• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A Quantum Secret Sharing Scheme Using Orbital Angular Momentum onto Multiple Spin States Based on Fibonacci Compression Encoding?

    2018-11-24 07:39:46HongLai賴紅MingXingLuo羅明星YongJianXu徐永健JosefPieprzykJunZhang張軍LeiPan潘磊andMehmetOrgun
    Communications in Theoretical Physics 2018年10期
    關(guān)鍵詞:張軍明星

    Hong Lai(賴紅), Ming-Xing Luo(羅明星),Yong-Jian Xu(徐永健),Josef Pieprzyk,Jun Zhang(張軍), Lei Pan(潘磊),and Mehmet A.Orgun

    1School of Computer and Information Science and Centre for Research and Innovation in Software Engineering(RISE),Southwest University,Chongqing 400715,China

    2Information Security and National Computing Grid Laboratory,School of Information Science and Technology,Southwest Jiaotong University,Chengdu 610031,China

    3Data61,Commonwealth Scientific and Industrial Research Organisation,Sydney,Australia

    4Institute of Computer Science,Polish Academy of Sciences,Warsaw,01-248,Poland

    5School of Software and Electrical Engineering,Swinburne University of Technology,Hawthorn,VIC,3122,Australia

    6School of Information Technology,Deakin University,Geelong,VIC,3220,Australia

    7Department of Computing,Macquarie University,Sydney,NSW 2109,Australia

    8Faculty of Information Technology,Macau University of Science and Technology,Avenida Wai Long,Taipa,999078,Macau

    AbstractSince the use of a quantum channel is very expensive for transmitting large messages,it is vital to develop an effective quantum compression encoding scheme that is easy to implement.Given that,with the single-photon spin-orbit entanglement,we propose a quantum secret sharing scheme using orbital angular momentum onto multiple spin states based on Fibonacci compression encoding.In our proposed scheme,we can represent the frequency of any secret message which is typically collection of bits encodings of text or integers as a bitstring using the base Fibonacci sequence,which is encoded multiple spin states for secret shares transmitted to participants.We demonstrate that Fibonacci compression encoding carries excellent properties that enable us to achieve more robust quantum secret sharing schemes with fewer number of photons.

    Key words:spin-orbit entanglement,multiple spin states,Fibonacci compression encoding,quantum secret sharing

    1 Introduction

    In 1979,Shamir[1]and Blakeley[2]showed how a secret can be shared among a group of participants.Shamir used an algebraic construction while Blakley applied a geometric approach.In their schemes,if the number of collaborating participants is above the set threshold,then they can recover the secret.Conversely,if the number of participants in any given subset is below the set threshold,then they should obtain nothing about the secret.In 1999,Hillery et al.[3]proposed a quantum secret sharing(QSS)scheme based on the Greenberger-Horne-Zeilinger(GHZ)state.[4]The Hillery et al.scheme uses entangled quantum states to share a secret in the context of classic cryptography.In the same year,Cleve et al.[5]introduced an alternative QSS scheme that allows quantum state sharing(QSTS).For these schemes based on quantum mechanics,[6]participants use certain quantum techniques to share a secret,which makes it possible to achieve unconditionally secure QSS schemes.Inspired by their schemes,more and more authors have shown great interest in the study of QSS[7?13]and QSTS.[14?16]

    On the other hand,in 1909,Poynting[17]discovered that light waves have spin angular momentum(SAM).In 1992,Allen et al.[18]observed that a photon carries orbital angular momentum(OAM)as well.Using SAM photon freedom,qubit coding can be conducted in a similar manner to the demonstration provided by Bennett and Bras-sard in their quantum key distribution(QKD).[19]An interesting property of photon OAM is that it can achieve a high dimensional quantum state coding(i.e.qudit coding).In 2002,Leach et al.[20]conducted experiments with encoding separation techniques using photonic OAM.They pointed out that the OAM carrier could greatly improve the communication capacity of a single photon.In 2001,Mair et al.[21]experimentally demonstrated that photon pairs prepared by the spontaneous parametric down conversion(SPDC)share similar characteristics to those of OAM.A year later,Leach et al.[20]devised an interferometric technique that individually recognizes photons in arbitrarily many OAM states and routes each of the photons.Leach et al.advanced[22]their techniques to measure the orbital,spin or total angular momenta and subsequently a successful measurement of the sign of OAM of a light beam using a Shack Hartmann wavefront sensor.[23]In 2015,with OAM of photons,Mi et al.[24]proposed a high-capacity quantum secure direct communication.By using the rotational Doppler shift and an interferometer spanning the angle space,Vasnetsov et al.[25]and Zambrini and Barnett[26]discovered the resolution of the OAM spectrum respectively.Consequently,these developments ignited a great interest in studying quantum information processing with enlarged sets of alphabets based on OAM sorting.

    A separate line of research deals with the problem of how to achieve a coupling between SAM and OAM in an inhomogeneous and anisotropic medium(which is also known as q-plates).[27]Q-plates together with quantum information transfer between different degrees of freedom were studied by Nagali et al.[28]In this context,Chen and She demonstrated the Shannon dimensionality increase.[29]In 2009,Chen and She[30]proposed to use an OAM-dependent polarization manipulation technique to design a practical scheme,which is able to sort OAM by cascading conventional polarizing beam splitters.Moreover,they found that their scheme could induce spinorbit coupling.This provides an alternative technique for encoding OAM onto multiple spin states using a Hu ffman tree.[31]The technique could have some potential use in optical communication.Although Huffman codes have the optimal compression ratio,the encoding and decoding process is complicated as it depends on the probability distribution of the alphabetical letters in the given message.Moreover,its robustness against errors is absent.In order to address these problems,we propose to use a new variable-length codewords,i.e.,a binary Fibonacci numeration system.We show how to use them to design quantum secret sharing with Fibonacci compression encoding based on the technique proposed by Chen and She.[30]

    The rest of paper is organized as follows.Section 2 discusses Fibonacci sequences,Fibonacci representation and Fibonacci diagonal matrices.Section 3 describes the proposed compressed QSS scheme.The security analysis and features of the protocol are presented in Secs.4 and 5,respectively.Section 6 concludes the work.

    2 Fibonacci Sequences,Fibonacci Representation and Fibonacci Diagonal Matrices

    In this section,we give the necessary background on Fibonacci sequences and related mathematical structures that we use in the paper.

    2.1 Fibonacci Sequences

    The Fibonacci sequence for our proposed scheme is defi ned as follows:

    Definition 1Fibonacci sequence Fifor(i= 0,1,2,...)[32]satisfies the following recurrence relation:

    Therefore,the first few Fibonacci numbers are 0,1,1,2,3,5,8,13,21,34,55,89,...

    Alternatively,the Fibonacci sequence can be represented as follows[33]

    2.2 Fibonacci Representation

    A fundamental theorem in discrete mathematics states that any positive integer can be represented by Fibonacci bases.[34]The following definition describes the representation.

    Definition 2(Fibonacci representation[34])For any positive integer n,there exists a finite subset S ={l1,l2,...,lk}of the natural numbers,where l1

    (i)Fl1+Fl2+ ···+Flk=n.

    (ii)For all i,Fli+1≥Fli+2(no adjacent ones).

    There is also an efficient algorithm that produces such representation.

    Algorithm

    Parameters:Fibonacci bases Fl1,Fl2,Fl3,...,Flk.Input:an integer n.

    Output:a sequence S such that∑Fli=n.

    (i)S=?.

    (ii) For i∈[1,k]be the largest number such that Fli≤n.

    (iii)S=li.

    (iv)n→n?Fli.

    Proposition 1[34]The Fibonacci representation of an integer is uniquely decodable.

    Example 1According to the above-mentioned algorithm,the integer 45 can be represented using Fibonacci sequence as follows:

    where S={3,5,8}.

    2.3 Fibonacci Block Diagonal Matrices

    The simplest Fibonacci matrix can be constructed from the first three Fibonacci numbers 0,1,1 as follows:[35]

    where det(Q1)=F0F2?= ?1.Using Eq.(1),we can compute the k-th power of the Fibonacci matrixas follows

    Fibonacci block diagonal matrices are defined as follows:

    So,the Fibonacci block diagonal matrix for Example 1 is

    where O is a matrix of dimension 2×2 with zero entries.

    3 A QSS Scheme Based on Fibonacci Compression Encoding

    In this section,we apply the technique based on Ref.[30]to encode OAM onto multiple spin states using Fibonacci compression encoding and propose a quantum secret sharing scheme.We note that Fibonacci compression encoding[36]enjoys excellent properties that enable us to design a compressed QSS scheme.The proposed scheme can greatly increase the transmission capacity,and thus save qubits for the transmission.Most importantly,it provides extra resilience to the attacks against the secret message.

    Our QSS scheme includes two phases,i.e.,distributing key with Fibonacci compression encoding phase and recovering secret phase.There are three kinds of roles involved in our compressed QSS scheme,which are as follows:

    (i)A Dealer.

    (ii)Quantum participants.

    (iii)An adversary.

    The dealer(Alice),which is at a free-space OAM qudit network,is responsible for converting a classical secret message into multiple spin states and sending them to m quantum participants P1,P2,...,Pm.

    Quantum participants,denoted as P1,P2,...,Pmconnected viaaqubitnetwork,hold quantum shares s1,s2,...,smrespectively.Their task is to detect eavesdropping and jointly recover the shared secret.

    The adversary,who could also be any of participants,can eavesdrop the transmitted information over the quantum channel.

    3.1 Distributing Key with Fibonacci Compression Encoding Phase

    Our scheme accepts the triplet:a secret S(this is typically collection of bits,which are encodings of text or integers),a designated collection of participants P={P1,P2,...,Pm}from an access structure Γ as an input.The access structure Γ determines a collection of participants that are authorized to reconstruct the secret.It outputs quantum shares si,i=1,2,...,m-multiple spin states for participants Pi,i=1,2,...,m.

    The detailed steps of our protocol are given as follows:Step 1 Compressing the secretThe Dealer sets up the secret sharing.She computes the frequency of every block(for example,each sentence of a secrete text can be regarded as a block)of S and represents them in Fibonacci bases such as 34,21,13,8,5,3,2,1,(see Definition 2).

    The compressing processes are performed in clearly separated stages:

    (i)Compute the frequencies of the collection of bits which are encodings of the text or the integers.

    (ii)Rank the collection of bits by their frequencies.

    (iii)Compute the Fibonacci code of each ranking.

    (iv) Output the ranking as the header of the compressed secret.

    (v)Reread the input secret S,using the code table to generate the output and transfer it to the compressed secret.

    Step 2 Quantum encodingThe step aims to convert the binary codes 1s and 0s into single photon’s polarizations Vs and Hs.The Dealer encodes the frequencies with OAM by assigning a twisted number of a single photon to each Fibonacci value:.That is,only 8 different twists are required in terms of Chen and She’s work[30](see Fig.1).Moreover,the Dealer encodes every character into binary codes,i.e.,1s and 0s which are represented by single photon’s polarizations Vs and Hs.Also,to remove this encoding ambiguity,we append an extra bit 1 to every character binary codes,which is used to act as a “comma”,separating consecutive codewords.

    Step 3 Distributing the keyAs shown in Fig.1,Alice sends the quantum shares to P1,P2,...,Pmaccording to the setting of an array of angularly separated light sources illuminating the static phase mask.After entering static modulation,the input planar photons are converted into twisted ones with coinciding propagation direction.Each twist number assigned is selectively dependent on their inclinations in front of the phase mask.

    Then,the encoded twisted photons are sent into the free-space link by an afocal telescope.The Dealer’s qudit receiver consists of a similar telescope,the aforementioned OAM sorter,and an array of photodiode detectors which are set up to monitor the output intensity of each port.Thus,the aggregated information is used to decode the message.The Dealer Alice can encode the secret message as binary codes(spin),and send quantum shares–the corresponding multiple spin states through the quantum channel,and publish the determinants of Fibonacci diagonal matrices to participants P1,P2,...,Pmthrough the classical communication channel.

    Example 2Take the secret message“action please” as an example to illustrate Steps 1-3,we can obtain the encoded information listed in Table 1.

    Table 1 Compress and encode the secret message “action please” as binary bits,where each binary code(0 or 1)is represented by a single photon’s polarization(H or V).

    The Dealer sends VV to P1,HHVV to P2,...,HVV to P10via the quantum channel.At the same time,the Dealer publishes det(),det(),...,det()via the classical channel.

    3.2 Recovering the Secret Phase

    In this phase,the system accepts the triplet:quantum shares s1,s2,...,smand a set of currently active participants{P1,P2,...,Pm}as the input.It outputs the aggregated secret S if{P1,P2,...,Pm}are verified,or“FAIL”otherwise.

    The detailed steps are as follows:

    Step1 EavesdroppingDetectionUpon recipient of these multiple spin states,the participants{P1,P2,...,Pm}can obtain their qubits.According to Table 1,they first verify the determinants of Fibonacci diagonal matrices consisting of the Rank’s Fibonacci bases in terms of Eq.(5).If they are different,they immediately abort the communication and the final output is FAIL.Otherwise,they continue to obtain the matching codes.

    Step 2 Secret RecoveryAfter confirming that the secret shares received by all participants are valid,the Dealer informs the nominated aggregator immediately(which can be any participant)on the positions of every character or integer of the collection of bits.Finally,the secret S can be reconstructed by concatenating all the decoded pieces based on each participant’s secret share.An example is provided in Table 1.

    In Example 2,according to the published det(),det(),...,det()by the Dealer,P1,...,P10can detect potential eavesdropping in terms of Eq.(5).If the com-puted determinants from P1,...,P10are identical to the Dealer’s published values,P1can obtain “a” from the code word VV,P2can obtain “c” from the code word HHVV,···,P10can obtain “e” from the code word HVV.At last,they can obtain the secret message “action please”.

    4 Security Analysis

    In this section,we analyze the security of the proposed QSS scheme in the presence of some known attack strategies.

    4.1 The Man-in-the-Middle Attack

    As shown in Fig.1,the Dealer manipulates the qudit state of the signal photons only in her private side and keeps these photons all the time.Similarly,the participants P1,P2,...,Pmmanipulate the qubit states in their own sides.In these private places,it is not possible for the adversary Eve to have access to the photons.Nevertheless,participants P1,P2,...,Pmdo not always keep the qubit photons,providing a chance for Eve’s eavesdropping.That is,Eve can intercept the qubit photons from the Dealer to the participants P1,P2,...,Pmin the free space,and then send the unoriginal qubit photons to P1,P2,...,Pm,i.e.,man-in-the-middle attacks.However,our scheme can defend the secrets against the man-in-themiddle attack.This is because we can use the determinant of matching Fibonacci diagonal matrices of photon’s information to verify the identification of every participant.

    Take Table 1 for example,if the adversary Eve intercepts the multiple spin states HVV from the Dealer to participant 2,and then re-sends HHVV to participant 2.However,the determinant of matching Fibonacci diagonal matrices is also changed.In this case,the Fibonacci diagonal matrix is changed to

    4.2 The Participants’Attack

    Our scheme uses an access control mechanism,i.e.only designated participants can recover the secret.So,we consider the attacks launched from the external participants here.We analyze the following three scenarios.

    (i)Firstly,as shown in Fig.1,the external participant who is located at the other side of the qubit network,cannot see the secret message over the qudit network directly.

    (ii)Secondly,according to Eq.(5),we use the determinants of Fibonacci diagonal matrices consisting of the rank’s Fibonacci bases to verify the identity of the participant.For example,if a participant receives multiple spin states HVV and its Rank’s Fibonacci base is 2,then the Fibonacci diagonal matrices is

    (iii)Finally,even if the external participants can obtain the quantum information,any attacks can be detected by the compression coding with representation of every block.Each sentence or a certain number of letters can be regarded as a block of the secret.The position of every letters of a block is only given to the legal participants through the secure channel.Therefore,the external participants cannot obtain the secret.

    4.3 The Photon-Number-Splitting(PNS)Attack

    The photon-number-splitting(PNS)attack is defined as follows:as non-ideal light sources are used in quantum cryptography,the number of produced photons can be multiple,providing a chance for the attacker Eve to obtain the transmitted quantum messages in two-way quantum communications.However,as shown in Fig.1,our scheme is one-way and we use orbital angular momentum onto multiple spin states rather than spin angular momentum.Therefore,Eve cannot obtain the secret using the photon-number-splitting(PNS)attack.

    5 Features of Our Proposed Protocol

    Based on Chen and She’s work,[29]we have proposed a novel QSS scheme,i.e.compressed QSS.In our protocol,the q-plate is used as a qudit-to-qubit transverter to transform the polarization higher-dimensional photons into the two-dimensional photons,which provides the possibility to explore the features of the higher-dimensional space of OAM states to encode information.More importantly,our encoding process is much simpler than the Huffman encoding,because the latter must take every probability distribution of letters in the secret information into account.In addition,the actual decoding process is very similar to that of the Huffman coding.In our QSS scheme,one-to-one mapping between the multiple spin states and the participants P1,P2,...,Pmwould make the column of codewords in Table 1 superfluous.In the following,we introduce the features brought by the higher-dimensional space of OAM states in detail.

    (i)Our QSS scheme has high compression efficiency Due to the use of the variable-length Fibonacci compression encoding,the length of codeword is reduced tofromin the standard binary coding(see Table 2),where M is the maximal bytes of codewords length.The longer the secret messages,the more substantial the saving codes(photons)(see Fig.2).Figure 2 plots the codewords length as a function of the rank of the character on a logarithmic scale for Huffman and Fibonacci compression coding.

    Fig.2 The comparison of compression efficiency between Huffman encoding and our Fibonacci compression encoding.

    Also,as shown in Table 2,the Prob√ability of 1-bit guess is reduced from 1/2 to(1/2)(1? 1/)=0.276.Meanwhile,the average codeword lengths of 1-bit areandfor standard binary coding and our Fibonacci compression encoding respectively.

    Also,review Example 2,the size of header+51 bits is encoded into at most 51/10=6 bytes,though the header may be larger.With an ordinary representation,each letter of the original string “action please” in Example 2 requires one byte or 8 bits.Compared to the standard binary codes with our Fibonacci compression encoding,the length of character“a” is one fourth of that of standard binary codes.Moreover,if we can obtain a more accurate estimate of the probability of each letter in the secret message,the proportion of lossless compression can be significantly increased.

    Table 2 Performance comparison between standard binary encoding and Fibonacci encoding,where M is the maximal bytes of codewords length.

    (ii)Our QSS scheme is robustWhile inserting and deleting of a single bit,the Huffman coding may lose all the suffixes,since it renders the decoding to be shifted and all the true codeword boundaries to be missed.However,our Fibonacci coding is immune to such effects(see Fig.2),because of its explicit codeword ending.

    (iii)Our QSS scheme can save a substantial number of photons As shown in Fig.2,if the shared secret is long,with our Fibonacci compression encoding,the length of codes is reduced greatly,and in turn,in our QSS scheme,the number of the used photons is greatly reduced.

    (iv) The dealer and the participants P1,P2,...,Pmare in different kinds of a qubit network As is described in Sec.3,Dealer is at a free-space OAM qudit network while all participants P1,P2,...,Pmare at a qubit network.So,the participants P1,P2,...,Pmcould not see the Dealer’s secret,and the security is provided.

    6 Conclusion

    The paper uses Fibonacci compression encoding to achieve a compressed QSS scheme based on orbital angular momentum onto multiple spin states.The proposed scheme improves the efficiency of photon usage due to the significant improvement over the standard binary coding.The proposed scheme also improves the level of security,because the probability of successfully guess√ing 1-bit information is reduced from 1/2 to(1/2)(1?1/=0.276.Because we use the Fibonacci compression coding to tolerate information loss,our proposed scheme is more robust than the traditional schemes using the Huffman coding.

    猜你喜歡
    張軍明星
    篆刻:張軍
    萬松浦(2023年6期)2023-04-08 11:57:16
    張軍從脾論治痛風(fēng)性關(guān)節(jié)炎緩解期的經(jīng)驗總結(jié)
    明星猝死背后
    南方周末(2019-11-28)2019-11-28 08:37:59
    交通安全小明星
    幼兒園(2017年23期)2018-02-07 15:26:54
    明星們愛用什么健身APP
    Coco薇(2017年2期)2017-04-25 03:02:27
    扒一扒明星們的
    Coco薇(2016年10期)2016-11-29 16:59:54
    誰是大明星
    誰動了我的壽限
    貪小便宜毀人生
    CO2 Capture by Vacuum Swing Adsorption Using F200 and Sorbead WS as Protective Pre-layers*
    9191精品国产免费久久| av视频免费观看在线观看| 国产免费现黄频在线看| 电影成人av| 国产国语露脸激情在线看| 丰满乱子伦码专区| 侵犯人妻中文字幕一二三四区| 久久精品国产a三级三级三级| 波多野结衣av一区二区av| 精品视频人人做人人爽| 三级国产精品片| 曰老女人黄片| 丰满少妇做爰视频| 免费不卡的大黄色大毛片视频在线观看| 国产精品无大码| 成人毛片a级毛片在线播放| 国产不卡av网站在线观看| 蜜桃国产av成人99| 久久精品国产综合久久久| 国精品久久久久久国模美| 国产精品三级大全| 欧美另类一区| 久久久久国产精品人妻一区二区| 亚洲三级黄色毛片| 高清黄色对白视频在线免费看| 天美传媒精品一区二区| 国产高清国产精品国产三级| 26uuu在线亚洲综合色| 天堂中文最新版在线下载| 亚洲第一青青草原| 成人毛片a级毛片在线播放| 日韩一本色道免费dvd| 美女主播在线视频| 啦啦啦中文免费视频观看日本| 王馨瑶露胸无遮挡在线观看| 天堂俺去俺来也www色官网| 精品亚洲成国产av| 亚洲欧美一区二区三区黑人 | 少妇人妻久久综合中文| 热re99久久国产66热| 少妇熟女欧美另类| 欧美+日韩+精品| 国产精品 国内视频| xxx大片免费视频| 99九九在线精品视频| 精品99又大又爽又粗少妇毛片| 欧美人与善性xxx| 丝袜人妻中文字幕| 综合色丁香网| 999久久久国产精品视频| 久久人人97超碰香蕉20202| 少妇被粗大的猛进出69影院| 久久久久久久久久久免费av| 香蕉国产在线看| av天堂久久9| 人妻少妇偷人精品九色| 亚洲视频免费观看视频| 久久99精品国语久久久| 日本爱情动作片www.在线观看| 亚洲三区欧美一区| 精品人妻熟女毛片av久久网站| 电影成人av| 日本免费在线观看一区| 午夜久久久在线观看| 肉色欧美久久久久久久蜜桃| 久久精品国产综合久久久| 桃花免费在线播放| www.熟女人妻精品国产| 日韩免费高清中文字幕av| 韩国av在线不卡| 伊人久久国产一区二区| 久久久精品免费免费高清| 99国产综合亚洲精品| 亚洲美女黄色视频免费看| 精品一区二区三区四区五区乱码 | 亚洲av日韩在线播放| www.av在线官网国产| 午夜激情av网站| 免费久久久久久久精品成人欧美视频| 精品久久蜜臀av无| 亚洲av.av天堂| 久久这里只有精品19| 少妇的丰满在线观看| 中文字幕最新亚洲高清| 校园人妻丝袜中文字幕| 日本欧美国产在线视频| 久久久精品区二区三区| 性色avwww在线观看| 亚洲少妇的诱惑av| 高清av免费在线| 成人影院久久| 国产精品嫩草影院av在线观看| 在线亚洲精品国产二区图片欧美| 80岁老熟妇乱子伦牲交| 亚洲人成77777在线视频| 高清黄色对白视频在线免费看| 亚洲精品久久久久久婷婷小说| 亚洲精品乱久久久久久| 有码 亚洲区| 午夜日韩欧美国产| 午夜激情av网站| 亚洲精品中文字幕在线视频| 最近手机中文字幕大全| 人妻人人澡人人爽人人| av免费观看日本| 自线自在国产av| 精品国产一区二区三区四区第35| 成人亚洲精品一区在线观看| 午夜av观看不卡| 欧美国产精品一级二级三级| 亚洲欧美清纯卡通| 青春草国产在线视频| 天天躁狠狠躁夜夜躁狠狠躁| 久热这里只有精品99| 美女xxoo啪啪120秒动态图| 日韩欧美一区视频在线观看| 高清在线视频一区二区三区| 久久久久久免费高清国产稀缺| 自线自在国产av| 999久久久国产精品视频| 晚上一个人看的免费电影| 久久久久久人人人人人| 国产精品久久久久久精品古装| 久久精品久久久久久久性| 久热久热在线精品观看| 国产日韩欧美视频二区| 女人被躁到高潮嗷嗷叫费观| 亚洲欧美色中文字幕在线| 蜜桃国产av成人99| 亚洲成国产人片在线观看| av又黄又爽大尺度在线免费看| 国产男人的电影天堂91| 99九九在线精品视频| 18禁动态无遮挡网站| 18禁国产床啪视频网站| 成年美女黄网站色视频大全免费| 黄片无遮挡物在线观看| 国产亚洲午夜精品一区二区久久| 丝袜美足系列| 色播在线永久视频| 色播在线永久视频| 亚洲精品国产色婷婷电影| 天天影视国产精品| 国产老妇伦熟女老妇高清| 天堂俺去俺来也www色官网| 80岁老熟妇乱子伦牲交| 男女免费视频国产| 精品一区二区免费观看| av网站在线播放免费| 男女边吃奶边做爰视频| 一本色道久久久久久精品综合| 精品一区二区免费观看| www.熟女人妻精品国产| 99久久综合免费| 色婷婷久久久亚洲欧美| 热re99久久精品国产66热6| 老汉色∧v一级毛片| 蜜桃国产av成人99| 精品卡一卡二卡四卡免费| 90打野战视频偷拍视频| 亚洲av中文av极速乱| 亚洲一级一片aⅴ在线观看| 美女国产视频在线观看| 黑人欧美特级aaaaaa片| 色婷婷久久久亚洲欧美| 999精品在线视频| 精品一品国产午夜福利视频| 国产熟女欧美一区二区| 日韩av不卡免费在线播放| 人人妻人人澡人人爽人人夜夜| 久久国内精品自在自线图片| 欧美精品亚洲一区二区| 国产爽快片一区二区三区| 精品亚洲成国产av| videosex国产| av免费观看日本| 又粗又硬又长又爽又黄的视频| 观看美女的网站| 人妻少妇偷人精品九色| 亚洲第一av免费看| 欧美97在线视频| av在线老鸭窝| 久久国产精品男人的天堂亚洲| 一级爰片在线观看| 亚洲,欧美精品.| 精品人妻熟女毛片av久久网站| 久久这里有精品视频免费| 亚洲国产精品一区三区| 99久久综合免费| 超碰97精品在线观看| 韩国精品一区二区三区| 国产淫语在线视频| kizo精华| 欧美人与善性xxx| 色网站视频免费| 日本色播在线视频| 国产一区二区 视频在线| 午夜91福利影院| 国产无遮挡羞羞视频在线观看| 男人添女人高潮全过程视频| 性高湖久久久久久久久免费观看| 美女中出高潮动态图| 久久精品久久精品一区二区三区| 亚洲综合精品二区| 九九爱精品视频在线观看| 亚洲欧美成人精品一区二区| 大陆偷拍与自拍| 久久女婷五月综合色啪小说| 国产免费福利视频在线观看| 精品国产乱码久久久久久小说| 久久 成人 亚洲| 日韩一区二区三区影片| 在线观看人妻少妇| 国产毛片在线视频| 只有这里有精品99| 国产男女内射视频| 国产熟女欧美一区二区| 午夜福利视频精品| 激情视频va一区二区三区| 久久这里有精品视频免费| 99国产精品免费福利视频| 香蕉国产在线看| 欧美中文综合在线视频| 男男h啪啪无遮挡| 九九爱精品视频在线观看| 人人妻人人澡人人爽人人夜夜| 成人国产麻豆网| 久久人人爽av亚洲精品天堂| 一级片'在线观看视频| 男女高潮啪啪啪动态图| 国产免费视频播放在线视频| 卡戴珊不雅视频在线播放| av国产久精品久网站免费入址| 国产精品嫩草影院av在线观看| 亚洲av在线观看美女高潮| 精品国产一区二区三区久久久樱花| 搡女人真爽免费视频火全软件| www.精华液| 成人黄色视频免费在线看| 大香蕉久久网| 女人久久www免费人成看片| 麻豆av在线久日| 亚洲综合色网址| 人妻少妇偷人精品九色| 极品少妇高潮喷水抽搐| 99re6热这里在线精品视频| 母亲3免费完整高清在线观看 | 如日韩欧美国产精品一区二区三区| 日韩伦理黄色片| 久久久国产一区二区| 国产片内射在线| 午夜日韩欧美国产| 一区二区三区激情视频| h视频一区二区三区| 美女脱内裤让男人舔精品视频| 久久99精品国语久久久| 人人澡人人妻人| 一二三四在线观看免费中文在| 99热全是精品| 国产色婷婷99| 欧美日本中文国产一区发布| 免费高清在线观看视频在线观看| 男女边吃奶边做爰视频| 一本大道久久a久久精品| 99久久人妻综合| 大陆偷拍与自拍| 波多野结衣一区麻豆| 两性夫妻黄色片| 日韩,欧美,国产一区二区三区| 亚洲av国产av综合av卡| 免费在线观看黄色视频的| 欧美日韩视频高清一区二区三区二| 久久久久久人妻| 久久精品国产亚洲av高清一级| www.精华液| 另类精品久久| 亚洲国产精品999| 黄片无遮挡物在线观看| av国产精品久久久久影院| 久久精品国产亚洲av天美| 波野结衣二区三区在线| 色婷婷av一区二区三区视频| 久久久久网色| 精品人妻在线不人妻| 国产黄色免费在线视频| 夫妻午夜视频| 国产日韩一区二区三区精品不卡| 国产黄频视频在线观看| 精品久久久久久电影网| 国产免费视频播放在线视频| 九九爱精品视频在线观看| 亚洲成av片中文字幕在线观看 | 亚洲精品,欧美精品| 国产精品亚洲av一区麻豆 | 国产精品免费大片| 嫩草影院入口| 熟妇人妻不卡中文字幕| 美女中出高潮动态图| av在线老鸭窝| 一本大道久久a久久精品| 久久精品国产鲁丝片午夜精品| 久久女婷五月综合色啪小说| 黄片无遮挡物在线观看| 亚洲情色 制服丝袜| 亚洲精品成人av观看孕妇| 日韩电影二区| 国产免费现黄频在线看| 成人亚洲精品一区在线观看| 国产精品一国产av| 国产国语露脸激情在线看| 黄片小视频在线播放| 自线自在国产av| 岛国毛片在线播放| 久久精品久久久久久噜噜老黄| 一级毛片电影观看| 免费看av在线观看网站| 成人午夜精彩视频在线观看| 日本免费在线观看一区| 亚洲国产av新网站| 国产精品人妻久久久影院| 91精品国产国语对白视频| 黄色 视频免费看| 欧美日本中文国产一区发布| 欧美精品一区二区免费开放| kizo精华| 国产一区二区三区综合在线观看| 观看av在线不卡| 制服人妻中文乱码| 三级国产精品片| 国产成人午夜福利电影在线观看| 欧美黄色片欧美黄色片| 国产成人精品久久二区二区91 | 国产不卡av网站在线观看| 丝袜美腿诱惑在线| 久久久久视频综合| 精品国产国语对白av| 香蕉国产在线看| 多毛熟女@视频| 9热在线视频观看99| 少妇精品久久久久久久| 国产av码专区亚洲av| 精品午夜福利在线看| 99久久精品国产国产毛片| 午夜影院在线不卡| 亚洲经典国产精华液单| 精品亚洲成a人片在线观看| 成人免费观看视频高清| 99热网站在线观看| 天天躁日日躁夜夜躁夜夜| 丁香六月天网| 1024视频免费在线观看| 亚洲欧洲精品一区二区精品久久久 | 久久久久网色| 欧美激情极品国产一区二区三区| 爱豆传媒免费全集在线观看| 人妻少妇偷人精品九色| 成人午夜精彩视频在线观看| 哪个播放器可以免费观看大片| 国产av国产精品国产| 久久精品国产鲁丝片午夜精品| 久久99精品国语久久久| 日本爱情动作片www.在线观看| 国产日韩欧美亚洲二区| 久久人妻熟女aⅴ| av网站在线播放免费| 久久精品久久久久久久性| 伦理电影大哥的女人| 日韩三级伦理在线观看| a 毛片基地| 老女人水多毛片| 欧美日韩综合久久久久久| 国产亚洲午夜精品一区二区久久| 妹子高潮喷水视频| 国产精品二区激情视频| 午夜福利在线免费观看网站| 亚洲天堂av无毛| 欧美日韩视频高清一区二区三区二| 人妻少妇偷人精品九色| 丰满饥渴人妻一区二区三| 精品少妇久久久久久888优播| 黄网站色视频无遮挡免费观看| 欧美+日韩+精品| 极品人妻少妇av视频| 亚洲欧美清纯卡通| 午夜福利乱码中文字幕| 视频区图区小说| 欧美国产精品va在线观看不卡| 天天躁狠狠躁夜夜躁狠狠躁| 永久免费av网站大全| 欧美bdsm另类| 老鸭窝网址在线观看| √禁漫天堂资源中文www| 久久久久网色| 久久久欧美国产精品| 少妇的丰满在线观看| 在线亚洲精品国产二区图片欧美| 国产精品 国内视频| 一级毛片我不卡| 国产又色又爽无遮挡免| 免费播放大片免费观看视频在线观看| 一本久久精品| 尾随美女入室| 欧美精品国产亚洲| 如何舔出高潮| 日本免费在线观看一区| 国产人伦9x9x在线观看 | 免费在线观看完整版高清| 美女主播在线视频| 久久久久网色| 国产免费现黄频在线看| 精品少妇久久久久久888优播| 另类亚洲欧美激情| 日韩一卡2卡3卡4卡2021年| 热99国产精品久久久久久7| 丝袜喷水一区| 老鸭窝网址在线观看| 最近中文字幕高清免费大全6| 久久人人爽人人片av| 免费女性裸体啪啪无遮挡网站| 一级毛片电影观看| 日产精品乱码卡一卡2卡三| 91久久精品国产一区二区三区| 黄色 视频免费看| 一级毛片黄色毛片免费观看视频| 男女高潮啪啪啪动态图| 日韩制服丝袜自拍偷拍| 亚洲国产精品一区二区三区在线| 高清不卡的av网站| 精品一区二区三卡| 中文字幕人妻熟女乱码| 久久久精品区二区三区| 寂寞人妻少妇视频99o| 久久韩国三级中文字幕| 国产精品国产av在线观看| 精品国产乱码久久久久久小说| 人妻人人澡人人爽人人| 老司机影院毛片| 日日爽夜夜爽网站| 日韩,欧美,国产一区二区三区| 亚洲色图综合在线观看| 十八禁网站网址无遮挡| 亚洲色图综合在线观看| 尾随美女入室| 日本vs欧美在线观看视频| 青春草国产在线视频| 日韩av在线免费看完整版不卡| av女优亚洲男人天堂| 黄色一级大片看看| 日韩三级伦理在线观看| 亚洲精品在线美女| 男女啪啪激烈高潮av片| 亚洲欧美一区二区三区久久| 国产精品二区激情视频| 亚洲一级一片aⅴ在线观看| 久久久久久人人人人人| 亚洲美女黄色视频免费看| 精品少妇一区二区三区视频日本电影 | 久久97久久精品| 久久亚洲国产成人精品v| 99久久中文字幕三级久久日本| 老汉色∧v一级毛片| 人人妻人人澡人人爽人人夜夜| 亚洲欧美成人精品一区二区| 色吧在线观看| 中文字幕制服av| 男女边摸边吃奶| 亚洲四区av| 熟女电影av网| 久久精品久久精品一区二区三区| 一区二区日韩欧美中文字幕| 一本色道久久久久久精品综合| 超碰成人久久| 热re99久久国产66热| 久久这里有精品视频免费| 一本色道久久久久久精品综合| 丝袜在线中文字幕| 中文欧美无线码| 9热在线视频观看99| 色网站视频免费| av卡一久久| 精品酒店卫生间| 成人漫画全彩无遮挡| 日本欧美视频一区| 99热网站在线观看| 人妻系列 视频| av不卡在线播放| 女性生殖器流出的白浆| 亚洲精品久久午夜乱码| 秋霞伦理黄片| 日本vs欧美在线观看视频| www.自偷自拍.com| 看非洲黑人一级黄片| 欧美日韩亚洲高清精品| 大香蕉久久成人网| 久久久久久免费高清国产稀缺| a级毛片在线看网站| 超碰成人久久| 你懂的网址亚洲精品在线观看| av卡一久久| 亚洲精品美女久久av网站| av网站在线播放免费| 最近2019中文字幕mv第一页| 性色avwww在线观看| 热99久久久久精品小说推荐| 精品一区在线观看国产| 一个人免费看片子| 久久这里只有精品19| 热re99久久精品国产66热6| 亚洲激情五月婷婷啪啪| 韩国av在线不卡| 2022亚洲国产成人精品| 日韩 亚洲 欧美在线| 丝袜美腿诱惑在线| 一二三四中文在线观看免费高清| 深夜精品福利| 亚洲国产精品一区三区| 一区福利在线观看| 视频区图区小说| 丰满饥渴人妻一区二区三| 成人手机av| 春色校园在线视频观看| 亚洲精品美女久久久久99蜜臀 | 午夜免费男女啪啪视频观看| 亚洲综合色网址| 日韩精品免费视频一区二区三区| 日本猛色少妇xxxxx猛交久久| 日韩欧美一区视频在线观看| 欧美少妇被猛烈插入视频| 久热久热在线精品观看| 伊人久久国产一区二区| 亚洲欧洲国产日韩| 亚洲国产成人一精品久久久| 青草久久国产| 在线观看www视频免费| 国产福利在线免费观看视频| 国产成人aa在线观看| 超色免费av| 亚洲五月色婷婷综合| 日本午夜av视频| 老熟女久久久| 久久久久国产一级毛片高清牌| 在线观看一区二区三区激情| 亚洲内射少妇av| 午夜福利乱码中文字幕| 日韩av免费高清视频| 午夜福利一区二区在线看| 亚洲av电影在线观看一区二区三区| 成年人免费黄色播放视频| av卡一久久| 精品国产露脸久久av麻豆| 丰满少妇做爰视频| 一级毛片黄色毛片免费观看视频| 美女国产高潮福利片在线看| 在线看a的网站| 亚洲欧美中文字幕日韩二区| 亚洲av欧美aⅴ国产| 女性被躁到高潮视频| 一级片免费观看大全| 国产精品国产三级国产专区5o| 只有这里有精品99| 欧美日韩亚洲高清精品| 精品久久久久久电影网| 午夜影院在线不卡| 多毛熟女@视频| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 免费观看无遮挡的男女| 免费大片黄手机在线观看| 免费观看性生交大片5| 亚洲人成77777在线视频| 欧美国产精品va在线观看不卡| a级毛片在线看网站| 免费看av在线观看网站| 亚洲国产av新网站| 日韩视频在线欧美| 午夜久久久在线观看| 蜜桃在线观看..| 啦啦啦中文免费视频观看日本| 日韩熟女老妇一区二区性免费视频| 国产精品免费视频内射| 女人精品久久久久毛片| 国产在线视频一区二区| 男人爽女人下面视频在线观看| 日韩伦理黄色片| 国产成人午夜福利电影在线观看| 又黄又粗又硬又大视频| 黄片无遮挡物在线观看| 成年女人在线观看亚洲视频| 国产免费一区二区三区四区乱码| 久久99蜜桃精品久久| 久久狼人影院| 99九九在线精品视频| 香蕉国产在线看| 秋霞伦理黄片| 国语对白做爰xxxⅹ性视频网站| 男人操女人黄网站| 亚洲第一av免费看| 国产成人a∨麻豆精品| 天堂中文最新版在线下载| 日韩一区二区三区影片| 国产国语露脸激情在线看| 蜜桃国产av成人99| 国产又色又爽无遮挡免| 看免费av毛片| 熟女电影av网| 韩国高清视频一区二区三区| 美女国产视频在线观看| 国产精品国产av在线观看| 国产精品久久久久久av不卡| 亚洲第一区二区三区不卡| 久久国内精品自在自线图片| 最新的欧美精品一区二区| 超碰97精品在线观看| 国产一区亚洲一区在线观看| 国产毛片在线视频| 我要看黄色一级片免费的|