幕在线| 丰满的人妻完整版| 中文字幕另类日韩欧美亚洲嫩草| 亚洲avbb在线观看| 黄网站色视频无遮挡免费观看| 国产精品爽爽va在线观看网站 | 国产一区二区三区在线臀色熟女| 国产麻豆69| 亚洲午夜精品一区,二区,三区| 午夜免费观看网址| 国产精品美女特级片免费视频播放器 | 国产色视频综合| 国内精品久久久久精免费| 老司机靠b影院| 日韩欧美免费精品| 午夜成年电影在线免费观看| 999久久久精品免费观看国产| 淫秽高清视频在线观看| 99久久综合精品五月天人人| 精品少妇一区二区三区视频日本电影| 久久久水蜜桃国产精品网| 欧美黄色淫秽网站| 侵犯人妻中文字幕一二三四区| 亚洲熟妇中文字幕五十中出| 欧美色欧美亚洲另类二区 | 女性生殖器流出的白浆| 无人区码免费观看不卡| 老司机深夜福利视频在线观看| 在线永久观看黄色视频| 黄色片一级片一级黄色片| 又黄又爽又免费观看的视频| 亚洲第一青青草原| 亚洲第一av免费看| 制服丝袜大香蕉在线| 久久午夜综合久久蜜桃| 满18在线观看网站| 久久国产精品人妻蜜桃| 免费在线观看影片大全网站| 精品国产乱码久久久久久男人| 午夜成年电影在线免费观看| 亚洲精品中文字幕在线视频| 黄色视频不卡| 亚洲欧美精品综合久久99| 久久久久久免费高清国产稀缺| 亚洲狠狠婷婷综合久久图片| 多毛熟女@视频| 亚洲中文字幕一区二区三区有码在线看 | 日韩免费av在线播放| 日韩欧美免费精品| 国产av一区在线观看免费| 成人av一区二区三区在线看| 欧美日韩乱码在线| 国产aⅴ精品一区二区三区波| 亚洲伊人色综图| av网站免费在线观看视频| 精品国产乱子伦一区二区三区| 久久久国产欧美日韩av| www.www免费av| 咕卡用的链子| 日韩欧美一区视频在线观看| 久久亚洲真实| 丁香六月欧美| 精品一品国产午夜福利视频| 日韩有码中文字幕| 国产乱人伦免费视频| 国产一区二区在线av高清观看| 午夜福利成人在线免费观看| 免费在线观看影片大全网站| 制服丝袜大香蕉在线| 黑人欧美特级aaaaaa片| 亚洲国产毛片av蜜桃av| 亚洲成av人片免费观看| 欧美精品啪啪一区二区三区| 亚洲精品美女久久久久99蜜臀| 国产成人欧美在线观看| 手机成人av网站| 变态另类丝袜制服| 欧美成人免费av一区二区三区| 亚洲精品在线美女| 天天添夜夜摸| 99久久综合精品五月天人人| 午夜两性在线视频| 精品国产乱码久久久久久男人| 九色国产91popny在线| 亚洲成人久久性| 少妇裸体淫交视频免费看高清 | 色老头精品视频在线观看| 变态另类丝袜制服| 多毛熟女@视频| 久久国产乱子伦精品免费另类| 国产av又大| 国语自产精品视频在线第100页| 色综合站精品国产| 法律面前人人平等表现在哪些方面| 成人av一区二区三区在线看| 久久亚洲真实| 9191精品国产免费久久| 搡老岳熟女国产| 在线观看免费午夜福利视频| 亚洲国产欧美网| av视频免费观看在线观看| 老司机午夜十八禁免费视频| 国产精品99久久99久久久不卡| 露出奶头的视频| 天堂影院成人在线观看| 久久人人精品亚洲av| 一区在线观看完整版| 欧美精品亚洲一区二区| 日韩视频一区二区在线观看| 中文字幕最新亚洲高清| 午夜福利18| 欧美成狂野欧美在线观看| 757午夜福利合集在线观看| 欧美日本中文国产一区发布| 法律面前人人平等表现在哪些方面| 久久欧美精品欧美久久欧美| 欧美一级毛片孕妇| 黄色成人免费大全| 国产av精品麻豆| 啦啦啦观看免费观看视频高清 | 精品国产一区二区久久| 国产99白浆流出| 日日干狠狠操夜夜爽| 久久精品国产综合久久久| 日韩三级视频一区二区三区| 国产av一区在线观看免费| 亚洲欧美日韩无卡精品| 人人妻人人澡人人看| 精品少妇一区二区三区视频日本电影| 琪琪午夜伦伦电影理论片6080| 天堂影院成人在线观看| 国产一区在线观看成人免费| 老司机午夜十八禁免费视频| 麻豆久久精品国产亚洲av| 这个男人来自地球电影免费观看| 欧美 亚洲 国产 日韩一| 日韩视频一区二区在线观看| 50天的宝宝边吃奶边哭怎么回事| 午夜a级毛片| 在线av久久热| 国产男靠女视频免费网站| x7x7x7水蜜桃| www.自偷自拍.com| 香蕉国产在线看| 亚洲精品在线美女| 精品欧美国产一区二区三| 一级a爱视频在线免费观看| 中亚洲国语对白在线视频| 天天一区二区日本电影三级 | 中文字幕最新亚洲高清| 日本 av在线| 成人三级做爰电影| 国产三级在线视频| 一级作爱视频免费观看| 亚洲中文字幕日韩| 亚洲五月天丁香| 成年版毛片免费区|