• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Modulation of the Aleutian–Icelandic Low Seesaw and Its Surface Impacts by the Atlantic Multidecadal Oscillation

    2018-12-06 07:35:53FeiLIYvanORSOLINIHuijunWANGYongqiGAOandShengpingHE63NILUNorwegianInstituteforAirResearchKjeller2007Norway
    Advances in Atmospheric Sciences 2018年1期

    Fei LI,Yvan J.ORSOLINI,Huijun WANG,Yongqi GAO,and Shengping HE6,4,3NILU—Norwegian Institute for Air Research,Kjeller 2007,Norway

    2Nansen-Zhu International Research Centre,Institute of Atmospheric Physics,Chinese Academy of Sciences,Beijing 100029,China

    3Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters/Key Laboratory of Meteorological Disaster,

    Ministry of Education,Nanjing University of Information Science and Technology,Nanjing 210044,China

    4Climate Change Research Center,Chinese Academy of Sciences,Beijing 100029,China

    5Nansen Environmental and Remote Sensing Center and Bjerknes Center for Climate Research,Bergen 5006,Norway

    6Geophysical Institute,University of Bergen and Bjerknes Center for Climate Research,Bergen 5007,Norway

    Modulation of the Aleutian–Icelandic Low Seesaw and Its Surface Impacts by the Atlantic Multidecadal Oscillation

    Fei LI?1,2,Yvan J.ORSOLINI1,Huijun WANG3,4,2,Yongqi GAO5,2,and Shengping HE6,4,31NILU—Norwegian Institute for Air Research,Kjeller 2007,Norway

    2Nansen-Zhu International Research Centre,Institute of Atmospheric Physics,Chinese Academy of Sciences,Beijing 100029,China

    3Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters/Key Laboratory of Meteorological Disaster,

    Ministry of Education,Nanjing University of Information Science and Technology,Nanjing 210044,China

    4Climate Change Research Center,Chinese Academy of Sciences,Beijing 100029,China

    5Nansen Environmental and Remote Sensing Center and Bjerknes Center for Climate Research,Bergen 5006,Norway

    6Geophysical Institute,University of Bergen and Bjerknes Center for Climate Research,Bergen 5007,Norway

    Early studies suggested that the Aleutian–Icelandic low seesaw(AIS)features multidecadal variation.In this study,the multidecadal modulation of the AIS and associated surface climate by the Atlantic Multidecadal Oscillation(AMO)during late winter(February–March)is explored with observational data.It is shown that,in the cold phase of the AMO(AMO|-),a clear AIS is established,while this is not the case in the warm phase of the AMO(AMO|+).The surface climate over Eurasia is significantly in fluenced by the AMO’s modulation of the Aleutian low(AL).For example,the weak AL in AMO|-displays warmer surface temperatures over the entire Far East and along the Russian Arctic coast and into Northern Europe,but only over the Russian Far East in AMO|+.Similarly,precipitation decreases over central Europe with the weak AL in AMO|-,but decreases over northern Europe and increases over southern Europe in AMO|+.

    The mechanism underlying the influence of AMO|-on the AIS can be described as follows:AMO|-weakens the upward component of the Eliassen–Palm flux along the polar waveguide by reducing atmospheric blocking occurrence over the Euro–Atlantic sector,and hence drives an enhanced stratospheric polar vortex.With the intensified polar night jet,the wave trains originating over the central North Pacific can propagate horizontally through North America and extend into the North Atlantic,favoring an eastward-extended Pacific–North America–Atlantic pattern,and resulting in a significant AIS at the surface during late winter.

    Aleutian–Icelandic low seesaw,Atlantic Multidecadal Oscillation,Pacific–North America–Atlantic pattern,stratospheric polar vortex

    1.Introduction

    During boreal winter,there are two major climatological surface low-pressure cells in the Northern Hemisphere:the Aleutian low(AL)and the Icelandic low(IL).Early studies indicated that the AL and IL vary in an anti-phase seesaw pattern on the interannual timescale,particularly during late winter(February–March)(Honda et al.,2001;Honda and Nakamura,2001;Orsolini,2004).Honda et al.(2001)named this pattern the Aleutian and Icelandic low seesaw(AIS).Combining both observations and simulations with an atmospheric general circulation model(AGCM),Honda et al.(2005a)put forward a dynamical pathway for the formation of the AIS,consisting of a three-step process:(1)the AIS starts with the North Pacific variability associated with the AL;(2)the North Pacific influence extends across North America through the eastward propagation of stationary Rossby wave trains,which corresponds to the Pacific–North America(PNA)pattern(Wallace and Gutzler,1981);and(3)IL anomalies form as part of the Atlantic edge of the PNA-like wave trains.Typically,the formation of the AIS begins with an anomalous AL and ends with the Pacific–North America–Atlantic(PNAA)pattern(Honda et al.,2005b;focused on 1973–94),as well as upward propagation from the surface into the stratosphere during late winter(Nakamura and Honda,2002;focus on 1966/67–1996/97).Orsolini et al.(2008)used AGCM simulations to demonstrate that El Ni?no can extend its influence into the Icelandic sector,forming a PNAA pattern,and into the stratosphere,via the horizontal and vertical propagation of planetary waves modulated by the maturation of the AIS during late winter.

    Honda et al.(2005b)showed a significant influence of the AIS on surface air temperature(TS)and precipitation over the extratropical Northern Hemisphere during late winter,except in central continental regions.The AIS modulates the storm-track activity over both Pacific and Atlantic basins,which produces a downstream increase in eddy activity and precipitation(Garreaud,2007).However,they also noted that the anti-correlation between the AL and IL is not always significant during the 20th century,but undergoes multidecadal modulations.Sun and Tan(2013)explored the formation of the AIS pattern and attributed it to a stronger stratospheric polar vortex,which may act to reflect the eastern North Pacific wave trains(EPWs)in December–March(focused on 1948–2009).The role of the polar vortex in linking the Aleutian and North Atlantic variability was also noted by Castanheira and Graf(2003).

    The Atlantic Multidecadal Oscillation(AMO)is a basinscale oceanic pattern of sea surface temperature(SST)variability on a multidecadal timescale[~60–70 years(Kerr,2000)].Cold AMO phases(AMO|-)occur in the 1900s–1920s and 1970s–1990s,while warm AMO phases(AMO|+)occur in the 1930s–1950s and after the mid-1990s.The fluctuations of the AMO are associated with numerous climatic phenomena.For example,the AMO induces North Atlantic Oscillation(NAO)–like anomalies during late winter(Omrani et al.,2014).Peings and Magnusdottir(2016)also explored the wintertime atmospheric response to the Atlantic multidecadal variability,based on three different configurations of version 5 of the Community Atmosphere Model(lowtop,high-top,and low-top coupled to a slab ocean).They suggested different timings of the NAO-like response,which they attributed to an earlier occurrence of the polar warming in the stratosphere in the high-top configuration.Remotely,the AMO modulates the East Asian monsoon through coupled atmosphere–ocean feedbacks in the western Pacific and Indian oceans(Lu et al.,2006;Li and Bates,2007).Moreover, AMO|+increases the frequency of atmospheric blocking highs over the Euro–Atlantic sector by changing the baroclinicity and the transient eddy activity(H?kkinen et al.,2011;Peings and Magnusdottir,2014).The increased blocking highs over the Euro–Atlantic sector can further enhance upward planetary wave propagation, resulting in stratospheric warming(i.e.,a weaker polar vortex)(Nishii et al.,2011).

    Despite our incomplete understanding of the connection between the AMO and the stratosphere(Reichler et al.,2012),we try in this study to determine whether the AMO is linked to the multi-decadal variability of the AIS and the associated surface climate during the 20th century using observational/reanalysis data,and whether the potential driver is the AMO’s modulation of the stratospheric polar vortex.

    2.Data,climatic index and method

    We use five monthly mean datasets:(1)sea level pressure(SLP)from HadSLP2r(Allan and Ansell,2006)during 1860–2016;(2)atmospheric fields from NCEP/NCAR Reanalysis 1(Kalnay et al.,1996)during 1948–2016;(3)TS from CRU TS3.24(Harris et al.,2014)during 1901–2015;(4)precipitation from GPCC Reanalysis 7.0(Schneider et al.,2015)during 1901–2016;and(5)SST from Kaplan Extended SST V2(Kaplan et al.,1998)during 1856–2017.The analyzed period extends from 1948 to 2011,which allows for atmospheric fields from the relatively reliable NCEP-1 to be used.Besides,our analysis focuses on late winter(February–March),when the AIS is mature and stable(Honda et al.,2001;also see Fig.S2).

    The AL and IL indices are defined as the average anomalies of SLP over(50°–60°N,185°–215°E)and(55°–65°N,315°–345°E),respectively(Orsolini et al.,2008;derived from HadSLP2r).The AIS index is the difference between the normalized AL and IL indices.A positive value of the AL(AIS)index corresponds to a weak AL(a weak AL and a stronger IL).The AIS index used here differs slightly from the one defined by Honda et al.(2005b).The main difference is the geographical sector used for the AL definition,which in our case is situated farther north,in the region of strongest SLP variance in February.The correlation coefficient between the AIS index used here and that used by Honda et al.(2005b)is 0.94(over the 99%confidence level)(Fig.S1).The smoothed AMO index is based upon the average SST anomaly(SSTA)in the North Atlantic basin(0°–70°N)during 1861–2011(available at https://www.esrl.noaa.gov/psd/data/timeseries/AMO/).Weak(strong)AL years are determined when the normalized AL index is above (below) a standard deviation from the mean of 0.8(-0.8).The AMO|+and AMO|-phases correspond to cases in which the smoothed AMO index is above and below zero,respectively.The classification of weak and strong AL years according to the different phases of the AMO,used for the composite analysis,is shown in Table 1.

    Regarding the statistical methods used in this study,we employ correlation analysis,linear regression,and compositeanalysis.The statistical significance of correlation is assessed using the two-tailed Student’s t-test.The wave activity flux(WAF)is used to identify the origin and propagation of Rossby wave–like perturbations,which are calculated in the quasi-geostrophic framework(Plumb,1985).The Eliassen–Palm(EP)flux(Andrews,1987)is used to measure the planetary wave(wavenumbers 1–3)activity propagation.Blocking high events are defined as intervals in which daily 500-hPa height from the reanalysis exceeds a standard deviation of 1 above the monthly mean for each grid cell over five consecutive days(Thompson and Wallace,2001;Liu et al.,2012;Tang et al.,2013).The incidence of blocking highs is measured as(1)the percentage relative to the blocking climatology during 1948–2011 or(2)the ratio of the number of days when a certain grid point is blocked to the total number of days.

    Table 1.Classification of weak and strong AL years in AMO|+and AMO|-.

    3.AIS connection to the AMO

    Figure 1a illustrates the time series of the AL and IL indices from 1860 to 2016,February–March.The AL and IL indices have been detrended by removing the long-term linear trend.Year-to-year variations in the AL and IL show an anticorrelation over the 157 years,with a coefficient of-0.26(over the 99%confidence level).The correlations between the AL and IL indices,computed over a 25-year moving window,are presented in Fig.1b.The main result is that the AL–IL relationship displays multidecadal non-stationarity.The anti-correlation significance is higher than the 95%confidence level,over the 1900s–1920s and 1970s–1990s approximately.It is statistically insignificant before the 1900s and after the mid-1990s,and even changes sign over the 1930s–1950s.Note that the significant anti-correlation period(the 1970s–1990s)revealed by the present study is in good agreement with the analyzed period(1973–94)in Honda et al.(2001).

    Fig.1.(a)The AL(orange bars)and IL(blue line)indices from 1860 to 2016,February–March.(b)Correlations in a 25-year moving window between the AL and IL indices.The 90%and 95%confidence level for the correlations is indicated by the horizontal dashed lines.(c)Smoothed AMO index from 1861 to 2011,February–March.The vertical dashed lines reflect the analyzed period(1973–94)in Honda et al.(2001).(d)Composite differences of February–March SST(units:°C)restricted to the Atlantic region between AMO|-and AMO|+years.Crosshatched region is statistically significant at the 95%confidence level.

    Figure 1c illustrates the time series of the smoothed AMO from 1861 to 2011,February–March.Composite analysis of February–March SSTAs between AMO|-and AMO|+years(Fig.1d)shows cold anomalies over the North Atlantic,with a minimum of-0.30°C over the subpolar region,and warm anomalies over the South Atlantic(up to 0.13°C).Interestingly,significant anti-correlations between the AL and IL exist only in AMO|-.The period of AMO|+shows no significant correlation.

    To investigate the effects of AMO phases on the intensity of the AL and IL and on the formation of the AIS,we conduct a composite analysis for the whole period,as well as for each phase of the AMO.The upper panel of Fig.2 illustrates the composite differences of February–March SLP(derived from HadSLP2r)between weak and strong AL years for 1861–2011,as well as in AMO|+and AMO|-.For the whole period,the weak AL is associated with positive SLP anomalies over the North Pacific,and negative SLP anomalies over the polar cap and Iceland(Fig.2a).In AMO|+,the negative SLP anomalies retreat to the polar cap and even change to positive sign over the Barents Sea(Fig.2b).There is no AL–IL correlation.In AMO|-,the negative SLP anomalies occupy the polar cap and subpolar North Atlantic,with the minimum located in the climatological center of the IL(Fig.2c).A clear AIS pattern appears.The same conclusion is reached when using NCEP-1(1948–2011)(Figs.2d–f)instead of HadSLP2r.

    Fig.2.Composite differences of February–March SLP(units:hPa)(derived from HadSLP2r)between weak and strong AL years for(a)1861–2011,and for(b)AMO|+and(c)AMO|-.(d–f)As in(a–c),but for SLP(derived from NCEP-1,1948–2011).Shaded regions indicate significance at the 95%confidence level.

    The upper panel of Fig.3 illustrates the composite differences of February–March 250-hPa geopotential height(Z250)and horizontal WAF(departures from zonal means)between weak and strong AL years for 1948–2011,as well as in AMO|+and AMO|-.In the following analysis,our description particularly focuses on the composites for AMO|+and AMO|-.In AMO|+,the weak AL is associated with positive Z250 anomalies over the North Pacific and southern United States,and there is a negative Z250 center in central Canada(Fig.3b).Meanwhile,the PNA-like stationary Rossby wave trains originate over the central North Pacific and stretch horizontally across North America.In AMO|-,the negative Z250 center in central Canada extends considerably farther across Newfoundland,past the south of Greenland(i.e.,the subpolar North Atlantic;Fig.3c),as another wave train emanates from the leading edge of the PNA-like Rossby wave to form the PNAA pattern(Honda et al.,2001,2005a).This pattern is analogous to the EPWs in Sun and Tan(2013),which originate over the central North Pacific and propagate horizontally through North America and into the North Atlantic.

    The lower panel of Fig.3 is the same as the upper panel,but for zonally averaged zonal wind.In AMO|+,anomalous westward flow is significant along the midlatitudes(30°–40°N)from the surface into the lower stratosphere(Fig.3e).However,in AMO|-,both anomalous westward and eastward flows are significant,and of stronger magnitude,along the midlatitudes(30°–40°N)and high latitudes(north of 50°N),respectively,from the surface into the upper stratosphere(Fig.3f),suggesting a stronger stratospheric polar vortex.Thus,the clear AIS seen in the SLP in AMO|-is strongly coupled with the PNAA pattern and EPWs in the upper troposphere,and the stronger stratospheric polar vortex;whereas,in AMO|+,there is no established AIS with the upper-tropospheric PNA pattern.

    4.AIS-based surface climate

    Fig.3.Composite differences of February–March Z250(contours;units:gpm)/horizontal WAF(vectors;scale in m2s-2)(departures from zonal means)between weak and strong AL years for(a)1948–2011,and for(b)AMO|+and(c)AMO|-.(d–f)As in(a-c),but for zonally averaged zonal wind(units:m s-1).Shaded regions indicate significance at the 95%confidence level.

    We extend our investigation into how the AL’s impact on surface climate is influenced by the AMO phase.Figure4 illustrates the composite differences of February–March TS and 1000-hPa horizontal temperature advection between weak and strong AL years for 1948–2011,as well as in AMO|+and AMO|-.In AMO|+,the weak AL-related anticyclonic anomalies induce cold advection along the west coast of North America and warm advection along the Russian Far East coast;anticyclonic anomalies over the Barents Sea contribute to cold advection over Europe(Fig.4e).Cold anomalies are pronounced over Canada and Europe(Fig.4b).In AMO|-,cold anomalies over Canada are much weaker,and warm anomalies extend over the entire Far East and along the Russian Arctic coast(Fig.4c).Besides,the intensified IL-related cyclonic anomalies(Fig.4f)lead to cold anomalies over the Middle East,and warm anomalies over northern Europe stretching along the Russian Arctic coast.Figure 5 is the same as Fig.4,but for precipitation and 300-hPa zonal wind(U300)/variance of bandpass-filtered(3–7 days)300-hPa meridional wind(V300).The monthly variance of V300 is calculated from daily mean values,which are then band-pass filtered(3–7 days),to reflect the transient eddy activity.In AMO|+,positive band-passed U300 anomalies occur over the Bering Sea/Aleutian Islands and the United States,and negative band-passed U300 anomalies over the midlatitude North Pacific and Arctic Canada/Europe(Fig.5e,contours),favoring enhanced(diminished)eddy activity downstream(Fig.5e,vectors).Correspondingly,positive precipitation anomalies are over western Canada,and negative precipitation anomalies over the western United States and northern Europe(Fig.5b).In AMO|-,the positive band-passed U300 anomalies over the United States extend eastwards through the North Atlantic,with opposite bandpassed U300 anomalies over the Mediterranean Sea,which corresponds to diminished eddy activity and precipitation over southern Europe(Figs.5c and f).

    5.How does the AMO modulate the AIS?

    How can the AMO be linked to the AIS multidecadal fluctuations through an anomalous stratospheric polar vortex?To answer this,the composite-differences of daily geopotential height averaged north of 60°N(pressure versus time)between AMO|-and AMO|+years are presented in Fig.6a.The subpolar North Atlantic cold SSTAs(see Fig.1d)are associated with a precursory strengthening of the stratospheric polar vortex during early winter(November–January),which propagates downwards into the troposphere during late winter(February–March).The strengthening of the stratospheric polar vortex(i.e.,stratospheric cooling)is mainly maintained by anomalous negative quasi-stationary eddy heat flux(Fig.6b).

    Fig.4.Composite differences of February–March TS(units:°C)(derived from CRU)between weak and strong AL years for(a)1948-2011,and for(b)AMO|+,and(c)AMO|-.(d–f)As in(a–c),but for 1000-hPa horizontal temperature advection(scale in m K s-1).Dotted(a–c)and shaded(d–f)regions indicate significance at the 95%confidence level.

    Fig.5.Composite differences of February–March precipitation(units:mm)(derived from GPCC)between weak and strong AL years for(a)1948–2011,and for(b)AMO|+and(c)AMO|-.(d–f)As in(a–c),but for U300(contours;unit:m s-1)/variance of bandpass-filtered(3–7 days)V300(shaded,units:m s-1).Dotted regions indicate significance at the 95%confidence level.

    Fig.6.(a)Temporal evolution of daily geopotential height(units:gpm)averaged north of 60°N for the composite difference between AMO|-and AMO|+years.(b)Temporal evolution of monthly quasi-stationary eddy heat flux(units: °C m s-1)averaged north of 60°N in the lowermost stratosphere(150 hPa)for the composite difference with both AMO|+(red line)and AMO|-(blue line)years.

    Figure 7 illustrates the composite differences of November–January 20-hPa geopotential height(Z20)and February–March Z250/horizontal WAF(departures from zonal means)between AMO|-and AMO|+years.The Z20 pattern related to AMO|-shows negative anomalies over the polar cap and positive anomalies in the midlatitudes(Fig.7a),suggesting an enhanced stratospheric polar vortex during early winter,consistent with Omrani et al.(2014).The negative Z20 anomalies in the Arctic extend downwards to 250 hPa during late winter,accompanied by EPWs that emanate over the eastern North Pacific and stretch horizontally through the western North America–North Atlantic–Europe sector(Fig.7b).

    The composite differences of November–January and February–March EP flux cross sections and zonally averaged zonal wind between AMO|+and AMO|-years are presented in Figs.8a and b,respectively.In AMO|-,during early winter,the polar night jet accelerates(Fig.8a,contours)because of anomalous equator ward-pointing EP flux in the uppermost stratosphere(20 hPa),and anomalous down ward-pointing EP flux along the polar waveguide(Dickinson,1968;Fig.8a,vectors).During late winter,the anomalous upper-stratospheric equator ward-pointing EP flux disappears,while the anomalous downward-pointing EP flux is stronger in magnitude,moving directly from the upper stratosphere in the high latitudes to reach the surface(Fig.8b,vectors).The high-latitude zonal wind anomaly strengthens not only in the stratosphere but also in the troposphere(Fig.8b,contours).

    To better understand the spatial modulation of planetary waves associated with the anomalous downward-pointing EP flux at different levels,we calculate the February–March 50-hPa and 250-hPa vertical WAFs in the climatology and the composite difference between AMO|-and AMO|+years(Figs.8c and d).The positive(negative)contours represent the upward(downward) climatological stationary wave activity(Plumb,1985).At 50 hPa,the anomalous downward stationary wave flux over the subpolar North Atlantic related to AMO|-(Fig.8c,shaded)collocates with the climatological negative center(Fig.8c,contours).This center of anomalous downward flux is also apparent over northeastern North America and Greenland at 250 hPa(Fig.8d,shaded),and may superimpose on the horizontal EPWs(Fig.7b), contributing to an eastward-extended PNAA pattern and the formation of the AIS(Sun and Tan,2013).

    The results mentioned above indicate that the AMO|-phase has the potential to drive an intensified polar night jet because of anomalous downward-pointing EP flux along the polar waveguide(Figs.8a and b)or,equivalently,because of the negative quasi-stationary eddy heat flux anomalies in the high latitudes(Fig.6b).It is suggested that the EPWs propagate zonally along the intensified polar night jet in late winter(Fig.7b).The central question remains as to why AMO|-is associated with an intensified polar vortex,and the an-swer can be found in how the AMO modulates the occurrence of atmospheric blockings over the Atlantic(H?kkinen et al.,2011;Peings and Magnusdottir,2014).Reduced occurrence of blocking highs over the Euro–Atlantic sector would imply a lessening of the upward wave activity flux,resulting in a stronger stratospheric polar vortex(Nishii et al.,2011).

    Fig.7.Composite differences between AMO|-and AMO|+years of(a)November–January Z20(units:gpm)and(b)February–March Z250(contours;units:gpm)/WAF(vectors;scale in m2s-2;departures from zonal means).Shaded regions indicate significance at the 95%confidence level.

    Fig.8.Composite differences between AMO|-and AMO|+years of(a)November–January and(b)February–March EP flux cross sections(vectors;scale in m2s-2)and zonally averaged zonal wind(contours;units:m s-1).Shaded regions indicate significance at the 95%confidence level.In order to display the EP flux throughout the stratosphere,the vectors are scaled by and the inverse of air density.Additionally,the vertical component is multiplied by 125.February–March(c)50-hPa and(d)250-hPa vertical stationary WAFs in the climatology(1948–2011;contours;unit:103m2s-2)and the composite difference between AMO|-and AMO|+years(shaded;units:103m2s-2).Crosshatched regions indicate significance at the 95%confidence level.

    Fig.9.Composite differences between AMO|-and AMO|+years of the incidence of(a)November–March,(b)November–January and(c)February–March blocking highs(measured as the percentage relative to the blocking climatology during 1948–2011)restricted to the Euro-Atlantic sector(25°–80°N,85°W–30°E).(d)Distribution of seasonal regime frequencies(40°–80°N,85°W–30°E;measured as the ratio of the number of days when a certain grid point is blocked to the total number of days)in AMO|+(red boxplots)and AMO|-(blue boxplots)for November–March,November–January and February–March.Boxplots indicate the maximum,upper-quartile,median,lower-quartile and minimum of the distribution(horizontal bars).The mean of the distribution is shown by black diamonds,and asterisks indicate the significance level of the difference of the mean between AMO|-and AMO|+:one star,p<0.05;two stars,p<0.01.

    To test this,we re-examine the composite differences of the incidence of November–March,November–January and February–March blockings highs(measured as the percentage relative to the blocking climatology during 1948–2011)between AMO|-and AMO|+years(Fig.9,left panel).In AMO|-,in early winter,the frequency of blocking highs decreases over the subpolar North Atlantic,while it increases in southern Europe(Fig.9b).During late winter,the reduced blocking highs are of stronger magnitude over most parts of the Euro–Atlantic sector,except the midlatitude North Atlantic where increased blocking highs are found(Fig.9c).Figure 9d further confirms that the frequency of blocking highs over the Euro–Atlantic sector(40°–80°N,85°W–30°E)is lower in AMO|-compared to in AMO|+,especially during late winter.These findings on the occurrence of blockings are in agreement with Peings and Magnusdottir(2014),and support the association of AMO|-with a strengthened stratospheric vortex.

    6.Discussion and conclusions

    The present study,based on observations,shows:

    (1)The significant anti-correlation between the AL and IL in February–March is not a consistent feature during the 20th century, and emerges only in AMO|-.The AIS is clearly established and is strongly coupled with the PNAA pattern and EPWs in the upper troposphere,and the intensified polar night jet.On the contrary,in AMO|+occurs,the AIS is not established, featuring the upper-tropospheric PNA pattern only.

    (2)The surface climate over Eurasia is sensitive to the establishment of the AIS.With an established AIS(weak AL and strong IL),the Middle East(Far East)is colder(warmer)than normal,and southern Europe experiences less rain.However,without an established AIS(weak AL only),Europe(the Russian Far East)is colder(warmer)than normal,and northern Europe receives less rain.

    (3)The AMO|-phase favors a clear AIS mainly because of its in fluence on the intensified polar night jet,via weakening the EP flux along the polar waveguide/negative quasistationary eddy heat flux anomalies in the high latitudes,which can be achieved by atmospheric blocking modulation(H?kkinen et al.,2011;Peings and Magnusdottir,2014;see also Fig.9).The EPWs propagate zonally along the intensified polar night jet during late winter,favoring an eastward extended PNAA pattern and resulting in a significant AIS at the surface.

    It is important to note that,within a decadal period of AMO|-,the interannually varying AIS can be of either phase,with a concomitant weak or strong AL and an out-of-phase IL.By itself,AMO|-would favor a strong stratospheric polar vortex and IL(Omrani et al.,2014).Hence,the AMO may modulate the stratospheric polar vortex and IL superimposed on the active AIS.In this paper,we select the AMO phases based on the smoothed AMO index above and below zero,and hence the modulation of IL intensity is much weaker(Fig.7c)compared to the results in Omrani et al.(2014).

    In addition,the AIS’connection to different phases of the AMO and to the winter surface climate over Eurasia warrants a study using an AGCM externally forced with observed SST and extending into the stratosphere.This issue will be addressed in future work.

    Acknowledgements.The authors are supported by the Research Council of Norway(Grant Nos.EPOCASA#229774/E10 and SNOWGLACE#244166),the National Natural Science Foundation of China(Grant No.41605059),and the Young Talent Support Plan launched by the China Association for Science and Technology(Grant No.2016QNRC001).

    Allan,R.,and T.Ansell,2006:A new globally complete monthly historical gridded mean sea level pressure dataset(HadSLP2):1850-2004.J.Climate,19,5816–5842,https://doi.org/10.1175/JCLI3937.1.

    Andrews,D.G.,1987:On the interpretation of the eliassen-palm flux divergence.Quart.J.Roy.Meteor.Soc.,113(475),323–338,https://doi.org/10.1002/qj.49711347518.

    Castanheira,J.M.,and H.-F.Graf,2003:North Pacific-North Atlantic relationships under stratospheric control?J.Geophys.Res.,108,ACL 11-1–ACL 11-10,https://doi.org/10.1029/2002JD002754.

    Dickinson,R.E.,1968:Planetary Rossby waves propagating vertically through weak westerly wind wave guides.J.Atmos.Sci.,25,984–1002,https://doi.org/10.1175/1520-0469(1968)025<0984:PRWPVT>2.0.CO;2.

    Garreaud,R.D.,2007:Precipitation and circulation covariability in the extratropics.J.Climate,20(18),4789–4797,https://doi.org/10.1175/JCLI4257.1.

    H?kkinen,S.,P.B.Rhines,and D.L.Worthen,2011:Atmospheric blocking and Atlantic Multidecadal Ocean variability.Science,334,655–659,https://doi.org/10.1126/science.1205683.

    Harris,I.,P.D.Jones,T.J.Osborn,and D.H.Lister,2014:Updated high-resolution grids of monthly climatic observationsthe CRU TS3.10 Dataset.International Journal of Climatology,34(3),623–642,https://doi.org/10.1002/joc.3711.

    Honda,M.,and H.Nakamura,2001:Interannual seesaw between the Aleutian and Icelandic lows.Part II:Its significance in the interannual variability over the wintertime Northern Hemisphere.J.Climate,14,4512–4529,https://doi.org/10.1175/1520-0442(2001)014<4512:ISBTAA>2.0.CO;2.

    Honda,M.,H.Nakamura,J.Ukita,I.Kousaka,and K.Takeuchi,2001:Interannual seesaw between the Aleutian and Icelandic lows.Part I:Seasonal dependence and life cycle.J.Climate,14,1029–1042,https://doi.org/10.1175/1520-0442(2001)014<1029:ISBTAA>2.0.CO;2.

    Honda,M.,Y.Kushnir,H.Nakamura,S.Yamane,and S.E.Zebiak,2005a:Formation,mechanisms,and predictability of the Aleutian-Icelandic low seesaw in ensemble AGCM simulations.J.Climate,18,1423–1434,https://doi.org/10.1175/JCLI3353.1.

    Honda,M.,S.Yamane,and H.Nakamura,2005b:Impacts of the Aleutian-Icelandic low seesaw on surface climate during the twentieth century.J.Climate,18(14),2793–2802,https://doi.org/10.1175/JCLI3419.1.

    Kalnay,E.,and Coauthors,1996: The NCEP/NCAR 40-year reanalysis project. Bull. Amer. Meteor. Soc.,77,437–471,https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    Kaplan,A.,M.A.Cane,Y.Kushnir,A.C.Clement,M.B.Blumenthal,and B.Rajagopalan,1998:Analyses of global sea surface temperature 1856-1991.J.Geophys.Res.,103,18 567–18 589,https://doi.org/10.1029/97JC01736.

    Kerr,R.A.,2000:A North Atlantic climate pacemaker for the centuries.Science,288,1984–1986,https://doi.org/10.1126/science.288.5473.1984.

    Li,S.L.,and G.T.Bates,2007:In fluence of the Atlantic multidecadal oscillation on the winter climate of East China.Adv.Atmos.Sci.,24(1),126–135,https://doi.org/10.1007/s00376-007-0126-6.

    Liu,J.,J.A.Curry,H.Wang,M.Song,and R.M.Horton,2012:Impact of declining Arctic sea ice on winter snowfall.Proceedings of the National Academy of Sciences of the United States of America,109,4074–4079,https://doi.org/10.1073/pnas.1114910109.

    Lu,R.Y.,B.W.Dong,and H.Ding,2006:Impact of the At-lantic Multidecadal Oscillation on the Asian summer monsoon.Geophys.Res.Lett.,33(24),https://doi.org/10.1029/2006GL027655.

    Nakamura,H.,and M.Honda,2002:Interannual seesaw between the Aleutian and Icelandic lows Part III:Its influence upon the stratospheric variability.J.Meteor.Soc.Japan,80(4B),1051–1067,https://doi.org/10.2151/jmsj.80.1051.

    Nishii,K.,H.Nakamura,and Y.J.Orsolini,2011:Geographical dependence observed in blocking high influence on the stratospheric variability through enhancement and suppression of upward planetary-wave propagation.J.Climate,24(24),6408–6423,https://doi.org/10.1175/JCLI-D-10-05021.1.

    Omrani,N.-E.,N.S.Keenlyside,J.Bader,and E.Manzini,2014:Stratosphere key for wintertime atmospheric response to warm Atlantic decadal conditions.Climate Dyn.,42,649–663,https://doi.org/10.1007/s00382-013-1860-3.

    Orsolini,Y.J.,2004:Seesaw fluctuations in ozone between the North Pacific and North Atlantic.J.Meteor.Soc.Japan,82(3),941–949,https://doi.org/10.2151/jmsj.2004.941.

    Orsolini,Y.J.,N.G.Kvamst?,I.T.Kindem,M.Honda,and H.Nakamura,2008:Influence of the Aleutian-Icelandic low seesaw and ENSO onto the Stratosphere in ensemble winter hindcasts.J.Meteor.Soc.Japan,86(5),817–825,https://doi.org/10.2151/jmsj.86.817.

    Peings,Y.,and G.Magnusdottir,2014:Forcing of the wintertime atmospheric circulation by the multidecadal fluctuations of the North Atlantic ocean.Environmental Research Letters,9(3),034018,https://doi.org/10.1088/1748-9326/9/3/034018.

    Peings,Y.,and G.Magnusdottir,2016:Wintertime atmospheric response to Atlantic multidecadal variability:Effect of stratospheric representation and ocean-atmosphere coupling.Climate Dyn.,47,1029–1047,https://doi.org/10.1007/s00382-015-2887-4.

    Plumb,R.A.,1985:On the three-dimensional propagation of stationary waves.J.Atmos.Sci.,42,217–229,https://doi.org/10.1175/1520-0469(1985)042<0217:OTTDPO>2.0.CO;2.

    Reichler,T.,J.Kim,E.Manzini,and J.Kr¨oger,2012:A stratospheric connection to Atlantic climate variability.Nature Geoscience,5(11),783–787,https://doi.org/10.1038/ngeo1586.

    Schneider,U.,A.Becker,P.Finger,A.Meyer-Christoffer,B.Rudolf,and M.Ziese,2015:GPCC Full Data Reanalysis Version 7.0 at 1.0°:Monthly Land-Surface Precipitation from Rain-Gauges built on GTS based and Historic Data,https://doi.org/10.5065/D6000072.

    Sun,J.,and B.Tan,2013:Mechanism of the wintertime Aleutian low-Icelandic low seesaw.Geophys.Res.Lett.,40(15),4103–4108,https://doi.org/10.1002/grl.50770.

    Tang,Q.H.,X.J.Zhang,X.H.Yang,and J.A.Francis,2013:Cold winter extremes in northern continents linked to Arctic sea ice loss.Environmental Research Letters,8(1),014036,https://doi.org/10.1088/1748-9326/8/1/014036.

    Thompson,D.W.J,and J.M.Wallace,2001:Regional climate impacts of the Northern Hemisphere annular mode.Science,293(5527),85–89,https://doi.org/10.1126/science.1058958.

    Wallace,J.M.,and D.S.Gutzler,1981:Teleconnections in the geopotential height field during the Northern Hemisphere winter.Monthly Weather Review,109(4),784–812,https://doi.org/10.1175/1520-0493(1981)109<0784:TITGHF>2.0.CO;2

    1 February 2017;revised 30 May 2017;accepted 22 June 2017)

    :Li,F.,Y.J.Orsolini,H.J.Wang,Y.Q.Gao,and S.P.He,2018:Modulation of the Aleutian–Icelandic low seesaw and its surface impacts by the Atlantic Multidecadal Oscillation.Adv.Atmos.Sci.,35(1),95–105,https://doi.org/10.1007/s00376-017-7028-z.?

    Fei LI

    Email:lifei-715@163.com

    ?Institute of Atmospheric Physics/Chinese Academy of Sciences,and Science Press and Springer-Verlag GmbH Germany 2018

    亚洲图色成人| 亚洲国产精品成人久久小说| 999精品在线视频| 美女中出高潮动态图| 欧美激情极品国产一区二区三区| 国产精品成人在线| √禁漫天堂资源中文www| 日韩免费高清中文字幕av| 国产无遮挡羞羞视频在线观看| 久久久精品免费免费高清| 肉色欧美久久久久久久蜜桃| 久久精品久久久久久噜噜老黄| 中文字幕最新亚洲高清| 99热全是精品| 日韩欧美一区视频在线观看| 免费观看av网站的网址| 国产一区亚洲一区在线观看| 亚洲精品国产av成人精品| 亚洲美女搞黄在线观看| 久久久久久久久久久免费av| 看非洲黑人一级黄片| 黄片播放在线免费| 国产精品一区二区精品视频观看| 成人午夜精彩视频在线观看| 国产精品国产三级专区第一集| 日本猛色少妇xxxxx猛交久久| 国产精品久久久久成人av| 黑人巨大精品欧美一区二区蜜桃| 岛国毛片在线播放| 国产 一区精品| 国产人伦9x9x在线观看| 另类精品久久| 黄色一级大片看看| 午夜日本视频在线| 亚洲情色 制服丝袜| 精品少妇久久久久久888优播| 国产精品熟女久久久久浪| 在线免费观看不下载黄p国产| 自线自在国产av| 国产在线视频一区二区| 视频区图区小说| 国产av国产精品国产| 亚洲成人一二三区av| 亚洲精品一二三| 麻豆av在线久日| 各种免费的搞黄视频| 一级毛片我不卡| 亚洲国产精品国产精品| 90打野战视频偷拍视频| 最近最新中文字幕免费大全7| 亚洲婷婷狠狠爱综合网| 国产日韩欧美亚洲二区| 免费观看av网站的网址| 久久久国产一区二区| 热99国产精品久久久久久7| 午夜福利视频在线观看免费| 欧美日韩综合久久久久久| 少妇人妻 视频| 黄色毛片三级朝国网站| 极品少妇高潮喷水抽搐| 亚洲av日韩在线播放| 成年女人毛片免费观看观看9 | 啦啦啦中文免费视频观看日本| 超碰97精品在线观看| 久久久欧美国产精品| 成人毛片60女人毛片免费| 在线观看三级黄色| 777久久人妻少妇嫩草av网站| 日韩电影二区| 欧美亚洲 丝袜 人妻 在线| 国产人伦9x9x在线观看| 午夜精品国产一区二区电影| 黄色一级大片看看| 精品一区二区三区四区五区乱码 | 久久久久网色| 午夜福利一区二区在线看| 欧美最新免费一区二区三区| 99久久精品国产亚洲精品| 精品国产国语对白av| 亚洲精品一区蜜桃| 国产精品av久久久久免费| 最近最新中文字幕免费大全7| av不卡在线播放| 国产精品久久久av美女十八| 日韩av在线免费看完整版不卡| 欧美少妇被猛烈插入视频| 最近2019中文字幕mv第一页| 国产av一区二区精品久久| 亚洲精品视频女| av天堂久久9| 青春草国产在线视频| 久久亚洲国产成人精品v| 欧美亚洲 丝袜 人妻 在线| 国产成人av激情在线播放| 中文字幕亚洲精品专区| 色网站视频免费| 久久这里只有精品19| 亚洲成人手机| 女人被躁到高潮嗷嗷叫费观| 国产精品.久久久| 精品一区二区三区四区五区乱码 | 一级黄片播放器| a级片在线免费高清观看视频| 大香蕉久久成人网| 久久97久久精品| 韩国精品一区二区三区| 一级片免费观看大全| 国产视频首页在线观看| 天天躁夜夜躁狠狠躁躁| 国产成人精品久久久久久| 国产亚洲欧美精品永久| 一区二区三区激情视频| 美女脱内裤让男人舔精品视频| 久久久久国产一级毛片高清牌| 亚洲精品日本国产第一区| 日韩一区二区视频免费看| 制服丝袜香蕉在线| 欧美久久黑人一区二区| 嫩草影视91久久| 中文字幕人妻丝袜制服| 亚洲欧洲精品一区二区精品久久久 | 午夜激情av网站| 热99久久久久精品小说推荐| 欧美人与性动交α欧美精品济南到| 日日爽夜夜爽网站| 欧美在线黄色| 欧美日韩视频精品一区| 国产成人a∨麻豆精品| tube8黄色片| 人成视频在线观看免费观看| 国产成人av激情在线播放| 黑人巨大精品欧美一区二区蜜桃| 久久久亚洲精品成人影院| 青春草亚洲视频在线观看| 麻豆精品久久久久久蜜桃| www.av在线官网国产| 精品国产一区二区久久| 超碰成人久久| 男女床上黄色一级片免费看| 日本wwww免费看| 亚洲精品国产av成人精品| 精品人妻在线不人妻| 大香蕉久久成人网| 欧美 亚洲 国产 日韩一| 免费黄频网站在线观看国产| 亚洲美女黄色视频免费看| 99久久综合免费| 亚洲国产看品久久| 看非洲黑人一级黄片| 婷婷色综合www| 国产精品久久久人人做人人爽| 街头女战士在线观看网站| 欧美久久黑人一区二区| 午夜影院在线不卡| 国产 一区精品| 一级毛片我不卡| 久久久精品免费免费高清| 波多野结衣一区麻豆| 午夜91福利影院| 美女中出高潮动态图| 亚洲美女黄色视频免费看| 精品国产国语对白av| 日韩一区二区视频免费看| 如日韩欧美国产精品一区二区三区| 久久韩国三级中文字幕| 亚洲精品一二三| 人人妻人人澡人人看| 欧美人与性动交α欧美软件| 午夜免费男女啪啪视频观看| 少妇被粗大猛烈的视频| 欧美精品亚洲一区二区| 中文字幕人妻丝袜一区二区 | 久久婷婷青草| 性少妇av在线| 欧美日韩av久久| 中文字幕人妻丝袜一区二区 | 国产成人午夜福利电影在线观看| 亚洲国产av新网站| 青春草国产在线视频| 国产精品一区二区在线观看99| 一级片'在线观看视频| 天堂俺去俺来也www色官网| 天天添夜夜摸| 9色porny在线观看| 嫩草影视91久久| 肉色欧美久久久久久久蜜桃| 亚洲精品av麻豆狂野| 国产一区有黄有色的免费视频| 在线观看免费日韩欧美大片| 亚洲四区av| 欧美激情 高清一区二区三区| 精品福利永久在线观看| 校园人妻丝袜中文字幕| 波多野结衣av一区二区av| 老鸭窝网址在线观看| 国产精品女同一区二区软件| 一级爰片在线观看| 波多野结衣一区麻豆| 免费日韩欧美在线观看| 午夜福利免费观看在线| 国产一区二区 视频在线| 久久人人97超碰香蕉20202| 人体艺术视频欧美日本| 国产精品一区二区在线不卡| 国产成人系列免费观看| 在线观看免费午夜福利视频| 老司机影院成人| 91精品三级在线观看| 可以免费在线观看a视频的电影网站 | 伦理电影大哥的女人| 爱豆传媒免费全集在线观看| 国产欧美日韩一区二区三区在线| 免费女性裸体啪啪无遮挡网站| 激情五月婷婷亚洲| 丝袜喷水一区| 成人黄色视频免费在线看| 亚洲精品国产av成人精品| 18禁国产床啪视频网站| 色综合欧美亚洲国产小说| 久久久精品区二区三区| 欧美在线一区亚洲| 卡戴珊不雅视频在线播放| 欧美精品高潮呻吟av久久| 中文欧美无线码| 欧美日韩国产mv在线观看视频| 精品人妻在线不人妻| 亚洲av成人精品一二三区| 午夜激情av网站| 看十八女毛片水多多多| 久久久久人妻精品一区果冻| 国产又爽黄色视频| 成人国产麻豆网| a级毛片黄视频| 国产成人精品福利久久| 成人影院久久| 精品国产一区二区三区四区第35| 一区在线观看完整版| 热99国产精品久久久久久7| 成年人免费黄色播放视频| 亚洲国产欧美在线一区| 久久久久久人妻| 交换朋友夫妻互换小说| 国产99久久九九免费精品| 青春草视频在线免费观看| 欧美日韩福利视频一区二区| 在线免费观看不下载黄p国产| 国产男女超爽视频在线观看| 久久国产精品男人的天堂亚洲| 国产 一区精品| 老司机影院成人| 美女高潮到喷水免费观看| 免费av中文字幕在线| 国产在线一区二区三区精| 亚洲精品aⅴ在线观看| 久久午夜综合久久蜜桃| 日韩制服丝袜自拍偷拍| 国产黄频视频在线观看| 超碰成人久久| 欧美日本中文国产一区发布| 男女国产视频网站| 91成人精品电影| 美女主播在线视频| 国产日韩欧美视频二区| 国产成人精品在线电影| 在线观看三级黄色| 乱人伦中国视频| 在线观看免费日韩欧美大片| 亚洲成人手机| 欧美激情 高清一区二区三区| 亚洲成国产人片在线观看| 老司机靠b影院| 成人毛片60女人毛片免费| 在线观看免费高清a一片| 黄片小视频在线播放| 18禁裸乳无遮挡动漫免费视频| 国产片特级美女逼逼视频| 久久久国产精品麻豆| 黑人猛操日本美女一级片| 乱人伦中国视频| 超色免费av| 一本大道久久a久久精品| 亚洲精品美女久久av网站| 大片电影免费在线观看免费| 丝瓜视频免费看黄片| 午夜日本视频在线| 一级a爱视频在线免费观看| 欧美激情极品国产一区二区三区| 成人18禁高潮啪啪吃奶动态图| 久久人人97超碰香蕉20202| 久久99精品国语久久久| 丝袜脚勾引网站| 欧美最新免费一区二区三区| 亚洲 欧美一区二区三区| 一区二区日韩欧美中文字幕| 亚洲综合色网址| 久久久久久人人人人人| 丝袜人妻中文字幕| 中文乱码字字幕精品一区二区三区| 午夜福利免费观看在线| 精品第一国产精品| 欧美日韩亚洲高清精品| 国产男女超爽视频在线观看| 18禁裸乳无遮挡动漫免费视频| 女性被躁到高潮视频| 久久天堂一区二区三区四区| 男人操女人黄网站| 色播在线永久视频| 伊人久久国产一区二区| 久久99一区二区三区| 久久午夜综合久久蜜桃| 纯流量卡能插随身wifi吗| 你懂的网址亚洲精品在线观看| 国产精品 欧美亚洲| 韩国av在线不卡| 国产免费现黄频在线看| 一本—道久久a久久精品蜜桃钙片| 免费在线观看视频国产中文字幕亚洲 | 宅男免费午夜| 天天操日日干夜夜撸| 国产亚洲欧美精品永久| 欧美精品亚洲一区二区| 亚洲视频免费观看视频| 日韩人妻精品一区2区三区| 欧美少妇被猛烈插入视频| 国产亚洲av高清不卡| 亚洲欧美成人精品一区二区| 免费高清在线观看视频在线观看| 成人18禁高潮啪啪吃奶动态图| 国产成人欧美| 国产午夜精品一二区理论片| 亚洲精品视频女| 天美传媒精品一区二区| 18禁动态无遮挡网站| 国产男女超爽视频在线观看| 国产1区2区3区精品| 欧美激情 高清一区二区三区| av网站在线播放免费| 97精品久久久久久久久久精品| 尾随美女入室| 最新在线观看一区二区三区 | 亚洲av在线观看美女高潮| 观看av在线不卡| 激情视频va一区二区三区| 母亲3免费完整高清在线观看| 一级毛片我不卡| 亚洲中文av在线| 精品一区二区三区av网在线观看 | 久久99精品国语久久久| 侵犯人妻中文字幕一二三四区| 久久99一区二区三区| 丁香六月欧美| 99国产精品免费福利视频| 国产亚洲最大av| 精品一区二区三卡| 免费av中文字幕在线| 国产免费又黄又爽又色| 中文字幕色久视频| 波多野结衣av一区二区av| 十分钟在线观看高清视频www| 久久久久久久大尺度免费视频| 亚洲av中文av极速乱| 成年人午夜在线观看视频| 51午夜福利影视在线观看| 咕卡用的链子| 精品国产露脸久久av麻豆| 91精品伊人久久大香线蕉| 老汉色av国产亚洲站长工具| 精品少妇久久久久久888优播| 久久天堂一区二区三区四区| av一本久久久久| 两个人免费观看高清视频| 亚洲精品乱久久久久久| 国产亚洲精品第一综合不卡| 国产成人免费观看mmmm| 国产色婷婷99| 久久久国产一区二区| 天天躁狠狠躁夜夜躁狠狠躁| 在线观看三级黄色| 考比视频在线观看| 国产精品 欧美亚洲| 在线观看免费视频网站a站| av网站在线播放免费| 欧美在线黄色| 美女扒开内裤让男人捅视频| 美女午夜性视频免费| 777米奇影视久久| 巨乳人妻的诱惑在线观看| 日韩大片免费观看网站| 天天躁狠狠躁夜夜躁狠狠躁| 欧美中文综合在线视频| 精品人妻在线不人妻| 国产亚洲午夜精品一区二区久久| 少妇被粗大的猛进出69影院| 国产激情久久老熟女| av视频免费观看在线观看| 午夜激情久久久久久久| 午夜福利一区二区在线看| 男女高潮啪啪啪动态图| 亚洲国产精品999| xxxhd国产人妻xxx| www.av在线官网国产| 美女福利国产在线| 夫妻性生交免费视频一级片| 女人爽到高潮嗷嗷叫在线视频| 美女高潮到喷水免费观看| 国产av国产精品国产| 久久精品人人爽人人爽视色| 99久久99久久久精品蜜桃| 日韩熟女老妇一区二区性免费视频| 亚洲婷婷狠狠爱综合网| 天天添夜夜摸| 欧美乱妇无乱码| 亚洲中文字幕一区二区三区有码在线看 | 亚洲av五月六月丁香网| 久久精品成人免费网站| 丝袜在线中文字幕| 国产极品粉嫩免费观看在线| 免费看a级黄色片| 亚洲成a人片在线一区二区| 久久久国产欧美日韩av| 午夜成年电影在线免费观看| 在线免费观看的www视频| 脱女人内裤的视频| 欧美激情极品国产一区二区三区| 精品国产国语对白av| 18禁美女被吸乳视频| 亚洲va日本ⅴa欧美va伊人久久| 丝袜美腿诱惑在线| 咕卡用的链子| 国产精品久久久久久人妻精品电影| 一边摸一边抽搐一进一出视频| 人成视频在线观看免费观看| 午夜两性在线视频| 久99久视频精品免费| 老熟妇仑乱视频hdxx| x7x7x7水蜜桃| 亚洲国产精品999在线| 多毛熟女@视频| 丰满的人妻完整版| 中文字幕久久专区| 国内毛片毛片毛片毛片毛片| 国语自产精品视频在线第100页| 久久久久久久精品吃奶| 又紧又爽又黄一区二区| 欧美日韩福利视频一区二区| 12—13女人毛片做爰片一| 麻豆国产av国片精品| 人人妻,人人澡人人爽秒播| 国产麻豆69| 欧美日本亚洲视频在线播放| 亚洲男人的天堂狠狠| 日本五十路高清| 给我免费播放毛片高清在线观看| 国产伦一二天堂av在线观看| 日本精品一区二区三区蜜桃| 老司机午夜福利在线观看视频| 久久久久久免费高清国产稀缺| 99国产综合亚洲精品| videosex国产| 久久草成人影院| 一a级毛片在线观看| 伦理电影免费视频| 深夜精品福利| 麻豆一二三区av精品| 精品国产乱码久久久久久男人| 成人国产综合亚洲| 男人的好看免费观看在线视频 | 亚洲最大成人中文| 日韩高清综合在线| 成人av一区二区三区在线看| 国产麻豆69| 欧美在线黄色| 九色国产91popny在线| 免费高清视频大片| 国产成人精品久久二区二区免费| 亚洲七黄色美女视频| 激情在线观看视频在线高清| 青草久久国产| 亚洲 国产 在线| 成年女人毛片免费观看观看9| 在线观看一区二区三区| 伦理电影免费视频| 国产精品九九99| 一本大道久久a久久精品| 欧美在线一区亚洲| 亚洲精品中文字幕在线视频| 亚洲人成伊人成综合网2020| 亚洲国产精品sss在线观看| 国产精品久久电影中文字幕| 亚洲精品美女久久久久99蜜臀| 欧美乱码精品一区二区三区| 狠狠狠狠99中文字幕| 97人妻天天添夜夜摸| 午夜精品在线福利| 波多野结衣av一区二区av| 国产激情久久老熟女| 欧美激情 高清一区二区三区| 脱女人内裤的视频| 两个人视频免费观看高清| 国产精品一区二区精品视频观看| 69精品国产乱码久久久| 欧美av亚洲av综合av国产av| 欧美中文综合在线视频| 欧美日本中文国产一区发布| 色婷婷久久久亚洲欧美| 高清毛片免费观看视频网站| 亚洲全国av大片| 亚洲精品国产一区二区精华液| 丰满的人妻完整版| 成人欧美大片| 日日干狠狠操夜夜爽| 成人特级黄色片久久久久久久| tocl精华| 亚洲精品一区av在线观看| 欧美另类亚洲清纯唯美| 午夜福利,免费看| 成人精品一区二区免费| 亚洲五月天丁香| 黄色 视频免费看| 桃色一区二区三区在线观看| 精品国产美女av久久久久小说| 亚洲中文日韩欧美视频| 男女下面插进去视频免费观看| 亚洲熟女毛片儿| 女人精品久久久久毛片| 久久婷婷人人爽人人干人人爱 | 黄频高清免费视频| 一区二区三区激情视频| 很黄的视频免费| 黄色女人牲交| 黑人操中国人逼视频| 免费搜索国产男女视频| 老熟妇仑乱视频hdxx| 免费久久久久久久精品成人欧美视频| 免费在线观看完整版高清| 亚洲中文日韩欧美视频| 这个男人来自地球电影免费观看| 波多野结衣高清无吗| www国产在线视频色| 1024香蕉在线观看| 热re99久久国产66热| 老鸭窝网址在线观看| 久久久久久人人人人人| www.精华液| 亚洲精品美女久久久久99蜜臀| 欧美性长视频在线观看| tocl精华| 在线观看一区二区三区| 中文字幕av电影在线播放| 久久亚洲真实| 99国产极品粉嫩在线观看| www.熟女人妻精品国产| 俄罗斯特黄特色一大片| 夜夜看夜夜爽夜夜摸| 夜夜夜夜夜久久久久| avwww免费| 国产成人免费无遮挡视频| 色播亚洲综合网| 97碰自拍视频| 国产高清videossex| 国产精品av久久久久免费| 国产亚洲精品久久久久久毛片| 女人精品久久久久毛片| 亚洲av美国av| 久久精品亚洲熟妇少妇任你| 两性夫妻黄色片| 午夜福利欧美成人| 免费在线观看日本一区| 欧美在线一区亚洲| 91字幕亚洲| 午夜久久久久精精品| 极品教师在线免费播放| 久久香蕉精品热| 久久久久久亚洲精品国产蜜桃av| 国产私拍福利视频在线观看| 超碰成人久久| 一级作爱视频免费观看| 婷婷六月久久综合丁香| 国产99久久九九免费精品| 亚洲国产欧美一区二区综合| 妹子高潮喷水视频| 色综合欧美亚洲国产小说| 欧美日韩中文字幕国产精品一区二区三区 | 亚洲国产精品sss在线观看| 黄色a级毛片大全视频| 天天添夜夜摸| 精品国产超薄肉色丝袜足j| 亚洲第一欧美日韩一区二区三区| 久久精品影院6| 黄色成人免费大全| 国产成人一区二区三区免费视频网站| 久久中文看片网| 两性午夜刺激爽爽歪歪视频在线观看 | 国产精品免费一区二区三区在线| 一本综合久久免费| 在线观看日韩欧美| 久久婷婷人人爽人人干人人爱 | 国内毛片毛片毛片毛片毛片| av免费在线观看网站| 久久九九热精品免费| 亚洲精品国产区一区二| 可以在线观看的亚洲视频| 欧美+亚洲+日韩+国产| 少妇的丰满在线观看| 色综合亚洲欧美另类图片| 国产成人一区二区三区免费视频网站| 韩国精品一区二区三区| 狂野欧美激情性xxxx| 国产xxxxx性猛交| 亚洲精品国产色婷婷电影| 在线天堂中文资源库| 亚洲中文日韩欧美视频| 亚洲aⅴ乱码一区二区在线播放 | 亚洲成国产人片在线观看| 婷婷六月久久综合丁香|