江蘇省淮安市楚州中學(xué) 韓 飛
合情推理是一種科學(xué)的推理方式,引導(dǎo)學(xué)生利用以往學(xué)習(xí)的知識(shí)通過(guò)觀(guān)察、實(shí)驗(yàn)、總結(jié)、比較以及聯(lián)想的方式推導(dǎo)出新的知識(shí)結(jié)論,讓學(xué)生在既有的知識(shí)結(jié)構(gòu)基礎(chǔ)上完善自己的認(rèn)知能力以及能力水平。
合情推理的學(xué)習(xí)方式充分鍛煉了學(xué)生的自主學(xué)習(xí)能力,讓高中生的數(shù)學(xué)知識(shí)結(jié)構(gòu)更加完善,在高中數(shù)學(xué)學(xué)習(xí)的過(guò)程中,最常見(jiàn)的合情推理的方式是歸納推理的方法,歸納推理讓學(xué)生將特殊的知識(shí)結(jié)論推導(dǎo)出一般的知識(shí)結(jié)論,讓學(xué)生正確認(rèn)識(shí)數(shù)學(xué)知識(shí)中的兩面性,從中探究找出個(gè)性和共性的知識(shí)點(diǎn),讓高中生的綜合學(xué)習(xí)能力大大提高。
歸納法在高中函數(shù)學(xué)習(xí)的過(guò)程中有非常廣泛的應(yīng)用,幫助學(xué)生對(duì)基礎(chǔ)的函數(shù)概念有很強(qiáng)的理解能力,在歸納總結(jié)函數(shù)知識(shí)的時(shí)候,學(xué)生可以結(jié)合生活中的常見(jiàn)案例歸納數(shù)學(xué)知識(shí),提高學(xué)生對(duì)于函數(shù)知識(shí)的認(rèn)識(shí),改變學(xué)生對(duì)于函數(shù)知識(shí)的學(xué)習(xí)態(tài)度,認(rèn)識(shí)到函數(shù)知識(shí)與現(xiàn)實(shí)生活之間的關(guān)系,加強(qiáng)函數(shù)的現(xiàn)實(shí)價(jià)值。
例如:在進(jìn)行函數(shù)導(dǎo)入的時(shí)候,教師可以借助“炮彈發(fā)射后距離地面的高度h和時(shí)間t之間的函數(shù)關(guān)系”來(lái)介紹函數(shù)與日常生活之間的關(guān)系;在學(xué)習(xí)指數(shù)函數(shù)的概念的時(shí)候,教師可以借助細(xì)胞分裂的現(xiàn)象讓學(xué)生認(rèn)識(shí)指數(shù)函數(shù)的內(nèi)涵,讓高中生認(rèn)識(shí)到函數(shù)概念與日常生活之間的緊密聯(lián)系,從而加強(qiáng)對(duì)于函數(shù)學(xué)習(xí)的樂(lè)趣,積極參與到數(shù)學(xué)知識(shí)的學(xué)習(xí)之中,讓學(xué)生對(duì)于函數(shù)的理解能力也不斷加強(qiáng)。
類(lèi)比教學(xué)法在函數(shù)教學(xué)中有助于提高學(xué)生對(duì)于基本規(guī)律的理解,但是一些函數(shù)表達(dá)式比較復(fù)雜,學(xué)生沒(méi)有掌握訣竅,對(duì)于高中生來(lái)說(shuō)理解函數(shù)概念比較困難。類(lèi)比推理的方法讓高中生由簡(jiǎn)入繁,從簡(jiǎn)單的事物深入探究復(fù)雜的數(shù)學(xué)知識(shí),提高學(xué)生對(duì)于函數(shù)知識(shí)的理解能力。在類(lèi)比推理方法的實(shí)施過(guò)程中,學(xué)生類(lèi)比簡(jiǎn)單函數(shù)與將要學(xué)習(xí)的函數(shù)之間的相同之處以及不同之處,不僅鞏固學(xué)生以往學(xué)習(xí)到的知識(shí),還讓學(xué)生在新舊知識(shí)之間建立聯(lián)系,讓學(xué)生抓住解決函數(shù)問(wèn)題的關(guān)鍵,對(duì)函數(shù)的本質(zhì)進(jìn)行深入的探究。
例如:在學(xué)習(xí)函數(shù)定義的時(shí)候,函數(shù)的定義域和值域都是數(shù)的集合,不同函數(shù)之間的定義域有基本的區(qū)別,比如指數(shù)函數(shù)與對(duì)數(shù)函數(shù),兩個(gè)函數(shù)之間互為反函數(shù),學(xué)生在學(xué)習(xí)這兩個(gè)函數(shù)的時(shí)候可以互相對(duì)比學(xué)習(xí),類(lèi)比兩者之間的定義域和值域,進(jìn)而從相同之處了解兩個(gè)函數(shù)不同的單調(diào)性、奇偶性等等性質(zhì),讓學(xué)生對(duì)于函數(shù)性質(zhì)的學(xué)習(xí)有更好的印象。
又如,在學(xué)習(xí)正弦函數(shù)、余弦函數(shù)以及正切函數(shù)的時(shí)候,教師可以引導(dǎo)學(xué)生類(lèi)比三種函數(shù)的周期性、對(duì)稱(chēng)性以及奇偶性,讓學(xué)生類(lèi)比的時(shí)候加深對(duì)于相同知識(shí)點(diǎn)的認(rèn)知,更清晰地認(rèn)識(shí)三種不同函數(shù)之間的不同之處。
函數(shù)是自變量與因變量之間的一般規(guī)律和關(guān)系,函數(shù)表達(dá)式對(duì)于高中生來(lái)說(shuō)是比較難理解的,為了強(qiáng)化學(xué)生對(duì)于函數(shù)表達(dá)式的理解,教師可以舉例一些特殊化的案例方便學(xué)生理解,通過(guò)特殊的案例讓學(xué)生對(duì)于知識(shí)的理解更多角度,讓學(xué)生由小及大,對(duì)于函數(shù)的理解能力大大提高。
例如:在使用f(x)表示函數(shù)的時(shí)候,學(xué)生要熟悉函數(shù)的定義,深入理解函數(shù)的定義概念,初次接觸f(x)這一符號(hào)概念的時(shí)候,教師可以列舉一個(gè)特殊化的案例讓學(xué)生體會(huì)x對(duì)于函數(shù)f的認(rèn)知,通過(guò)通俗化的概念讓學(xué)生理解x對(duì)于函數(shù)f的作用。
借助一些特殊化的函數(shù)教學(xué)案例讓學(xué)生理解函數(shù)的特殊意義,讓學(xué)生對(duì)于函數(shù)的性質(zhì)有更深刻的認(rèn)識(shí)和理解,尤其是在畫(huà)函數(shù)圖象的時(shí)候,學(xué)生也只能畫(huà)幾個(gè)特殊的點(diǎn)來(lái)確定函數(shù)圖象的軌跡,進(jìn)而得出函數(shù)圖象的正確軌跡。這樣的特殊化推理方式讓學(xué)生由點(diǎn)及面,對(duì)于函數(shù)值的認(rèn)知更加全面,加深對(duì)于函數(shù)性質(zhì)和函數(shù)知識(shí)的理解。從合情推理的教學(xué)方法出發(fā),加強(qiáng)學(xué)生對(duì)于數(shù)學(xué)思想的重視,日常學(xué)習(xí)的時(shí)候重視樹(shù)立自己的思想意識(shí),優(yōu)化自己的學(xué)習(xí)方法,找到適合自己的科學(xué)的學(xué)習(xí)方法。
總之,在高中數(shù)學(xué)學(xué)習(xí)的階段,學(xué)生的學(xué)習(xí)壓力很大,對(duì)于考試分?jǐn)?shù)過(guò)于執(zhí)著,忽視了自身學(xué)習(xí)能力的提高以及鍛煉,高中數(shù)學(xué)教師在教導(dǎo)學(xué)生的時(shí)候也忽視了學(xué)生數(shù)學(xué)綜合學(xué)習(xí)能力的培養(yǎng),為了順應(yīng)新課程改革的教學(xué)要求,高中數(shù)學(xué)教師應(yīng)當(dāng)優(yōu)化當(dāng)前的數(shù)學(xué)教學(xué)模式,對(duì)學(xué)生的素質(zhì)能力進(jìn)行進(jìn)一步的鍛煉和提高,借助合情推理的思想方法優(yōu)化學(xué)生數(shù)學(xué)學(xué)習(xí)現(xiàn)狀,改善傳統(tǒng)教學(xué)中存在的問(wèn)題,借助合情推理的多種方法讓學(xué)生的函數(shù)學(xué)習(xí)方法更加科學(xué),加深學(xué)生對(duì)于函數(shù)知識(shí)的理解和認(rèn)知,為高中生的數(shù)學(xué)綜合能力提高以及今后的學(xué)習(xí)奠定良好的基礎(chǔ)。