• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Prospect for Cosmological Parameter Estimation Using Future Hubble Parameter Measurements?

    2018-11-24 07:40:00JiaJiaGeng耿佳佳RuiYunGuo郭瑞蕓AnZhongWang王安忠3JingFeiZhang張敬飛andXinZhang張?chǎng)?/span>
    Communications in Theoretical Physics 2018年10期
    關(guān)鍵詞:張?chǎng)?/a>佳佳

    Jia-Jia Geng(耿佳佳),Rui-Yun Guo(郭瑞蕓),An-Zhong Wang(王安忠),,3Jing-Fei Zhang(張敬飛),and Xin Zhang(張?chǎng)?,4,5,?

    1Institute for Advanced Physics&Mathematics,Zhejiang University of Technology,Hangzhou 310032,China

    2Department of Physics,College of Sciences,Northeastern University,Shenyang 110004,China

    3GCAP-CASPER,Department of Physics,Baylor University,Waco,TX,76798-7316,USA

    4Center for High Energy Physics,Peking University,Beijing 100080,China

    5Center for Gravitation and Cosmology,Yangzhou University,Yangzhou 225009,China

    AbstractWe constrain cosmological parameters using only Hubble parameter data and quantify the impact of future Hubble parameter measurements on parameter estimation for the most typical dark energy models.We first constrain cosmological parameters using 52 current Hubble parameter data including the Hubble constant measurement from the Hubble Space Telescope.Then we simulate the baryon acoustic oscillation signals from WFIRST(Wide-Field Infrared Survey Telescope)covering the redshift range of z∈[0.5,2]and the redshift drift data from E-ELT(European Extremely Large Telescope)in the redshift range of z∈[2,5].It is shown that solely using the current Hubble parameter data could give fairly good constraints on cosmological parameters.Compared to the current Hubble parameter data,with the WFIRST observation the H(z)constraints on dark energy would be improved slightly,while with the E-ELT observation the H(z)constraints on dark energy is enormously improved.

    Key words:dark energy,cosmological parameter constraints,Hubble parameter measurements

    1 Introduction

    In exploration of the nature of dark energy,a primary task is to measure the evolution of the equation-of-state(EoS)parameter of dark energy using astronomical observations,based on which theoretical explorations of dark energy would have a clearer direction.However,the measurement of EoS w(z)of dark energy is extremely difficult,owing to the fact that w(z)is actually not an observable,which affects the evolution of the universe,including the expansion history and the growth of structure,in a subtle way.Thus,w(z)of dark energy can only be indirectly measured in the light of effects of dark energy on the evolution of the universe.

    Usually,the constraints on w(z)of dark energy are provided by the distance-redshift relation measurements that record the expansion history of the universe,but the cosmic distances,including both luminosity distances from the observations of type Ia supernovae and the angular diameter distances from the observations of baryon acoustic oscillations(BAO),are linked to the EoS of dark energy by an integral over 1/H(z),with H(z)being the Hubble parameter of the universe,and H(z)is affected by dark energy via another integral over w(z).Hence,using the distance-redshift relation measurements to constrain w(z)is rather difficult,but using the H(z)measurements to constrain dark energy would become much simpler and more efficient.Obviously,for constraining the EoS of dark energy,the direct measurements of the Hubble parameter at different redshifts are vitally important.Although directly measuring H(z)has been a challenging mission in cosmology,in recent years some H(z)data have been accumulated under the great efforts of astronomers.[1?18]It has been shown that,though both the quantity and quality of the current H(z)data are limited,solely using these current data could provide fairly good constraints on some typical dark energy models.[19]For the extensive studies on the use of the current H(z)data in cosmology,see,e.g.,Refs.[20–39].

    In the near future,some planned next-generation dark energy experiments,e.g.,WFIRST(Wide-Field Infrared Survey Telescope),Euclid,LSST(Large Synoptic Survey Telescope),etc.,will be implemented.Thus,both the quantity and quality of H(z)data would be largely enhanced in the next decades.In this paper,we wish to investigate what extent would be achieved by the future next-generation experiments using the H(z)observations in the exploration of the nature of dark energy.

    Future Hubble parameter measurements with different facilities complement each other in redshift coverage.For example,WFIRST observes the BAO signals in the redshift range of z∈ [0.5,2],while E-ELT’s(European Extremely Large Telescope)high-resolution optical spectrograph CODEX(COsmic Dynamics EXperiment)observes the Lyman-α absorption lines of distant quasar systems covering the redshift range of z∈[2,5].In this study,we will simulate future Hubble parameter data from both WFIRST and E-ELT measurements and quantify their impact on parameter estimation.

    According to our previous papers,[19,40?44]redshift drift measurements from E-ELT produce degeneracy directions in parameter space that are nearly orthogonal to current combined data from different probes,thus can efficiently break degeneracy and significantly improve cosmological constraints.In this paper,we wish to see if the redshift drift observations can play an important role in improving constraints on dark energy when the Hubble parameter data are solely considered.

    The paper is organized as follows.In Sec.2,we describe the current and future H(z)data considered in this work.In Sec.3,we present the constraint results and make some relevant discussions.Conclusion is given in Sec.4.

    2 Methodology

    In this study,in order to forecast the prospect for cosmological parameter estimation using the future Hubble parameter measurements,we employ three most typical dark energy models,i.e.,the Λ cold dark matter(ΛCDM)model in which dark energy is provided by a cosmological constant Λ with w= ?1,the wCDM model in which dark energy has a constant EoS w=w0,and the Chevallier-Polarski-Linder(CPL)model in which the EoS of dark energy is dynamically evolutionary as w(z)=w0+waz/(1+z).

    To simulate the future H(z)data,we will first constrain the dark energy models by using the current H(z)data,and then use the corresponding best-fit models asfiducial models to produce the mock future data,by which the data inconsistency would be avoided in combining current and future H(z)data in a cosmological fit.We will use the simulated future H(z)data to forecast what extent would be achieved by the future H(z)observations in exploring the nature of dark energy.

    2.1 Current H(z)Data,z∈[0,2.36]

    For current Hubble parameter measurements,we use 31 data points from the differential age(DA)and 20 data points from clustering measurements.The DA method proposed by Jimenez and Loeb[45]compares the ages of passively-evolving galaxies with similar metallicity and separated by a small redshift interval.Another independent H(z)measurement used in this paper is from the clustering of galaxies or quasars.It was firstly proposed in Ref.[4],using the BAO peak position as a standard ruler in the radial direction.Some of the H(z)data points from clustering measurements may be correlated or biased.However,we ignore this problem because it is not the focus of this paper.

    We also use the direct measurement result of the Hubble constant,in the light of the cosmic distance ladder from the HST,H0=73.24 ± 1.74 km·s?1·Mpc?1.[46]Table 1 gives the H(z)data points used in this paper.51 of these data are from the compilation of Ref.[17],while the one with z=0.57 is from Ref.[12].

    Table 1 Current Hubble parameter measurements H(z)(in units of km·s?1Mpc?1)and their errors σHat redshift z.The method column shows how H(z)was obtained:DA means differential age method,while clustering is from BAO measurements.

    2.2 Future H(z)Data from WFIRST,z∈[0.5,2]

    In order to examine future Hubble parameter data,we simulate mock BAO data using the method described in Ref.[47]and consider the future BAO data based on the long-term space-based project WFIRST.For the details,we refer the reader to Ref.[47].These BAO data are uniformly distributed in 10 redshift bins of z∈[0.5,2],with each?zicentered on the grid zi.The observables in Ref.[47]are the expansion rate H(z)and the comoving angular diameter distance(z)=dL(z)/(1+z).However,we are only interested in the observable H(z)and ignore the other one in this paper.The uncertainty of lnH(zi)can be written as

    Here Vi=1500((zi))2/H(zi)is the comoving survey volume in the redshift bin of zi,while the erasure of the baryon features by non-linear evolution is factored in using fnl(zi)=1 for zi>1.4 and fnl(zi)=(1.4/zi)1/2for zi<1.4.We also consider the systematic errors which are modeled as independent uncertainties in the log of the distance measures in each redshift bin:with?zi=0.15.In our simulation we choose=0.0148,=0.0085,and V0=(2.16/h3)Gpc3.

    2.3 Future Redshift Drift Data from E-ELT,z∈[2,5]

    The drift in the redshift of observed objects passively follows the cosmological expansion. Sandage[48]firstly pointed out that one could directly measure the variation of redshift of distant sources.Then Loeb[49]presented the possibility of detecting redshift drift in the spectra of Lyman-α forest of distant quasars(QSO)in decades.The E-ELT equipped with a high-resolution spectrograph called CODEX is to be built to achieve this goal.

    The observable in the redshift drift method is

    where?tois the time interval of observation,and E(z)=H(z)/H0is given by a specific dark energy model.

    From Eq.(2),we have H(z)=(1+z)(H0??v/?to)and σH(z)=(1+z)σ?v/?to.Therefore,we can simulate future H(z)data using the redshift drift method,which covers the redshift range of z∈[2,5].The magnitude of the redshift drift is minuscule,i.e.,of order several cm·s?1at redshift z?1.

    In a flat universe,we have

    where ?rand ?mare the present-day density parameters of radiation and matter,respectively,and

    According to Ref.[50],the uncertainty of?v measurements expected by E-ELT can be expressed as

    with x= ?1.7 for 24.S/N=3000 is the signal-to-noise ratio defined per 0.0125?A pixel,NQSOis the number of observed quasars,while zQSOrepresents their redshift.

    To simulate the redshift drift data,we first constrain the dark energy models by using the current Hubble parameter data.The obtained best-fit parameters are substituted into Eq.(2)to get the central values of the redshift drift data.We choose NQSO=30 mock data uniformly distributed among six redshift bins of zQSO∈[2,5]and typically take?to=30 yr in our analysis.The error bars are computed from Eq.(4).

    3 Results and Discussion

    Figure 1 shows the joint constraints on the ΛCDM,wCDM,and CPL models in the ?m-h plane.Here,?mis the present-day matter density,and

    The 68.3%and 95.4%CL posterior distribution contours are shown.The data combinations used are the H(z)data,the H(z)+WFIRST data,and the H(z)+WFIRST+EELT data,and their constraint results are shown with white,red,and blue contours,respectively.The 1σ errors of the parameters w0,wa,?m,and h for the three models for the above three data combinations are given in Table 2.It is shown that the current H(z)data could provide fairly good constraints on these typical dark energy models.With the H(z)+WFIRST observation,the constraints on ?mand h will be improved,respectively,by 35.6%and 14.3%for the ΛCDM model,by 34.7%and 5.7%for the wCDM model,and by 19.3%and 5.0%for the CPL model.With the H(z)+WFIRST+E-ELT observation,the constraints on ?mand h will be further improved by 81.9%and 57.1%for the ΛCDM model,by 78.7%and 41.9%for the wCDM model,and by 43.8%and 46.7%for the CPL model,respectively,compared to those with the H(z)+WFIRST observation.This is because the degeneracy between ?mand h can be well broken with the E-ELT data,which is shown in Fig.1.Therefore,we conclude that with the WFIRST observation the H(z)constraints on dark energy would be improved slightly,while with the E-ELT observation the H(z)constraints on dark energy would be enormously improved.

    Table 2 Errors of parameters in the ΛCDM,wCDM,and CPL models for the fits to the H(z),H(z)+WFIRST,and H(z)+WFIRST+E-ELT data.

    Fig.1(Color online)Constraints(68.3%and 95.4%CL)in the ?m-h plane for(a)ΛCDM,(b)wCDM,and(c)CPL models with the H(z),H(z)+WFIRST,and H(z)+WFIRST+E-ELT data.

    Fig.2 (Color online)The one-dimensional posterior distributions of w for the wCDM model(a)and the twodimensional posterior distributions of w0and wafor the CPL model(b),from the H(z),H(z)+WFIRST,and H(z)+WFIRST+E-ELT constraints.

    We also discuss the impact of future Hubble parameter measurements on constraining the EoS of dark energy.In Fig.2 we show the one-dimensional posterior distributions of w for the wCDM model and the two-dimensional posterior distributions of w0and wafor the CPL model,from the H(z),H(z)+WFIRST,and H(z)+WFIRST+E-ELT constraints.The corresponding errors of w0and waare given in Table 2.With the H(z)+WFIRST observation,the constraint on w will be improved by 14.7%for the wCDM model,while the constraints on w0and wawill be improved by 16.1%and 3.7%for the CPL model,respectively.With the H(z)+WFIRST+E-ELT observation,the constraint on w will be further improved,by 27.2%for the wCDM model,while the constraints on w0and wawill be further improved by 31.0%and 35.0%for the CPL model,compared to those with the H(z)+WFIRST observation.Therefore,with the WFIRST observation the constraints on the EoS of dark energy would be improved slightly,while with the E-ELT observation the constraints on the EoS of dark energy would be further enormously improved.

    4 Conclusion

    In this paper,we forecast the prospect for constraining dark energy models using future Hubble parameter measurements.We show that direct measurements of the Hubble parameter at different redshifts are rather important for cosmological parameter estimations.Solely using the current H(z)data could provide fairly good constraints on typical dark energy models.We quantify the impact of future Hubble parameter observations on cosmological parameter estimations.In order to avoid data inconsistency,the best-fit models based on current data are chosen as thefiducial models to simulate mock future H(z)data.We simulate future Hubble parameter data from the WFIRST and E-ELT observations,which cover the redshift ranges of z∈[0.5,2]and z∈[2,5],respectively.It is shown that with the H(z)+WFIRST observation,the parameter estimation results will be improved slightly.Furthermore,we find that redshift drift data from E-ELT can effectively break the degeneracy between ?mand h.Therefore,with the H(z)+WFIRST+E-ELT observation,the constraints on ?mand h will be greatly improved.We also discuss the impact of future H(z)measurements on constraining the EoS of dark energy and show that with the E-ELT observation the constraints on the EoS of dark energy would be enormously improved.

    猜你喜歡
    張?chǎng)?/a>佳佳
    High-order effect on the transmission of two optical solitons
    A GPU-based general numerical framework for plasma simulations in terms of microscopic kinetic equations with full collision terms
    人類從未躑躅
    二次函數(shù)應(yīng)用及綜合題
    Insights into the adsorption of water and oxygen on the cubic CsPbBr3 surfaces: A first-principles study
    小種子發(fā)芽啦
    歡樂的歌
    Exact solution of the Gaudin model with Dzyaloshinsky–Moriya and Kaplan–Shekhtman–Entin–Wohlman–Aharony interactions*
    南瓜燈
    我的校園
    国产老妇伦熟女老妇高清| 最近中文字幕高清免费大全6| 亚洲精品久久午夜乱码| 秋霞在线观看毛片| 99热6这里只有精品| 色综合亚洲欧美另类图片| 精品久久久久久成人av| 人妻系列 视频| 久久草成人影院| 久久精品久久久久久久性| 国产精品久久视频播放| 麻豆国产97在线/欧美| 你懂的网址亚洲精品在线观看| 蜜桃亚洲精品一区二区三区| 一级毛片我不卡| 91在线精品国自产拍蜜月| av女优亚洲男人天堂| 一级黄片播放器| 亚洲精品第二区| 欧美成人精品欧美一级黄| 天堂网av新在线| 亚洲色图av天堂| 国内少妇人妻偷人精品xxx网站| 神马国产精品三级电影在线观看| 亚洲国产精品sss在线观看| 免费不卡的大黄色大毛片视频在线观看 | 人人妻人人看人人澡| 伦理电影大哥的女人| 男人舔奶头视频| 婷婷六月久久综合丁香| 狂野欧美激情性xxxx在线观看| 亚洲精品国产成人久久av| 在线观看免费高清a一片| 国产精品一二三区在线看| 国内精品宾馆在线| 日本一二三区视频观看| 国产成人aa在线观看| 九九爱精品视频在线观看| 80岁老熟妇乱子伦牲交| 成年女人看的毛片在线观看| 欧美不卡视频在线免费观看| 尾随美女入室| 看黄色毛片网站| 国产色爽女视频免费观看| 国产成人a区在线观看| 日韩电影二区| 国产精品一区二区三区四区免费观看| 黄色配什么色好看| av福利片在线观看| 在线天堂最新版资源| 中文天堂在线官网| 91aial.com中文字幕在线观看| 亚洲欧美日韩无卡精品| 五月伊人婷婷丁香| 97超视频在线观看视频| 激情 狠狠 欧美| 亚洲国产精品成人久久小说| 亚洲人成网站在线观看播放| 久久久午夜欧美精品| 国产亚洲最大av| 97精品久久久久久久久久精品| 国产午夜精品一二区理论片| 亚洲成人精品中文字幕电影| 午夜福利视频精品| 观看免费一级毛片| 日本黄大片高清| 一边亲一边摸免费视频| 青春草国产在线视频| 97超碰精品成人国产| freevideosex欧美| 一个人免费在线观看电影| 免费看日本二区| 不卡视频在线观看欧美| 99久久精品热视频| 成人av在线播放网站| 久久这里有精品视频免费| 国产精品综合久久久久久久免费| 久99久视频精品免费| 色尼玛亚洲综合影院| 国产av码专区亚洲av| 99久久中文字幕三级久久日本| 婷婷色综合www| 最近最新中文字幕大全电影3| 在线天堂最新版资源| 亚洲自偷自拍三级| 秋霞在线观看毛片| 成人亚洲精品一区在线观看 | 特级一级黄色大片| 久久精品久久久久久噜噜老黄| 91在线精品国自产拍蜜月| 内地一区二区视频在线| 亚洲第一区二区三区不卡| 国产 亚洲一区二区三区 | 视频中文字幕在线观看| 九九爱精品视频在线观看| 人体艺术视频欧美日本| 久久人人爽人人爽人人片va| 韩国av在线不卡| 黄色欧美视频在线观看| 精品人妻视频免费看| 欧美精品国产亚洲| 国产视频内射| 看免费成人av毛片| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 97精品久久久久久久久久精品| 中文资源天堂在线| 精华霜和精华液先用哪个| 天天躁日日操中文字幕| 不卡视频在线观看欧美| 亚洲综合色惰| 在线免费十八禁| 免费看不卡的av| 久久99蜜桃精品久久| 视频中文字幕在线观看| 亚洲不卡免费看| av.在线天堂| 精品久久久久久久久av| 三级国产精品片| 色5月婷婷丁香| 少妇被粗大猛烈的视频| 日本欧美国产在线视频| 日韩成人伦理影院| 美女国产视频在线观看| 精品欧美国产一区二区三| 国产午夜精品一二区理论片| 亚洲美女视频黄频| 成人性生交大片免费视频hd| 人妻制服诱惑在线中文字幕| 哪个播放器可以免费观看大片| 国产成人精品婷婷| 免费看av在线观看网站| 久久久久久久亚洲中文字幕| 麻豆久久精品国产亚洲av| 久久久久久久午夜电影| 亚洲美女搞黄在线观看| 精品一区二区三区人妻视频| 欧美一区二区亚洲| 99久久人妻综合| 国产精品一区二区性色av| 99久久中文字幕三级久久日本| 久久久久精品性色| 网址你懂的国产日韩在线| 日韩欧美三级三区| 亚洲一区高清亚洲精品| 人人妻人人澡人人爽人人夜夜 | 欧美3d第一页| 免费观看在线日韩| 美女xxoo啪啪120秒动态图| 99久国产av精品| 三级男女做爰猛烈吃奶摸视频| 国产欧美另类精品又又久久亚洲欧美| 少妇熟女欧美另类| h日本视频在线播放| 五月玫瑰六月丁香| 秋霞在线观看毛片| 国产精品久久久久久久电影| 国产精品爽爽va在线观看网站| 少妇熟女欧美另类| 在线天堂最新版资源| 男女国产视频网站| 乱码一卡2卡4卡精品| 日本黄大片高清| 成人漫画全彩无遮挡| 欧美成人午夜免费资源| 国内少妇人妻偷人精品xxx网站| 天美传媒精品一区二区| 成人一区二区视频在线观看| 国产不卡一卡二| 好男人视频免费观看在线| 亚洲美女搞黄在线观看| 人人妻人人澡人人爽人人夜夜 | 伊人久久国产一区二区| 青春草视频在线免费观看| 人体艺术视频欧美日本| 日韩精品有码人妻一区| av卡一久久| 男人爽女人下面视频在线观看| 别揉我奶头 嗯啊视频| 日韩欧美一区视频在线观看 | 男女啪啪激烈高潮av片| 亚洲综合色惰| 搡老乐熟女国产| 嫩草影院入口| 美女高潮的动态| av专区在线播放| 插逼视频在线观看| 97人妻精品一区二区三区麻豆| 2018国产大陆天天弄谢| 免费观看性生交大片5| 极品教师在线视频| 欧美激情国产日韩精品一区| 国产国拍精品亚洲av在线观看| 国产亚洲一区二区精品| 精品一区二区三区人妻视频| 日韩成人av中文字幕在线观看| av在线老鸭窝| 婷婷色综合大香蕉| 国产免费视频播放在线视频 | 人人妻人人澡欧美一区二区| 亚洲伊人久久精品综合| av在线播放精品| 国产老妇伦熟女老妇高清| 亚洲不卡免费看| 久久精品熟女亚洲av麻豆精品 | 国产单亲对白刺激| 亚洲精华国产精华液的使用体验| 人体艺术视频欧美日本| 国产真实伦视频高清在线观看| 成人特级av手机在线观看| 久久午夜福利片| 久久99热6这里只有精品| 亚洲丝袜综合中文字幕| 你懂的网址亚洲精品在线观看| 亚洲国产av新网站| 国模一区二区三区四区视频| 精品99又大又爽又粗少妇毛片| 免费看光身美女| 亚洲熟女精品中文字幕| 夫妻午夜视频| 亚洲精品日本国产第一区| 日本一本二区三区精品| 亚洲成色77777| 精品人妻视频免费看| av卡一久久| 极品少妇高潮喷水抽搐| 亚洲色图av天堂| 亚洲精品,欧美精品| av在线亚洲专区| 3wmmmm亚洲av在线观看| 午夜老司机福利剧场| 精品一区二区三卡| 天天躁夜夜躁狠狠久久av| 男女国产视频网站| 99热全是精品| 两个人的视频大全免费| 国产亚洲5aaaaa淫片| 国产成人免费观看mmmm| 免费观看性生交大片5| 好男人在线观看高清免费视频| 精品久久久久久久久久久久久| 国产精品.久久久| 熟女电影av网| 国产男人的电影天堂91| 一级毛片久久久久久久久女| 成人鲁丝片一二三区免费| 伊人久久国产一区二区| 精品不卡国产一区二区三区| 亚洲怡红院男人天堂| 国产在视频线精品| 丝袜喷水一区| 少妇人妻一区二区三区视频| 成人av在线播放网站| 免费av不卡在线播放| 噜噜噜噜噜久久久久久91| 午夜久久久久精精品| 国产黄频视频在线观看| 亚洲人与动物交配视频| 高清午夜精品一区二区三区| 两个人视频免费观看高清| 午夜视频国产福利| 高清av免费在线| 亚洲精品乱码久久久v下载方式| 男人舔奶头视频| 国产亚洲av嫩草精品影院| 亚洲最大成人中文| av在线天堂中文字幕| 国产探花在线观看一区二区| 免费不卡的大黄色大毛片视频在线观看 | 久久精品熟女亚洲av麻豆精品 | 国产单亲对白刺激| 2022亚洲国产成人精品| 乱系列少妇在线播放| 九九在线视频观看精品| 一个人免费在线观看电影| 午夜免费观看性视频| 亚洲一级一片aⅴ在线观看| 亚洲国产成人一精品久久久| av免费观看日本| 国产精品美女特级片免费视频播放器| 1000部很黄的大片| 最近手机中文字幕大全| .国产精品久久| 最近中文字幕高清免费大全6| 少妇的逼水好多| 国产 亚洲一区二区三区 | 国产单亲对白刺激| 久久99蜜桃精品久久| 亚洲人与动物交配视频| 在线观看av片永久免费下载| 亚洲av免费高清在线观看| 联通29元200g的流量卡| 亚洲乱码一区二区免费版| 色网站视频免费| 日韩av不卡免费在线播放| 国产黄色小视频在线观看| 女的被弄到高潮叫床怎么办| 岛国毛片在线播放| 亚洲激情五月婷婷啪啪| 亚洲精品日韩av片在线观看| 美女cb高潮喷水在线观看| 一个人看视频在线观看www免费| 国产成人91sexporn| 在线 av 中文字幕| 午夜免费观看性视频| 日韩人妻精品一区2区三区| 国产精品免费大片| 国产1区2区3区精品| 97在线人人人人妻| 国产女主播在线喷水免费视频网站| 亚洲综合色网址| 国产精品久久久久久精品电影小说| 日本欧美视频一区| 男女边摸边吃奶| 国产精品女同一区二区软件| 国产精品蜜桃在线观看| 国产成人精品在线电影| 日韩中文字幕视频在线看片| av女优亚洲男人天堂| kizo精华| 少妇人妻 视频| 日本欧美国产在线视频| 午夜福利,免费看| 日韩一卡2卡3卡4卡2021年| 国产 精品1| 免费观看av网站的网址| 热99国产精品久久久久久7| 国产成人精品在线电影| 丰满少妇做爰视频| 成人免费观看视频高清| 好男人视频免费观看在线| 大香蕉久久网| 一二三四中文在线观看免费高清| 成人免费观看视频高清| 啦啦啦视频在线资源免费观看| 久久久久精品人妻al黑| 午夜免费鲁丝| www.av在线官网国产| 黄片播放在线免费| 亚洲精品美女久久av网站| 国产成人av激情在线播放| 尾随美女入室| 久久99热这里只频精品6学生| 久久av网站| 丰满迷人的少妇在线观看| 欧美老熟妇乱子伦牲交| 国产日韩一区二区三区精品不卡| 欧美+日韩+精品| 国产精品一区二区在线不卡| 伦精品一区二区三区| 国产精品女同一区二区软件| 精品少妇黑人巨大在线播放| 国产亚洲午夜精品一区二区久久| 成年动漫av网址| 久久久久国产一级毛片高清牌| 高清在线视频一区二区三区| 日日撸夜夜添| 巨乳人妻的诱惑在线观看| 国产精品人妻久久久影院| 国产日韩欧美亚洲二区| 精品久久蜜臀av无| 亚洲精品久久成人aⅴ小说| av又黄又爽大尺度在线免费看| 亚洲av在线观看美女高潮| 一区二区av电影网| 久久久国产欧美日韩av| 可以免费在线观看a视频的电影网站 | 亚洲精品国产av成人精品| 丝袜美腿诱惑在线| 在现免费观看毛片| 国产精品 国内视频| 美国免费a级毛片| 在线观看人妻少妇| 黄色 视频免费看| 考比视频在线观看| 亚洲av中文av极速乱| 亚洲精品国产色婷婷电影| 亚洲美女搞黄在线观看| 久久久亚洲精品成人影院| 人人澡人人妻人| 一区福利在线观看| 欧美日韩视频精品一区| 如日韩欧美国产精品一区二区三区| 看免费av毛片| 久久狼人影院| 亚洲国产av影院在线观看| 国产精品久久久久久精品电影小说| 捣出白浆h1v1| 亚洲av成人精品一二三区| 亚洲精品日本国产第一区| 看免费成人av毛片| 国产成人精品婷婷| 天天躁夜夜躁狠狠躁躁| 亚洲av欧美aⅴ国产| 91在线精品国自产拍蜜月| 少妇精品久久久久久久| 2022亚洲国产成人精品| 我要看黄色一级片免费的| 深夜精品福利| 日韩精品有码人妻一区| 少妇 在线观看| 成人亚洲精品一区在线观看| 国产高清国产精品国产三级| 国产亚洲av片在线观看秒播厂| 汤姆久久久久久久影院中文字幕| 亚洲四区av| 老汉色av国产亚洲站长工具| 国产精品免费大片| 亚洲精品一区蜜桃| 国产黄频视频在线观看| 老司机影院成人| 伦理电影大哥的女人| 国产精品欧美亚洲77777| av在线app专区| 汤姆久久久久久久影院中文字幕| 日韩免费高清中文字幕av| 精品人妻一区二区三区麻豆| 大码成人一级视频| 人妻 亚洲 视频| 国产视频首页在线观看| 少妇被粗大的猛进出69影院| 亚洲情色 制服丝袜| 在线天堂中文资源库| 午夜日韩欧美国产| 亚洲一码二码三码区别大吗| 黄网站色视频无遮挡免费观看| 国产熟女午夜一区二区三区| 飞空精品影院首页| 一级毛片 在线播放| 欧美在线黄色| 男女国产视频网站| 午夜福利,免费看| 日日摸夜夜添夜夜爱| 亚洲中文av在线| 国产在视频线精品| 一级,二级,三级黄色视频| 麻豆精品久久久久久蜜桃| 婷婷色综合大香蕉| 免费黄频网站在线观看国产| 一级片'在线观看视频| 蜜桃在线观看..| 最近中文字幕高清免费大全6| 国产精品一区二区在线观看99| 性色avwww在线观看| 男女下面插进去视频免费观看| 一级黄片播放器| 欧美人与性动交α欧美精品济南到 | 天天躁夜夜躁狠狠躁躁| 国产一区亚洲一区在线观看| 久热这里只有精品99| 日韩av免费高清视频| 18禁观看日本| 在线看a的网站| 只有这里有精品99| 国产精品久久久久久av不卡| 日韩一区二区视频免费看| 成年女人毛片免费观看观看9 | 男人操女人黄网站| 在线观看免费高清a一片| 99re6热这里在线精品视频| 亚洲精品国产一区二区精华液| 精品亚洲成a人片在线观看| 一区二区三区精品91| 黄色视频在线播放观看不卡| 亚洲中文av在线| 黄色怎么调成土黄色| 18禁国产床啪视频网站| 午夜激情久久久久久久| 国产精品久久久av美女十八| 国产 一区精品| 国产精品国产三级国产专区5o| 18在线观看网站| 人妻少妇偷人精品九色| 国产成人精品久久久久久| 国产一区二区三区av在线| 看非洲黑人一级黄片| 又粗又硬又长又爽又黄的视频| 久久久国产欧美日韩av| 2021少妇久久久久久久久久久| 五月天丁香电影| 永久网站在线| 免费久久久久久久精品成人欧美视频| 青春草视频在线免费观看| 精品久久蜜臀av无| 极品少妇高潮喷水抽搐| 日本vs欧美在线观看视频| 黑人巨大精品欧美一区二区蜜桃| 国产极品粉嫩免费观看在线| 中文字幕制服av| 街头女战士在线观看网站| 亚洲欧美日韩另类电影网站| 午夜日本视频在线| 亚洲欧美中文字幕日韩二区| 国产成人精品无人区| 老司机影院成人| 午夜福利网站1000一区二区三区| 国产精品熟女久久久久浪| 黄频高清免费视频| av不卡在线播放| 欧美xxⅹ黑人| 国产片特级美女逼逼视频| 久久99一区二区三区| 成年人午夜在线观看视频| 成年美女黄网站色视频大全免费| 少妇被粗大的猛进出69影院| 大片电影免费在线观看免费| 日韩视频在线欧美| 国产成人91sexporn| 午夜影院在线不卡| 国产精品免费大片| 赤兔流量卡办理| 国产精品欧美亚洲77777| 国产淫语在线视频| 国产激情久久老熟女| 成人午夜精彩视频在线观看| 一级毛片电影观看| 18禁国产床啪视频网站| 国产视频首页在线观看| 热99久久久久精品小说推荐| 伦理电影免费视频| 日韩欧美一区视频在线观看| 男女边吃奶边做爰视频| 少妇被粗大的猛进出69影院| 成人影院久久| 久久av网站| 看免费av毛片| av有码第一页| 99九九在线精品视频| 你懂的网址亚洲精品在线观看| 超碰成人久久| 永久免费av网站大全| 国产黄色视频一区二区在线观看| 久久99一区二区三区| 国产精品99久久99久久久不卡 | 国产精品av久久久久免费| 一区二区三区乱码不卡18| 天堂中文最新版在线下载| 亚洲国产精品成人久久小说| 视频在线观看一区二区三区| 韩国高清视频一区二区三区| 中文欧美无线码| 亚洲国产成人一精品久久久| 性少妇av在线| 中国三级夫妇交换| 亚洲国产看品久久| 啦啦啦在线免费观看视频4| 人成视频在线观看免费观看| 伊人久久大香线蕉亚洲五| 国产激情久久老熟女| 女性生殖器流出的白浆| 久久久久国产精品人妻一区二区| 精品一区二区免费观看| 久久久欧美国产精品| 咕卡用的链子| 香蕉国产在线看| 国产免费又黄又爽又色| 亚洲精品av麻豆狂野| 久久99一区二区三区| 久久久久久久国产电影| 黑人猛操日本美女一级片| 免费高清在线观看日韩| 国产亚洲一区二区精品| 亚洲av福利一区| 黄色一级大片看看| 国产精品免费视频内射| 七月丁香在线播放| 久久毛片免费看一区二区三区| 亚洲国产最新在线播放| 国产精品偷伦视频观看了| 免费少妇av软件| 啦啦啦视频在线资源免费观看| 日韩人妻精品一区2区三区| 亚洲精品一区蜜桃| 9色porny在线观看| 最近中文字幕2019免费版| 免费看av在线观看网站| 一边亲一边摸免费视频| 亚洲精品美女久久久久99蜜臀 | 亚洲综合精品二区| 一级,二级,三级黄色视频| 精品亚洲成a人片在线观看| 人人妻人人添人人爽欧美一区卜| 人成视频在线观看免费观看| 国产在线一区二区三区精| 国产精品女同一区二区软件| 成人毛片60女人毛片免费| 晚上一个人看的免费电影| 国产精品三级大全| 亚洲精品美女久久久久99蜜臀 | 黑人猛操日本美女一级片| 国产精品二区激情视频| 中文字幕av电影在线播放| 亚洲精品aⅴ在线观看| 国产爽快片一区二区三区| 中文字幕最新亚洲高清| 国产免费福利视频在线观看| 在线免费观看不下载黄p国产| 人人妻人人澡人人看| 青春草国产在线视频| freevideosex欧美| 色吧在线观看| 亚洲精品中文字幕在线视频| 欧美最新免费一区二区三区| 侵犯人妻中文字幕一二三四区| 91午夜精品亚洲一区二区三区| 18禁动态无遮挡网站| 国产成人免费观看mmmm| 久久婷婷青草| 啦啦啦视频在线资源免费观看| 国产成人精品无人区| 亚洲国产欧美日韩在线播放| 国产男人的电影天堂91| 十八禁网站网址无遮挡| 2021少妇久久久久久久久久久| 亚洲精品一二三| 色哟哟·www|