• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Recent Increased Warming of the Alaskan Marine Arctic Due to Midlatitude Linkages

    2018-12-06 07:35:50JamesOVERLANDMuyinWANGandThomasBALLINGERNOAAPacificMarineEnvironmentalLaboratorySeattleWA98115USA
    Advances in Atmospheric Sciences 2018年1期

    James E.OVERLAND,Muyin WANG,and Thomas J.BALLINGERNOAA/Pacific Marine Environmental Laboratory,Seattle WA 98115,USA

    2Joint Institute for the Study of Atmosphere and Oceans/University of Washington,Seattle WA 98115,USA

    3Department of Geography,Texas State University,San Marcos TX 78666,USA

    Recent Increased Warming of the Alaskan Marine Arctic Due to Midlatitude Linkages

    James E.OVERLAND?1,Muyin WANG1,2,and Thomas J.BALLINGER31NOAA/Pacific Marine Environmental Laboratory,Seattle WA 98115,USA

    2Joint Institute for the Study of Atmosphere and Oceans/University of Washington,Seattle WA 98115,USA

    3Department of Geography,Texas State University,San Marcos TX 78666,USA

    Alaskan Arctic waters have participated in hemispheric-wide Arctic warming over the last two decades at over two times the rate of global warming.During 2008–13,this relative warming occurred only north of the Bering Strait and the atmospheric Arctic front that forms a north–south thermal barrier.This front separates the southeastern Bering Sea temperatures from Arctic air masses.Model projections show that future temperatures in the Chukchi and Beaufort seas continue to warm at a rate greater than the global rate,reaching a change of+4°C by 2040 relative to the 1981–2010 mean.Offshore at 74°N,climate models project the open water duration season to increase from a current average of three months to five months by 2040.These rates are occasionally enhanced by midlatitude connections.Beginning in August 2014,additional Arctic warming was initiated due to increased SST anomalies in the North Pacific and associated shifts to southerly winds over Alaska,especially in winter 2015–16.While global warming and equatorial teleconnections are implicated in North Pacific SSTs,the ending of the 2014–16 North Pacific warm event demonstrates the importance of internal,chaotic atmospheric natural variability on weather conditions in any given year.Impacts from global warming on Alaskan Arctic temperature increases and sea-ice and snow loss,with occasional North Pacific support,are projected to continue to propagate through the marine ecosystem in the foreseeable future.The ecological and societal consequences of such changes show a radical departure from the current Arctic environment.

    Alaska,North Pacific,Arctic,warm advection,polar vortex

    1.Introduction

    This paper provides an update on the major climate changes in the marine Alaskan Arctic over the past decade(Wood et al.,2013;Ballinger and Sheridan,2014;Overland et al.,2014a;Cassano et al.,2015).At the decadal/regional scale of climate change,Fig.1 shows the 13-month running mean surface air temperature(SAT)anomalies for Barrow,Alaska(red),and areal averages for the Northern Hemisphere land area(blue),relative to a baseline period of 1981–2010.Temperature anomalies at Barrow are predominantly positive since 2003,and in winter 2015–16 are roughly four times the magnitude of the Northern Hemisphere mean temperature increase.Alaskan Arctic waters participate in the hemispheric wide warming of the Arctic over the last two decades.Additional warming of Alaskan Arctic coastal waters from autumn 2014 through autumn 2016 can be attributed to the shift to warm ocean temperature anomalies in the North Pacific and associated shifts to southerly winds over Alaska.Such North Pacific contributions subside after autumn 2016,but greenhouse gas(GHG)and regional Arctic feedback contributions remain.

    Arctic air and ocean surface temperature increases coincide with the expansion of sea-ice-free areas,increases in the mobility of sea ice,shifts in ocean currents,and biological impacts at all trophic levels from primary productivity increases through loss of walrus habitat Wassmann(2015).In the following sections,we track atmospheric changes in the Alaskan Arctic,compare them relative to the Bering Sea,assess future climate projections,and address Alaskan Arctic temperature increases since August 2014 due to warming in the North Pacific.

    2.Regional climate of the maritime Alaskan Arctic

    The Pacific Arctic discussed here is defined as regions north of 66°N,which covers the area north of the Bering Strait and the southern Chukchi and Beaufort Seas.Climatologically,this region is on the northern side of the transition zone between the relatively warm and moist storm tracks of the Aleutian low weather system reaching into the Bering Sea,and the colder,drier,and higher-pressure Arctic air mass to the north.As summarized in Overland et al.(2014a):“Located in the southern part of the Pacific Arctic is a region of large north–south gradients in atmospheric properties such as near-surface air temperature(Fig.2)and atmospheric sea level pressure(SLP,Fig.3).This region of strongest gradients moves north and south with the seasonal cycle.Maximum temperature gradients in winter are located over the central Bering Sea with sub-freezing temperatures and extensive sea-ice coverage.In summer,the greatest air temperature gradients are found across the southern Chukchi Sea and seaward of the coast of Alaska with SAT above-freezing.Large north–south gradients in SLP produce a vast east–west trending region of strong climatological winds from the east across a relatively narrow band of latitudes in all seasons but summer.”The Aleutian low center to the south of the Alaskan Arctic is a dominant feature shown in the climatology of SLP plots(Fig.3)in all seasons except summer.

    Fig.1.13-month running mean SAT anomalies for Barrow and Northern Hemisphere lands relative to their respective 1981–2010 means(from CRUTEM4;available at www.cru.uea.ac.uk/cru/data/temperature/).

    Fig.2.Mean(1961–2010)near-surface temperature(units: °C)for the four seasons over the western Arctic.Data are from the NCEP–NCAR Reanalysis via NOAA/ESRL,generated online at http://www.esrl.noaa.gov/psd/cgibin/data/composites/printpage.pl.Figure is similar to Fig.2.2 in Overland et al.(2014).

    Fig.3.Mean(1961–2010)SLP (units: hPa)for the four seasons over the western Arctic. Data are from the NCEP–NCAR Reanalysis via NOAA/ESRL,generated online at http://www.esrl.noaa.gov/psd/cgibin/data/composites/printpage.pl.Figure is similar to Fig.2.3 in Overland et al.(2014).

    From 2007 through mid-2014,the Pacific air mass to the south and the Arctic air mass to the north are on different trajectories.To the north,the Chukchi/Beaufort Sea region is part of the decadal change of Arctic warming where recent sea-ice and snow losses are allowing extensive areas to absorb more late-spring and summer solar radiation than in the past,and are changing the atmospheric climatology of the region with positive temperature anomalies extending throughout the year(i.e.Arctic amplification,AA).Figure 4(top)shows monthly SAT at Barrow,in which it is notable that there is an observed shift to positive temperature anomalies beginning in 1995.To the south,the Bering Sea,represented by Saint Paul SAT(Fig.4,bottom),turns colder with extensive seasonal sea-ice cover in 2007–13,which has not been observed since the mid-1970s.This period contrasts an earlier warmer than-normal Bering Sea temperature anomaly period for the southern Bering Sea from 2000 through 2006.Beginning in 2014,the Bering Sea returned to consistent warm anomalies,tied to ocean temperature changes in the greater North Pacific.While this short-term warming event ends in autumn 2016,lower tropospheric air temperatures continue to remain above-normal in the Alaskan Arctic.We return to discussing this latest North Pacific Ocean impact on the Pacific Arctic in section 5.

    3.Arctic change

    Arctic-wide average surface temperatures have increased at double the rate of global mean temperatures—a well documented phenomenon referred to as AA(Holland and Bitz,2003;Serreze and Barry,2011).Figure 5 shows the difference in mean annual Northern Hemisphere lower tropospheric air temperatures for 2010–14 relative to the end of the 20th century(1971–2000).Although the entire Northern Hemisphere polewards of 40°N has witnessed positive changes in annual mean temperatures in recent years,much of central Arctic shows increases of at least+2°C.Note that the southeastern Bering Sea does not show a change in recent temperatures relative to the late 20th century.The spatial pattern of AA(Fig.5)does not resemble the temperature spatial pattern of major atmospheric circulation variability indices such as the Arctic Oscillation(AO),suggesting that radiative forcing is a primary forcing for AA.Mechanisms for AA include reduced summer albedo due to sea-ice and snow-cover loss,decreased total cloudiness in summer and increased cloud cover in winter,additional atmospheric heating generated by newly sea-ice-free ocean areas that are maintained later into the autumn,increased longwave radiation due to local and advected atmospheric moisture sources,and the decreased rate of heat loss to space in the Arctic relative to the subtropics due to lower mean temperatures(Makshtas et al.,2011;Pithan and Mauritsen,2014).

    Upward trends in GHGs and resulting AA significantly influence multiple changes throughout the Arctic environment(Stroeve et al.,2012).This is evident in the Alaskan Arctic where robust lagged relationships are found between Northern Hemisphere SAT and September Beaufort Sea ice extent,particularly since the early 1990s(Ballinger and Rogers,2014).This lag is explained by ongoing increases in GHGs causing global warming that contribute to AA temperature increases and resultant thinning of summer sea-ice cover in the Alaskan Arctic over the course of several years,resulting in a series of recent,anomalous September sea-ice losses.

    Fig.4.Monthly SAT anomalies for Barrow and Saint Paul,Alaska,compared to their respective 1981–2010 mean values.Anomalies are based on NWS weather station data.

    Fig.5.Annual Arctic 925-hPa air temperature increases for 2010–14 relative to the end of the 20th century(1971–2000).Figure created through the NOAA/ESRL website.

    Fig.6.Beaufort Sea ice freeze date anomalies,1979–2016,compared to the 1981–2010 mean freeze date(data obtained from Jeffrey Miller,Cryospheric Sciences Laboratory,NASA Goddard Space Flight Center and KBRwyle).

    Warm temperatures in the Alaskan Arctic have persisted since 2007. Extended periods of sea-ice-free conditions have a role in the pronounced temperature departures from the norm.In particular,Beaufort Sea ice formation occurs progressively later during this era,especially during autumn 2012 when ice formed approximately five weeks later relative to the 1981–2010 climatology(Fig.6).Since 2007,there has been an increase in easterly winds,which has helped set the stage for AA by advecting sea ice out of the Alaskan region and enhancing ocean surface stratification due to the offshore transport of fresh water from the large Mackenzie River discharge plume(Wood et al.,2013).

    Recent decades are also associated with the predominance of a large spatial-scale climate pattern referred to as the Arctic Dipole(AD;Figs.7a,b and c),which is characterized by low SLP on the Siberian side of the Arctic and high SLP on the North American side in its negative phase(Fig.7a;Overland and Wang,2005;Wang et al.,2009,2014).Note,however,some authors define the dipole with the opposite sign(e.g.,Wu et al.,2006).One can also interpret this decadal change as the increased presence of a summer Beaufort high region located north of Alaska continuing from its springtime climatology(Ballinger and Sheridan,2014;Ballinger et al.,2014).These anomalous Beaufort high patterns have occurred more often since 2007,aligned with an era of abrupt sea-ice decline,as compared to previous years dating to the late 1970s.This summer Beaufort high is a major change for the Alaskan Arctic,as the previous summer climatology often consisted of weak pressure gradients andmonthly-averaged low pressure in the central Arctic basin.As summarized by Overland et al.(2014a):“While the negative AD pattern was present in spring as early as 1997,its recent occurrence began in summer 2007 when it was present in all months and contributed to 2007 record minimum summer sea ice extent(Wang et al.,2009).Most years after 2007 have seen the AD pattern persist for at least part of the summer.For example,in 2010,the AD pattern was present in May and June,but then the Arctic reverted to the more traditional climatological summer SLP pattern involving a weak central-Arctic low-pressure center.But by August 2010 the AD pattern had returned.”The AD pattern was absent in the summer 2013 and 2017,but reappeared in 2014 and 2015 with Beaufort/Chukchi sea-ice extents below normal.

    Fig.7.(a)Composite of June SLP(units:hPa)for 2007–15,illustrating the SLP distribution for the negative phase of the AD pattern.Data are from the NCEP–NCAR Reanalysis through the NOAA/ESRL.(b)The AO Index,an Arctic wide index low pressure in its positive phase,and the AD,during early summer months.The negative phase of the AD pattern is often associated with higher pressure in the Beaufort Sea.Note the recent presence of negative AD values in June and July 2015(b and c)(updated from Overland and Wang 2005).Note also that some authors define the dipole with the opposite sign(e.g.,Wu et al.,2006).

    The increased Beaufort high and AD patterns since 2007 are also connected with unprecedented higher pressure systems across Greenland and the North Atlantic Arctic sector in one large positive hemispheric SLP anomaly pattern(Overland et al.,2012;Belleflamme et al.,2015;Bezeau et al.,2015;Petrie et al.,2015).Whether this shift in atmospheric pressure and wind patterns is tied to AA is unknown,but its persistence is noted relative to more strictly interannual variability before 2007(Fig.7b and c).This provides further evidence that Alaskan Arctic changes are tied to large-scale Arctic-centric changes.

    In summary,the Alaskan Arctic has participated in the Arctic-wide AA driven by increases in GHGs and amplified by regional,Arctic-specific feedback processes.Persistent higher than normal surface pressures in the Pacific Arctic influenced by the anomalous occurrence of the summer Beaufort high pressure system have increased easterly winds in the region and contributed to ocean circulation changes and sea-ice loss.

    4.Decadal future projections

    The AA of SAT is projected to continue through the 21st century(Fig.8)according to CMIP5 climate models,which formed the basis for IPCC AR5(Overland et al.,2014b).Because CO2 remains in the atmosphere for many decades,the GHG contribution from the previous decades and projected emissions for the next two decades lead to a model-estimated,Arctic-wide October–March SAT increase of+4°C by 2040.Beyond 2050,the SAT depends on which GHG emissions scenario is chosen for the projection.The red curves for summer and winter periods give the high CO2 business-as-usual emissions scenario,referred to as RCP8.5,according to IPCC AR5(IPCC,2013).The blue curves provide the change in SAT based on the aggressive but not extreme GHG mitigation scenario,RCP4.5.

    Fig.8.Future Arctic-wide SAT increases for a business-as-usual increase in CO2emissions(RCP8.5,red)and for a modest(RCP4.5,blue)CO2mitigation scenario.

    According to the CMIP5 models,sea-ice loss for the Alaskan Arctic is projected to continue over the next decades.The important change is the increase in the number of seaice-free months(Fig.9).The duration of months with openwater conditions generally decreases with northerly latitude.A rough change estimate at 74°N is from three months of open water in 2010 to five months by 2040(Wang and Overland,2015,updated).These average changes are based on GHG increases;actual sea-ice loss is projected to continue to have a large year-to-year component due to variations in weather patterns.It will be difficult for the open-water duration to extend much later than November due to seasonal darkness,or occur earlier in spring due to solar reflection off of snow and sea-ice cover;thus,the future duration of Alaskan sea-ice-free duration will be limited by the winter atmospheric climatology.

    5.Recent changes in the North Pacific

    After more than a decade-and-a-half of both positive and negative SSTs and associated weather patterns in the central and eastern North Pacific Ocean,there is evidence of multi-month persistent positive ocean temperature anomaly patterns since 2013.These consist of near-record positive SST anomalies centered near(45°N,145°W)during 2013,labeled the “blob”by Bond et al.(2015),and the return of the positive Pacific Decadal Oscillation(PDO)climate pattern in 2015,with SST maxima near the northeastern North Pacific coast.Persistent,above-average geopotential heights in the mid-level atmosphere during 2012–15 associated with warmer air temperatures,which steer the prevailing wind direction more from the south and transport heat towards the north over the central and eastern North Pacific,have resulted in what has been referred to as the Ridiculously Resistant Ridge(RRR)of high pressure(e.g.Fig.10b).

    Beginning in late autumn 2014,Alaska experienced record positive temperature anomalies associated with the RRR orientation of mid-tropospheric geopotential heights over the west coast of North America,and a positive PDO with above-average lower tropospheric air temperatures,situated polewards from the southern Alaskan coast(Fig.10a and b).Winds flow clockwise around high geopotential height centers(parallel to contours),thus directing the air flow from the North Pacific northwards across Alaska to the Alaskan Arctic region.The PDO index supports this wind pattern and is strongly positive(>+1.0)beginning September 2014 and decreased into 2017(Fig.11).

    Winter 2015–16 continued the warm pattern,with widespread Alaskan temperature anomalies of+5°C(Walsh et al.,2017).The 700-hPa geopotential height pattern is similar to 2015,as shown in Fig.10,but the low geopotential height Aleutian low center is more dominant than the coastal ridge feature.Loss of snow cover and decreased land surface albedo in southern Alaska added to the persistence of positive near-surface air temperature anomalies(Walsh et al.,2017).El Ni?no conditions,as well as warm North Pacific SSTs,continue for winter 2015–16.Previous research suggests warm temperature anomalies in the Alaskan marine Arctic during El Ni?no often result in diminished Beaufort and Chukchi ice cover(Papineau,2001;Liu et al.,2004;Bond and Harrison,2006).Walsh et al.(2017)also estimated that about 20%of the 2015–16 Alaska warm temperature anomalies(about+1°C)was due to global warming,as projected by CMIP5 models.

    Fig.9.Annual duration of sea-ice cover averaged over the period 1990–2014 (left) based on satellite data. Right: change(relative to 1990–2014)in annual sea-ice duration by the middle of the century(2030–44)based on seven CMIP5 model means under the RCP8.5 emissions scenario.Figures are adapted from Wang et al.(2017)with modification.The subset of CIMP5 models were selected by matching the monthly sea-ice extent and magnitude of the seasonal cycle.See Wang and Overland(2015)and Wang et al.(2017)for more information.

    Fig.10.September 2014 through July 2015 925-hPa air temperature anomalies over western North America(a),and corresponding anomalies in 700-hPa geopotential height(b);anomalous winds follow the contours with a southerly wind component over the Gulf of Alaska.Anomaly maps are presented with respect to the 1981–2010 climatological values.Data are from the NCEP–NCAR Reanalysis through NOAA/ESRL.

    Fig.11.The PDO index time series from 1900–2016.Positive values correlate with elevated SST in the Gulf of Alaska.The PDO index is obtained from http://research.jisao.washington.edu/pdo/PDO.latest.

    Autumn 2016 marked the end of warm northeast Pacific SSTs,with a return to more zonal 700-hPa wind flow and with the Aleutian low feature moving northwest spanning northeastern Siberia and the Sea of Okhotsk with above normal temperatures confined to the Chukchi Sea and the Alaskan Arctic(Figs.12a and b).

    Newman et al.(2016)discusses causal contributions to North Pacific SSTs and the PDO and concludes there is a combination of tropical forcing,North Pacific Ocean memory,and interannual chaotic atmospheric variability.North Pacific atmospheric processes have a long-memory stochastic(random)character(Overland et al.,2006),rejecting purely cyclic predictions.

    Despite a shift towards a weak La Ni?na,autumn 2016 showed some evidence that the PDO might continue to be neutral or weakly positive based on persistence,and there is some evidence for warm subsurface ocean temperature anomalies(Zhang and Delworth,2015).Yet,strong zonal atmospheric flow(Fig.12b)is the primary reason for the termination of the North Pacific contribution to Alaskan Arctic warming.Baxter and Nigam(2015)show that notable climate anomalies in the Pacific–North American sector can be caused by such internal variability of regional atmospheric patterns,and need not originate from the tropics or local surface forcing.The future for the Alaskan marine Arctic primarily involves continued warm temperatures based on AA with occasional midlatitude support.

    6.Summary

    Fig.12.925-hPa air temperature anomalies over western North America(a),and corresponding 700-hPa geopotential height(b)for autumn 2016.Anomaly maps are presented with respect to the 1981–2010 climatological values.Data are from the NCEP–NCAR Reanalysis through NOAA/ESRL.

    One should note that future air temperature increases are likely to manifest as considerable year-to-year extremes based on internal random variability of the atmosphere added to long-term GHG-induced trends,rather than the smooth projections shown in Fig.8.Extreme Arctic temperature events,as a combination of anthropogenically forced temperature increases combined with natural variability,will become common,exceeding previous thresholds.Such an event occurred with+4°C temperature anomalies for Alaska in November–December 2014 and+5°C January–April 2016,related to recent warm Pacific SSTs.Breaking the string of cold,southern Bering Sea temperature anomalies and mostly negative PDO years from 2006–13,recent years show interaction of the Beaufort and Chukchi Seas with the subarctic.Regional warm temperature anomalies associated with loss of sea ice and snow for the Alaskan Arctic have been supplemented by southerly air flow in addition to the monotonic AA signal.This North Pacific SST connection broke down in autumn 2016 due to internal atmospheric variability that manifested as strong zonal winds.

    For the foreseeable future(out to 2040),continuing rapid environmental changes in Alaskan Arctic seas,land,atmosphere and sea ice are likely,and the appropriate response is to plan for adaptation to meet these mean and extreme-event changes.Arctic and global climate changes will continue to propagate throughout the biological ecosystem through shifts in winds and air temperatures,sea-ice loss,ocean circulation and stratification changes,and permafrost melt,with impacts on societal systems.

    Acknowledgements.The work was supported by the NOAA Arctic Research Project of the Climate Program Office.Datafields from the NCEP–NCAR Reanalysis are available as images provided by the NOAA/ESRL Physical Sciences Division,Boulder,Colorado from their website at http://www.esrl.noaa.gov/psd/.This publication was partially funded by the Joint Institute for the Study of the Atmosphere and Ocean(JISAO)under the NOAA Cooperative Agreement NA10OAR4320148,contribution number 2016-01-40.PMEL contribution number:4535.

    Ballinger,T.J.,and S.C.Sheridan,2014:Associations between circulation pattern frequencies and sea ice minima in the western Arctic.International Journal of Climatology,34,1385–1394,https://doi.org/10.1002/joc.3767.

    Ballinger,T.J.,and J.C.Rogers,2014:Climatic and atmospheric teleconnection indices and western Arctic sea ice variability.Physical Geography,35,459–477,https://doi.org/10.1080/02723646.2014.949338.

    Ballinger,T.J.,S.C.Sheridan,and E.Hanna,2014:Resolving the Beaufort Sea High using synoptic climatological methods.International Journal of Climatology,34,3312–3319,https://doi.org/10.1002/joc.3907.

    Baxter,S.,and S.Nigam,2015:Key role of the North Pacific Oscillation-West Pacific Pattern in generating the extreme 2013/14 North American winter.J.Climate,28,8109–8117,https://doi.org/10.1175/JCLI-D-14-00726.1.

    Belleflamme,A.,X.Fettweis,and M.Erpicum,2015:Recent summer Arctic atmospheric circulation anomalies in a historical perspective.The Cryosphere,9,53–64,https://doi.org/10.5194/tc-9-53-2015.

    Bezeau,P.,M.Sharp,and G.Gascon,2015:Variability in summer anticyclonic circulation over the Canadian Arctic Archipelago and west Greenland in the late 20th/early 21st centuries and its effect on glacier mass balance.International Journal of Climatology,35,540–557,https://doi.org/10.1002/joc.4000.

    Bond,N.A.,and D.E.Harrison,2006:ENSO’s effect on Alaska during opposite phases of the Arctic Oscillation.International Journal of Climatology,26,1821–1841,https://doi.org/10.1002/joc.1339.

    Bond,N.A.,M.F.Cronin,H.Freeland,and N.Mantua,2015:Causes and impacts of the 2014 warm anomaly in the NE Pacific.Geophys.Res.Lett.,42,3414–3420,https://doi.org/10.1002/2015GL063306.

    Cassano,E.N.,J.M.Glisan,J.J.Cassano,W.J.Gutowski Jr.,and M.W.Seefeldt,2015:Self-organizing map analysis of widespread temperature extremes in Alaska and Canada.Climate Research,62,199–218,https://doi.org/10.3354/cr01274.

    Holland,M.M.,and C.M.Bitz,2003:Polar amplification of climate change in coupled models.Climate Dyn.,21,221–232,https://doi.org/10.1007/s00382-003-0332-6.

    IPCC,2013:Climate Change 2013:The Physical Science Basis.Contribution of Working Groupito the Fifth Assessment Report of the Intergovernmental Panel on Climate Change[Stocker,T.F.,D.Qin,G.-K.Plattner,M.Tignor,S.K.Allen,J.Boschung,A.Nauels,Y.Xia,V.Bex and P.M.Midgley(eds.)].Cambridge University Press,Cambridge,United Kingdom and New York,NY,USA,1535 pp.

    Liu,J.P.,J.A.Curry,and Y.Y.Hu,2004:Recent Arctic sea ice variability:Connections to the Arctic Oscillation and the ENSO.Geophys.Res.Lett.,31,L09211,https://doi.org/10.1029/2004GL019858.

    Makshtas,A.P.,I.I.Bolshakova,R.M.Gun,O.L.Jukova,N.E.Ivanov,and S.V.Shutilin,2011:Climate of the hydrometeorological observatory Tiksi region.Meteorological and Geophysical Investigations,M.Paulsen,Ed.,49–74.

    Newman,M.,and Coauthors,2016:The Pacific decadal oscillation,revisited.J.Climate,29,4399–4427,https://doi.org/10.1175/JCLI-D-15-0508.1.

    Overland,J.E.,and M.Y.Wang,2005:The third Arctic climate pattern:1930s and early 2000s.Geophys.Res.Lett.,32,L23808,https://doi.org/10.1029/2005GL024254.

    Overland,J.E.,D.B.Percival,and H.O.Mofjeld,2006:Regime shifts and red noise in the North Pacific.Deep Sea Research Part I,53,582–588,https://doi.org/10.1016/j.dsr.2005.12.011.

    Overland,J.E.,J.A.Francis,E.Hanna,and M.Y.Wang,2012:The recent shift in early summer arctic atmospheric circulation.Geophys.Res.Lett.,39,L19804,https://doi.org/10.1029/2012GL053268.

    Overland,J.E.,J.Wang,R.S.Pickart,and M.Y.Wang,2014a:Recent and future changes in the meteorology of the Pacific Arctic.The Pacific Arctic Region,J.Grebmeier and W.Maslowski,Eds.,Springer,Dordrecht,17–30,https://doi.org/10.1007/978-94-017-8863-22.

    Overland,J.E.,M.Y.Wang,J.E.Walsh,and J.C.Stroeve,2014b:Future Arctic climate changes:Adaptation and mitigation time scales.Earth’s Future,2,68–74,https://doi.org/10.1002/2013EF000162.

    Papineau,J.M.,2001:Wintertime temperature anomalies in Alaska correlated with ENSO and PDO.International Journal of Climatology,21,1577–1592,https://doi.org/10.1002/joc.686.

    Petrie,R.E.,L.C.Shaffrey,and R.T.Sutton,2015:Atmospheric response in summer linked to recent Arctic sea ice loss.Quart.J.Roy.Meteor.Soc.,141,2070–2076,https://doi.org/10.1002/qj.2502.

    Pithan,F.,and T.Mauritsen,2014:Arctic amplification dominated by temperature feedbacks in contemporary climate models.Nature Geoscience,7,181–184,https://doi.org/10.1038/ngeo2071.

    Serreze,M.C.,and R.G.Barry,2011:Processes and impacts of Arctic amplification:A research synthesis.Global and Planetary Change,77,85–96,https://doi.org/10.1016/j.gloplacha.2011.03.004.

    Stroeve,J.C.,M.C.Serreze,M.M.Holland,J.E.Kay,J.Maslanik,and A.P.Barrett,2012:The Arctic’s rapidly shrinking sea ice cover:A research synthesis.Climatic Change,110,1005–1027,https://doi.org/10.1007/s10584-011-0101-1.

    Walsh,J.,P.A.Bieniek,B.Brettschneider,E.S.Euskirchen,R.Lader,and R.L.Thoman,2017:The exceptionally warm winter of 2015/16 in Alaska.J.Climate,30,2069–2088,https://doi.org/10.1175/JCLI-D-16-0473.1.

    Wang,J.,J.L.Zhang,E.Watanabe,M.Ikeda,K.Mizobata,J.E.Walsh,X.Z.Bai,and B.Y.Wu,2009:Is the Dipole Anomaly a major driver to record lows in Arctic summer sea ice extent?Geophys.Res.Lett.,36,L05706,https://doi.org/10.1029/2008GL036706.

    Wang,J.,and Coauthors,2014:Abrupt climate changes and emerging ice-ocean processes in the Pacific Arctic region and the Bering Sea.The Pacific Arctic Region,J.Grebmeier and W.Maslowski,Eds.,Springer,65–99,https://doi.org/10.1007/978-94-017-8863-24.

    Wang,M.Y.,and J.E.Overland,2015:Projected future duration of the sea-ice-free season in the Alaskan Arctic.Progress in Oceanography,136,50–59,https://doi.org/10.1016/j.pocean.2015.01.001.

    Wang,M.,Q.Yang,J.E.Overland,and P.Stabeno,2017:Seaice Evolution in the Pacific Arctic:the present to mid-century by selected CMIP5 models.Deep Sea Research Part II.(in press).

    Wassmann,P.,2015:Overarching perspectives of contemporary and future ecosystems in the Arctic Ocean.Progress in Oceanography,139,1–12,https://doi.org/10.1016/j.pocean.2015.08.004.

    Wood,K.R.,J.E.Overland,S.A.Salo,N.A.Bond,W.J.Williams,and X.Q.Dong,2013:Is there a “new normal”climate in the Beaufort Sea? Polar Research,32,19552,https://doi.org/10.3402/polar.v32i0.19552.

    Wu,B.Y.,J.Wang,and J.E.Walsh,2006:Dipole anomaly in the winter arctic atmosphere and its association with sea ice motion.J.Climate,19,210–225,https://doi.org/10.1175/JCLI3619.1.

    Zhang,L.P.,and T.L.Delworth,2015:Analysis of the characteristics and mechanisms of the pacific decadal oscillation in a suite of coupled models from the geophysical fluid dynamics laboratory.J.Climate,28,7678–7701,https://doi.org/10.1175/JCLI-D-14-00647.1.

    29 January 2017;revised 15 July 2017;accepted 3 August 2017)

    :Overland,J.E.,M.Wang,and T.J.Ballinger,2018:Recent increased warming of the Alaskan marine Arctic due to midlatitude linkages.Adv.Atmos.Sci.,35(1),75–84,https://doi.org/10.1007/s00376-017-7026-1.

    ?Corresponding author:James E.OVERLAND

    Email:james.e.overland@noaa.gov

    ?Institute of Atmospheric Physics/Chinese Academy of Sciences,and Science Press and Springer-Verlag GmbH Germany 2018

    国产av在哪里看| 大香蕉久久成人网| www国产在线视频色| 99国产精品99久久久久| 久久婷婷成人综合色麻豆| 色在线成人网| 久久久精品欧美日韩精品| 后天国语完整版免费观看| 多毛熟女@视频| 久久精品亚洲精品国产色婷小说| 久久人人97超碰香蕉20202| av天堂在线播放| 99久久久亚洲精品蜜臀av| 久久这里只有精品19| 久99久视频精品免费| 欧美色视频一区免费| 欧美人与性动交α欧美精品济南到| 人人妻人人澡人人看| 中文字幕色久视频| svipshipincom国产片| www.精华液| 夜夜躁狠狠躁天天躁| 精品国产国语对白av| 激情在线观看视频在线高清| 不卡一级毛片| 美女大奶头视频| 欧美黄色片欧美黄色片| 黄频高清免费视频| 两性夫妻黄色片| 亚洲天堂国产精品一区在线| 亚洲国产高清在线一区二区三 | 亚洲欧美日韩无卡精品| 国产一区二区三区在线臀色熟女| 国产区一区二久久| 色综合婷婷激情| www.自偷自拍.com| 国产一区二区激情短视频| 如日韩欧美国产精品一区二区三区| 国产精品一区二区在线不卡| 久久国产精品影院| 亚洲精品久久成人aⅴ小说| 大型av网站在线播放| 中文字幕色久视频| 国产免费男女视频| 乱人伦中国视频| 国产三级黄色录像| 午夜精品久久久久久毛片777| 黄色a级毛片大全视频| 黄网站色视频无遮挡免费观看| 少妇被粗大的猛进出69影院| 亚洲成av人片免费观看| 九色国产91popny在线| 女同久久另类99精品国产91| 欧美老熟妇乱子伦牲交| 久久久久九九精品影院| 最近最新中文字幕大全电影3 | 麻豆久久精品国产亚洲av| 99热只有精品国产| 久久久久九九精品影院| 最近最新中文字幕大全电影3 | 伊人久久大香线蕉亚洲五| 久久香蕉国产精品| 欧美人与性动交α欧美精品济南到| 国产精品电影一区二区三区| 成人av一区二区三区在线看| 欧美日韩中文字幕国产精品一区二区三区 | 久久九九热精品免费| 侵犯人妻中文字幕一二三四区| 两个人免费观看高清视频| 一级片免费观看大全| √禁漫天堂资源中文www| 欧美精品亚洲一区二区| 在线视频色国产色| 18禁美女被吸乳视频| 国产成人欧美在线观看| 两性午夜刺激爽爽歪歪视频在线观看 | 在线国产一区二区在线| 91字幕亚洲| videosex国产| 亚洲免费av在线视频| 香蕉久久夜色| 中文字幕人成人乱码亚洲影| 亚洲欧美激情综合另类| 精品一区二区三区av网在线观看| 夜夜看夜夜爽夜夜摸| 国产一卡二卡三卡精品| 午夜福利视频1000在线观看 | 91成年电影在线观看| 国产麻豆成人av免费视频| 精品国内亚洲2022精品成人| 国产欧美日韩一区二区三区在线| 午夜亚洲福利在线播放| 91麻豆av在线| 成人特级黄色片久久久久久久| 在线免费观看的www视频| 给我免费播放毛片高清在线观看| 在线国产一区二区在线| 欧美日本亚洲视频在线播放| 制服丝袜大香蕉在线| 欧美一级毛片孕妇| 又黄又爽又免费观看的视频| 免费在线观看完整版高清| 制服诱惑二区| 一级毛片精品| 亚洲第一av免费看| 18禁美女被吸乳视频| 人妻久久中文字幕网| 国产精品一区二区精品视频观看| 亚洲男人天堂网一区| 亚洲av熟女| www.www免费av| 久热这里只有精品99| 久久精品国产亚洲av香蕉五月| 久久人妻熟女aⅴ| 国产成人av教育| 成人18禁在线播放| 亚洲午夜精品一区,二区,三区| 99re在线观看精品视频| 黄频高清免费视频| 国产成人一区二区三区免费视频网站| 午夜免费鲁丝| 中文亚洲av片在线观看爽| 一a级毛片在线观看| 久久中文字幕人妻熟女| 免费看十八禁软件| 夜夜夜夜夜久久久久| 欧美久久黑人一区二区| 757午夜福利合集在线观看| 亚洲全国av大片| 老汉色av国产亚洲站长工具| 一个人观看的视频www高清免费观看 | 亚洲五月天丁香| 久久精品国产亚洲av高清一级| 国产亚洲av嫩草精品影院| 亚洲av电影不卡..在线观看| 亚洲午夜理论影院| 亚洲精品国产区一区二| 午夜福利一区二区在线看| 欧美激情高清一区二区三区| 在线观看日韩欧美| 中文字幕最新亚洲高清| 一边摸一边抽搐一进一出视频| 99国产极品粉嫩在线观看| 天堂√8在线中文| 亚洲五月婷婷丁香| www.熟女人妻精品国产| 欧美性长视频在线观看| 亚洲片人在线观看| 国产伦人伦偷精品视频| 中国美女看黄片| 在线观看免费视频网站a站| 欧美亚洲日本最大视频资源| 搡老岳熟女国产| 国产精品爽爽va在线观看网站 | 久久人人97超碰香蕉20202| 国产成人欧美| 国产精品久久久av美女十八| 女性生殖器流出的白浆| 青草久久国产| 熟女少妇亚洲综合色aaa.| 好看av亚洲va欧美ⅴa在| 老熟妇仑乱视频hdxx| 男女床上黄色一级片免费看| 午夜福利在线观看吧| 国产成人啪精品午夜网站| 色婷婷久久久亚洲欧美| 美女大奶头视频| 免费看美女性在线毛片视频| 无人区码免费观看不卡| 久久青草综合色| 亚洲少妇的诱惑av| 高清黄色对白视频在线免费看| 欧美久久黑人一区二区| 婷婷精品国产亚洲av在线| 亚洲精品粉嫩美女一区| 欧美在线一区亚洲| 成在线人永久免费视频| 18禁美女被吸乳视频| 99在线视频只有这里精品首页| 看片在线看免费视频| 亚洲第一av免费看| 禁无遮挡网站| 搡老熟女国产l中国老女人| 两个人免费观看高清视频| 欧美人与性动交α欧美精品济南到| 香蕉久久夜色| 一进一出好大好爽视频| 99久久国产精品久久久| 亚洲国产精品合色在线| 欧美黄色片欧美黄色片| 夜夜夜夜夜久久久久| 黑人巨大精品欧美一区二区mp4| 色综合站精品国产| 欧美日韩亚洲国产一区二区在线观看| 91字幕亚洲| 国产精品久久久久久人妻精品电影| 我的亚洲天堂| 日韩欧美一区视频在线观看| 夜夜夜夜夜久久久久| 国产亚洲av高清不卡| 露出奶头的视频| 亚洲男人的天堂狠狠| 亚洲精品中文字幕在线视频| 男人的好看免费观看在线视频 | 男人操女人黄网站| 亚洲一区二区三区不卡视频| 亚洲成av片中文字幕在线观看| 免费在线观看亚洲国产| 少妇 在线观看| 久久久久久国产a免费观看| 老司机福利观看| 激情视频va一区二区三区| 欧美日韩亚洲综合一区二区三区_| 午夜久久久久精精品| 女人被躁到高潮嗷嗷叫费观| 一边摸一边抽搐一进一小说| 久久精品亚洲精品国产色婷小说| 久久久久久国产a免费观看| 欧洲精品卡2卡3卡4卡5卡区| 女人高潮潮喷娇喘18禁视频| 精品欧美国产一区二区三| 亚洲最大成人中文| 老汉色av国产亚洲站长工具| 亚洲男人的天堂狠狠| 999久久久精品免费观看国产| 精品国产一区二区三区四区第35| 国产熟女xx| 亚洲 欧美 日韩 在线 免费| 男女下面进入的视频免费午夜 | 日韩精品免费视频一区二区三区| 这个男人来自地球电影免费观看| 黄色丝袜av网址大全| 一边摸一边抽搐一进一出视频| 巨乳人妻的诱惑在线观看| 亚洲黑人精品在线| 欧美另类亚洲清纯唯美| 又紧又爽又黄一区二区| 欧美老熟妇乱子伦牲交| 一区在线观看完整版| 麻豆一二三区av精品| 伊人久久大香线蕉亚洲五| 亚洲av电影在线进入| 女人被狂操c到高潮| 一二三四在线观看免费中文在| 欧美老熟妇乱子伦牲交| 一进一出抽搐动态| 看片在线看免费视频| 国产高清视频在线播放一区| 午夜福利,免费看| 视频在线观看一区二区三区| 色婷婷久久久亚洲欧美| 国产精品二区激情视频| 如日韩欧美国产精品一区二区三区| 大码成人一级视频| 麻豆av在线久日| 成年女人毛片免费观看观看9| 自拍欧美九色日韩亚洲蝌蚪91| 欧美日本视频| 波多野结衣av一区二区av| 51午夜福利影视在线观看| 国产亚洲欧美精品永久| 午夜福利影视在线免费观看| 纯流量卡能插随身wifi吗| 女性生殖器流出的白浆| 亚洲人成伊人成综合网2020| 中文字幕高清在线视频| 在线视频色国产色| 1024视频免费在线观看| 夜夜躁狠狠躁天天躁| 国产成人欧美| 视频区欧美日本亚洲| 桃色一区二区三区在线观看| 欧美国产精品va在线观看不卡| 国产真人三级小视频在线观看| 国产成人精品久久二区二区91| 伦理电影免费视频| 亚洲电影在线观看av| 国产一区二区在线av高清观看| 国内精品久久久久久久电影| 国产免费男女视频| 宅男免费午夜| 亚洲男人的天堂狠狠| 午夜精品国产一区二区电影| 日韩欧美免费精品| 91麻豆av在线| 欧美久久黑人一区二区| 欧美激情久久久久久爽电影 | 久久久久久久午夜电影| 午夜精品久久久久久毛片777| 亚洲av片天天在线观看| 亚洲国产精品sss在线观看| 国产精品久久久久久人妻精品电影| 日韩欧美国产在线观看| 亚洲一区二区三区色噜噜| 免费高清在线观看日韩| 久久青草综合色| 国产91精品成人一区二区三区| 成人三级做爰电影| 免费看a级黄色片| 久99久视频精品免费| 亚洲国产高清在线一区二区三 | 波多野结衣一区麻豆| 麻豆成人av在线观看| 欧美成人性av电影在线观看| 99国产精品一区二区三区| 露出奶头的视频| 久久青草综合色| 国产精品免费一区二区三区在线| 午夜久久久久精精品| 日韩精品免费视频一区二区三区| 午夜福利成人在线免费观看| 久久狼人影院| 国产激情久久老熟女| 波多野结衣av一区二区av| 精品国产一区二区久久| 国产高清视频在线播放一区| 久久香蕉激情| 欧美一区二区精品小视频在线| 嫁个100分男人电影在线观看| 欧美日韩瑟瑟在线播放| 中文字幕另类日韩欧美亚洲嫩草| 成人永久免费在线观看视频| 极品教师在线免费播放| 国产成人精品久久二区二区免费| 欧美激情极品国产一区二区三区| 成人欧美大片| 色综合站精品国产| 亚洲色图综合在线观看| 亚洲精品美女久久久久99蜜臀| 亚洲精品国产色婷婷电影| 最好的美女福利视频网| 精品无人区乱码1区二区| 12—13女人毛片做爰片一| 久久精品成人免费网站| 亚洲国产日韩欧美精品在线观看 | 一级作爱视频免费观看| e午夜精品久久久久久久| 看片在线看免费视频| 乱人伦中国视频| 后天国语完整版免费观看| 757午夜福利合集在线观看| 国产欧美日韩精品亚洲av| 亚洲国产中文字幕在线视频| 亚洲色图综合在线观看| 神马国产精品三级电影在线观看 | 亚洲国产中文字幕在线视频| 国产精品免费视频内射| 91字幕亚洲| 精品久久久久久久毛片微露脸| 欧美成人免费av一区二区三区| 亚洲欧美激情在线| а√天堂www在线а√下载| 国产精品一区二区免费欧美| 午夜福利18| 一级片免费观看大全| 久久国产亚洲av麻豆专区| 美女午夜性视频免费| www国产在线视频色| 午夜福利18| 国产亚洲欧美98| 男女午夜视频在线观看| 夜夜夜夜夜久久久久| 亚洲精品一区av在线观看| 性少妇av在线| 欧美av亚洲av综合av国产av| 精品欧美一区二区三区在线| 中文字幕人成人乱码亚洲影| 久久伊人香网站| 精品一品国产午夜福利视频| 日本在线视频免费播放| 国产蜜桃级精品一区二区三区| 日韩欧美在线二视频| 一区福利在线观看| 国产精品 欧美亚洲| 亚洲精品久久成人aⅴ小说| 亚洲男人的天堂狠狠| 一区福利在线观看| 午夜成年电影在线免费观看| 18禁观看日本| 精品免费久久久久久久清纯| 日韩大尺度精品在线看网址 | 国产色视频综合| 韩国av一区二区三区四区| 一进一出好大好爽视频| 国产亚洲欧美98| 一级黄色大片毛片| 丝袜美腿诱惑在线| 免费一级毛片在线播放高清视频 | 天堂影院成人在线观看| 亚洲精品一区av在线观看| 国产熟女午夜一区二区三区| 国产精品免费视频内射| 亚洲九九香蕉| 一级毛片精品| 日韩欧美一区视频在线观看| av片东京热男人的天堂| 午夜两性在线视频| 成人亚洲精品一区在线观看| 国产精品 欧美亚洲| 18禁观看日本| av视频在线观看入口| 50天的宝宝边吃奶边哭怎么回事| 亚洲国产毛片av蜜桃av| 午夜精品久久久久久毛片777| 欧美不卡视频在线免费观看 | 在线十欧美十亚洲十日本专区| 国产亚洲欧美在线一区二区| 一卡2卡三卡四卡精品乱码亚洲| 亚洲 国产 在线| 在线免费观看的www视频| 国产精品亚洲av一区麻豆| 在线观看66精品国产| 国产精品精品国产色婷婷| 精品久久久久久久久久免费视频| 国产在线观看jvid| 久久久国产成人免费| 岛国在线观看网站| 琪琪午夜伦伦电影理论片6080| 国产片内射在线| 欧美+亚洲+日韩+国产| 国产色视频综合| 亚洲精品一卡2卡三卡4卡5卡| 亚洲七黄色美女视频| 中文字幕av电影在线播放| 一进一出好大好爽视频| 最新在线观看一区二区三区| 欧美一区二区精品小视频在线| 亚洲精品中文字幕一二三四区| 波多野结衣巨乳人妻| 亚洲激情在线av| 久久久国产成人免费| 欧美日韩瑟瑟在线播放| АⅤ资源中文在线天堂| 欧美丝袜亚洲另类 | 婷婷六月久久综合丁香| 性色av乱码一区二区三区2| 日韩精品中文字幕看吧| 嫁个100分男人电影在线观看| 久久婷婷成人综合色麻豆| 人人妻人人澡人人看| 亚洲美女黄片视频| 日韩欧美在线二视频| 免费在线观看完整版高清| 免费观看精品视频网站| 久久久精品欧美日韩精品| 日韩国内少妇激情av| 国产精品久久视频播放| 999精品在线视频| 久久久精品国产亚洲av高清涩受| 欧美在线黄色| 最新美女视频免费是黄的| 在线天堂中文资源库| 咕卡用的链子| 人成视频在线观看免费观看| 精品国产超薄肉色丝袜足j| 免费在线观看黄色视频的| 神马国产精品三级电影在线观看 | 在线观看日韩欧美| 波多野结衣av一区二区av| √禁漫天堂资源中文www| 午夜免费观看网址| 精品久久久久久久人妻蜜臀av | 可以在线观看毛片的网站| 国产av精品麻豆| 老熟妇乱子伦视频在线观看| 国产精华一区二区三区| 亚洲 国产 在线| 99久久精品国产亚洲精品| 国产精品久久久久久亚洲av鲁大| 后天国语完整版免费观看| 女人被躁到高潮嗷嗷叫费观| 亚洲成国产人片在线观看| av视频免费观看在线观看| 久久青草综合色| 俄罗斯特黄特色一大片| 国产乱人伦免费视频| 久久午夜亚洲精品久久| 欧美日本亚洲视频在线播放| 国产av一区在线观看免费| 变态另类丝袜制服| 超碰成人久久| 男人的好看免费观看在线视频 | 成人特级黄色片久久久久久久| 女警被强在线播放| av中文乱码字幕在线| 可以免费在线观看a视频的电影网站| 欧美一区二区精品小视频在线| 国产极品粉嫩免费观看在线| 亚洲全国av大片| 日韩欧美一区视频在线观看| 免费搜索国产男女视频| 麻豆一二三区av精品| 久久久久久久久免费视频了| 麻豆国产av国片精品| www.www免费av| 一进一出抽搐gif免费好疼| 久久中文看片网| 香蕉丝袜av| bbb黄色大片| 日日摸夜夜添夜夜添小说| 男人舔女人下体高潮全视频| 国产色视频综合| 在线观看免费视频日本深夜| 天天添夜夜摸| 国产人伦9x9x在线观看| 亚洲国产精品sss在线观看| 一区福利在线观看| 午夜福利在线观看吧| 午夜福利影视在线免费观看| www.999成人在线观看| 国产单亲对白刺激| 国产精品综合久久久久久久免费 | 窝窝影院91人妻| 巨乳人妻的诱惑在线观看| 久久香蕉激情| 麻豆成人av在线观看| 亚洲人成77777在线视频| 黄片播放在线免费| 久热这里只有精品99| 国产精品秋霞免费鲁丝片| 精品不卡国产一区二区三区| 日本免费a在线| 欧美最黄视频在线播放免费| 婷婷六月久久综合丁香| 亚洲成国产人片在线观看| 婷婷精品国产亚洲av在线| 欧美成狂野欧美在线观看| 变态另类成人亚洲欧美熟女 | 女人被狂操c到高潮| 黄色 视频免费看| 99riav亚洲国产免费| 国产伦一二天堂av在线观看| 巨乳人妻的诱惑在线观看| 亚洲人成电影免费在线| 国产午夜福利久久久久久| 老鸭窝网址在线观看| 熟妇人妻久久中文字幕3abv| videosex国产| av超薄肉色丝袜交足视频| 啦啦啦观看免费观看视频高清 | 91麻豆av在线| 久久久久亚洲av毛片大全| 人人妻人人澡人人看| 不卡一级毛片| 国产成+人综合+亚洲专区| 久久久久久久午夜电影| 99精品在免费线老司机午夜| 99国产精品一区二区三区| 亚洲精品美女久久久久99蜜臀| 久久人妻av系列| 国产av在哪里看| 欧美人与性动交α欧美精品济南到| 亚洲五月色婷婷综合| 色精品久久人妻99蜜桃| 精品国产国语对白av| 女生性感内裤真人,穿戴方法视频| 国产激情欧美一区二区| 岛国视频午夜一区免费看| 国产单亲对白刺激| 国产精品久久久av美女十八| 在线观看免费午夜福利视频| 国产精品1区2区在线观看.| 夜夜爽天天搞| 国产精品一区二区精品视频观看| 黄色视频,在线免费观看| 亚洲色图综合在线观看| 亚洲久久久国产精品| 午夜日韩欧美国产| 午夜免费观看网址| 成人三级做爰电影| 国产男靠女视频免费网站| av福利片在线| 老司机靠b影院| 99国产精品一区二区蜜桃av| 热re99久久国产66热| 99精品欧美一区二区三区四区| 欧美中文综合在线视频| 欧美av亚洲av综合av国产av| 女人精品久久久久毛片| 久久久国产欧美日韩av| 性欧美人与动物交配| 午夜福利欧美成人| 久久这里只有精品19| 日韩免费av在线播放| 人人妻人人澡人人看| 国产精品影院久久| 在线观看日韩欧美| 99久久久亚洲精品蜜臀av| 香蕉国产在线看| 黄色 视频免费看| tocl精华| 日本免费一区二区三区高清不卡 | av电影中文网址| 日韩视频一区二区在线观看| 国产亚洲精品综合一区在线观看 | 免费在线观看日本一区| 丰满的人妻完整版| 亚洲国产精品久久男人天堂| 日韩欧美一区二区三区在线观看| 午夜福利成人在线免费观看| 在线观看一区二区三区| 午夜福利成人在线免费观看| 涩涩av久久男人的天堂| 老司机午夜福利在线观看视频| 日韩 欧美 亚洲 中文字幕| 热99re8久久精品国产| www.自偷自拍.com| 国产区一区二久久| 色在线成人网| 国产区一区二久久| 97人妻精品一区二区三区麻豆 | 成年人黄色毛片网站| 老熟妇仑乱视频hdxx| 99久久国产精品久久久| 999久久久精品免费观看国产|