陳建能,陳禮群,喻陳楠,蔡雙雷,夏旭東
?
基于最小切塊應力的西蘭花切塊加工刀具參數優(yōu)化研究
陳建能1,2,陳禮群1,喻陳楠1,蔡雙雷1,夏旭東1,2
(1. 浙江理工大學機械與自動控制學院,杭州 310018;2. 浙江省種植裝備技術重點實驗室,杭州 310018)
為了給西蘭花切塊機的設計提供理論依據,獲得最佳切塊效果,該文以收獲期的西蘭花作為切塊對象,選擇西蘭花切塊位置、刀具刃角、刀具結構以及入切角為影響因素,在萬能材料試驗機上進行了單因素與多因素的切應力試驗,單因素試驗結果表明:切塊位置為距離花蕾頂端40 mm、光刀、入切角為60°、刀具刃角為5°~10°之間時切應力最小。多因素試驗結果表明:影響切應力的因素主次次序依次是切塊位置、刀具結構、刀具刃角、入切角;切塊位置為距離花蕾頂端40 mm、刀具結構為球形刀、刀具刃角為8°、入切角為90°時切塊效果最佳。根據試驗優(yōu)化結果設計了西蘭花切塊刀具,并在自制的切塊樣機上進行了切塊試驗,切塊效果良好,切塊成功率達到91%,驗證了刀具參數優(yōu)化的合理性。研究結果可為后續(xù)西蘭花切塊機切塊刀具的設計提供參考。
刀具;應力;西蘭花;切塊;優(yōu)化
隨著日本和歐洲從中國進口西蘭花的不斷增加,激發(fā)了中國農戶生產西蘭花的積極性,在沿海一帶,逐步形成了一些出口導向型的西蘭花產地[1-3]。目前中國西蘭花對外出口量還在日益增加,出口的西蘭花也從之前的整棵轉變?yōu)槲魈m花小塊,但中國現階段還是采用人工切塊,機械化加工程度低,制約了中國西蘭花產業(yè)發(fā)展。
為了提高西蘭花加工機械化水平,國內外對西蘭花切塊技術及裝備進行了研究。目前中國對西蘭花切塊技術研究主要集中在結構設計方面,武傳宇等提出了一種旋轉式花椰菜切削裝置[4],采用了圓筒形削刀,壓桿將西蘭花壓至圓筒形削刀內,利用螺旋式刀片進行切割,但此種刀具一般適合切片或削皮上的應用,不適合用于西蘭花切塊場合。賀磊盈等提出了一種莖花分離式西蘭花自動切削裝置[5],采用了橫縱交替切塊方法對西蘭花進行切塊,切塊刀具為光刀。上述兩種方案目前僅止步于理論結構設計,市場上未見相關機械成品。國外有關西蘭花切塊技術研究比中國早,早在上世紀九十年代初,就出現了西蘭花切塊機的相關研究,現已有西蘭花切塊機的產品,如SMJ系列的青花菜切塊機[6],采用錐形刀具對西蘭花進行切塊;美國Charlie公司研發(fā)一種氣動西蘭花切塊機[7],采用球形刀具對西蘭花進行切塊。這兩種切塊機均只是在網上做產品的介紹,沒有詳細的技術研究報道。
為了提高西蘭花的切塊效率,西蘭花切塊時的刀具參數至關重要,而刀具參數的選擇和西蘭花的機械物理特性密切相關本文擬借鑒國內外對農作物莖稈切割時刀具參數優(yōu)選的方法進行研究[8-21],選擇西蘭花切塊位置、刀具刃角、刀具結構以及入切角為影響因素,在萬能材料試驗機上進行了單因素與多因素的切應力試驗,優(yōu)化西蘭花切塊刀具的結構參數與工作參數,以期為降低切塊機械功耗,設計高效、低耗、切塊效果好的西蘭花切塊裝置及切塊刀具提供理論依據。
試驗西蘭花品種為由浙江省農科院選育的“浙青95號”,種植于浙江省溫嶺、臺州、寧波等地,對自然生長條件下并處于3月份收獲期西蘭花整朵進行取樣,試驗得到“浙青95號”花苞直徑介于140~160 mm之間,花苞高度介于70~90 mm之間,西蘭花小莖分3個不同的部位,分別為西蘭花外層,中間層和內層的小莖,如圖1a所示。由于切塊加工過程為先外層再中間層最后內層,并且外層小莖纖維層較厚,硬度較高。故本文將取西蘭花外層小莖作為試驗樣品如圖1b所示,并對小莖距花蕾頂端的30、40和50 mm處做上標記,以備后續(xù)試驗用。
b. 西蘭花小莖樣品
b. Broccoli branch stalk sample
注:為西蘭花苞高,mm;為西蘭花苞徑,mm;
Note:is broccoli height, mm;is broccoli diameter, mm;
圖1 西蘭花試驗樣品圖
Fig.1 Broccoli test sample
本試驗儀器和設備有如圖2a的微機控制電子萬能材料試驗機(型號:LDW-1;最大載荷:50 kg;功率:12 kW;制造商:上海松頓機械設備有限公司)、球形刀(刀具為1/4球面,刀刃為半圓弧,直徑為100 mm);光刀(刀刃為直線,長度為100 mm);錐形刀(刀具為1/4圓錐面,圓錐底面直徑100 mm,高80 mm);刀片厚度均為2 mm。切臺與刀具如圖2b~2e所示,均利用夾具固定于試驗臺上。試驗用儀器還包括數碼相機及其圖像處理分析軟件ImageJ、鑷子、米尺、游標卡尺、量角器、記號筆等。
由于西蘭花切塊機在進行切塊時大多采用正切,故此試驗不考慮往復式切塊形式。西蘭花切塊示意圖如圖2f所示。通過移動塊上下移動實現入切角的調整。試驗時萬能材料試驗機的測控系統(tǒng)會自動將其壓力傳感器測得的數據轉化為刀具的切割力記錄下來,并顯示切割力與時間的關系曲線圖(圖3),將切西蘭花小莖過程中得到的峰值作為西蘭花小莖最大切割力MS。有研究學者指出采用單位切割力作為研究目標更加合理,因此,消除西蘭花小莖切割部位直徑差異對實驗結果的影響,本文采用單位面積最大切割力即最大切應力作為目標值,研究西蘭花切塊刀具工作參數刀具結構、刀具刃角、入切角、切塊位置對西蘭花小莖切應力的影響。
注:β為入切角,(°);刀具與移動塊的間隙ε為1 mm、刀具與切臺的間隙d為3 mm。
圖3 切割力-時間變化曲線圖
西蘭花小莖最大切應力按式(1)計算。
=MS/(1)
式中MS為最大切割力,10-3N;為小莖切塊面積,mm2;為最大切應力,kPa。小莖的切塊面積通過以下方法獲得:選取粗細一致的小莖為試驗對象,然后在切塊試驗臺上進行切塊,將切后的小莖切面涂上顏色制作拓本,按1:1比例印到紙面上,進行拍照,然后用ImageJ軟件計算拓圖面積即得到小莖切塊面積,如圖4所示。
圖4 西蘭花小徑切面拓本圖
Fig.4 Extension map of broccoli branch stalk cutting surface
1.3.1 單因素試驗
參考文獻[22-27],選定西蘭花切塊力單因素試驗參數:刀具結構單因素試驗時,刀具刃角為8°、入切角為90°、切塊位置為40 mm;刀具刃角單因素試驗時,刀具結構為光刀、入切角為90°、切塊位置為40 mm;入切角單因素試驗時,刀具結構為光刀、刀具刃角為8°、切塊位置為40 mm;切塊位置單因素試驗時,刀具結構為光刀、刀具刃角為8°、入切角90°;每一水平下重復10次,在=0.05水平進行檢驗。
1.3.2 多因素試驗
為了進一步研究西蘭花切塊刀具主要工作參數(刀具結構、刀具刃角、入切角、切塊位置)對西蘭花切應力的影響,尋求最佳組合,在單因素試驗的基礎上,以刀具結構、刀具刃角、入切角、切塊位置為因素,采用水平正交法設計正交試驗[28-32],每組重復10次,結果取平均值。
2.1.1 刀具刃角對西蘭花小莖切應力的影響
為了考查刀具不同刃角對西蘭花小莖切應力的影響,以光刀為例,分別用刃角為5°、8°、11°、14°、17°的刀片對直徑為8±0.5 mm的小莖進行切塊試驗,測得各個小莖受到的最大切應力,結果如表1所示。
通過調用Matlab中的Anova1函數對表1中數據在=0.05水平下進行-檢驗(本文中所涉及顯著性檢驗的值均采用此方法計算),結果如表2所示。由表2中=3.92′10–5<0.05可知5種不同刀具刃角之間對切應力的影響存在顯著差異。
表1 不同刀具刃角的西蘭花小徑最大切應力值
注:刀具結構為光刀、入切角為90°、切塊位置為40 mm?!繱D表示平均值±標準差。
Note:Cutting blade is light blade.Cutting angle is 90°. The cutting position is 40 mm.±SD means average value ± standard deviation.
表2 不同刀具刃角顯著性檢驗結果
由表1可知,刀具刃角從5°增加到17°時,西蘭花小莖的最大切應力隨刀具刃角增加而增加,刀具刃角為5°的時候切塊力最小。刃角10°~30°的刀具一般適用于高速、被切割材料木質化程度較高的場合,而西蘭花花莖是蔬菜纖維層,故選擇刀具刃角為5°~10°之間適合。
2.1.2 刀具結構對西蘭花小莖切應力的影響
為了考查不同結構的刀具對西蘭花小莖切應力的影響,分別用球形刀、光刀和錐形刀對直徑為8±0.5 mm的小莖進行切塊試驗,并記錄下小莖受到的最大切應力,結果見表3。對表3中的數據進行顯著性檢驗計算出= 1.4′10–9<0.05,因此不同刀具對切應力的影響存在顯著差異。由表3可知,光刀產生的最大切應力最小,其次為球形刀,錐形刀產生的最大切應力最大。
2.1.3 切塊位置對西蘭花小莖切應力的影響
為了考察不同切塊位置對西蘭花小莖的切應力的影響,分別對西蘭花小莖的不同位置進行切塊試驗,并記錄下最大切應力值,結果見表4。對表4中的數據進行顯著性檢驗計算出=1.0776′10–16<0.05,因此不同切塊位置對切應力的影響存在顯著差異。由表4可知,西蘭花小莖切塊時受到的最大切應力值隨切塊位置增加先降低再增加。在切塊位置為40 mm處最大切應力值最小。這主要是因為西蘭花小莖距花蕾頂端30 mm處比較接近花蕾,會存在分節(jié)點或形狀不規(guī)則,切塊時所需切割力較大,從而導致最大切應力較大,西蘭花小莖距花蕾頂端50 mm處比較接近西蘭花大莖,莖稈較成熟,纖維層較厚,所需切割力大,因此最大切應力也較大。
表3 不同結構刀具的最大切應力值
注:刀具刃角為8°、入切角為90°、切塊位置為40 mm。
Note:Blade angle is 8°, cutting angle is 90°, cutting position is 40 mm.
表4 不同切塊位置的最大切應力值
注:刀具結構為光刀、刀具刃角為8°、入切角為90°。
Note:Cutting blade is light blade, blade angle is 8°, cutting angle is 90°.
2.1.4 入切角對西蘭花小莖切應力的影響
為了考查不同入切角對西蘭花小莖切應力的影響,分別設定入切角為90°、60°、45°對直徑為8±0.5 mm的小莖進行切塊試驗,并記錄下小莖受到的最大切應力,結果見表5。對表5中數據進行顯著性檢驗,計算得出= 0.046 1<0.05,因此不同入切角對切應力的影響存在顯著差異。由表5可知,入切角為60°時最大切應力最小。
由上述單因素試驗發(fā)現,西蘭花小莖的最大切應力大小主要與刀具結構、刀具刃角、切塊位置以及入切角度有關。由于涉及因素較多,故采用水平正交法來設計正交試驗,其因素水平編碼表如表6所示。對試驗結果進行分析計算,計算參數為各因素在水平所對應的的總切塊力K=(1,2,3),其中i=∑各因素在水平所對應的切塊力;各因素在水平下的平均切塊力k=K/3;各因素的極差為,計算結果見表7。
表5 不同入切角的最大切應力值
注:刀具刃角為8°、刀具結構為光刀、切塊位置為40 mm。
Note: Blade angle is 8°, cutting blade is light blade, cutting position is 40 mm.
表6 試驗因素水平表
表7 最大切應力正交試驗結果
由表7可知,極差最大的因素是切塊位置,故切塊位置對于切應力的影響力最大;其次是切塊刀具類型,在正交試驗中出現的結果是球形刀所需切塊力最??;再次是刀具刃角,取第2水平最好;最后是入切角,對切塊試驗的影響最小,取第1水平最好。故該試驗的最優(yōu)方案為2121即西蘭花小莖切塊位置離花蕾頂端40 mm,刀具結構為球形刀,刀具刃角為8°,入切角為90°時切塊應力最小,切應力平均值為17.45 kPa。
利用正交試驗結果得到西蘭花切塊刀具的最佳工作參數,設計了刃角為8°的球形刀具,刀具直徑為90 mm,入切角90°,研制了西蘭花切塊試驗臺[33],并在自制的試驗臺(如圖5)上進行了切塊試驗,參考現有西蘭花切塊機[6-7]的切塊速度,設西蘭花切塊樣機工作轉速為60 r/min,試驗中刀具切塊姿態(tài)如圖6所示;樣機中電機轉動1周完成1次切塊。
圖5 西蘭花切塊試驗樣機
a. 開始切塊 a. Start cuttingb. 切塊結束 b. End of cutting c. 西蘭花小塊 c. Small piece of broccolid. 西蘭花莖 d. Broccoli stalk
在樣機轉速為60 r/min情況下進行100朵切塊試驗,成功切塊91朵,成功去芯100朵,切塊成功率91%。工作效率達50~60個/min。切塊應力平均值為18.32 kPa,與理論值17.45 kPa基本接近,驗證了刀具參數設置的合理性。
本文采用單位面積最大切割力作為目標值,利用單因素試驗與多因素試驗對西蘭花切塊刀具工作參數進行了優(yōu)化,從定性與定量2個方面研究了切塊刀具工作參數對西蘭花切應力的影響,確定切塊位置、刀具結構、刀具刃角與入切角依次是影響切應力的主要因素;結果表明最佳的切塊組合是切塊位置為40 mm、球形刀、刀具刃角為8°、入切角為90°。根據最佳切塊位置為刀具尺寸設計提供依據。同時入切角為90°的切面最小,有利于西蘭花保存。
1)通過對西蘭花切應力的單因素試驗得到:切塊位置為距離花蕾頂端40 mm處最大切應力值最??;刀具刃角為5°~10°之間適合;光刀產生的最大切應力最小。
2)多因素試驗得到各個影響因素對切應力的影響:西蘭花的切塊位置對切應力影響最大,入切角對切應力影響最小,各個因素交互的作用下的最佳切塊因素組合是切塊位置為距離花蕾頂端40 mm處、刀具結構為球形刀、刀具刃角為8°、切塊時入切角為90°。
3)根據優(yōu)化結果設計了切塊刀具,并在自制切塊樣機上進行了切塊試驗,樣機在轉速為60 r/min情況下進行100朵切塊試驗,切塊成功率91%,工作效率達50~60個/min,切塊應力平均值為18.32 kPa,驗證了西蘭花切塊刀具參數優(yōu)化結果的合理性。
[1] 何玉池,李云,焦顏成,等. 西蘭花出口的現狀及產業(yè)化安全生產研究初探[J]. 現代農業(yè)科技,2007(14):12-13. He Yuchi, Li Yun, Jiao Yancheng, et al. Present situation of the export of broccoli and preliminary study on industrialized safe production[J]. Journal of Modern Agriculture and Technology, 2007(14): 12-13. (in Chinese with English abstract)
[2] 屈為棟,何道根,蘇英京. 臺州市西蘭花產業(yè)現狀、存在問題及發(fā)展對策[J]. 浙江農業(yè)科學,2009(6):1062-1065. Qu Weidong, He Daogen, Su Yingjing. Current status, existing problems and development countermeasures of broccoli industry in Taizhou City[J]. Zhejiang Agricultural Sciences, 2009(6): 1062-1065. (in Chinese with English abstract)
[3] 肖體瓊,何春霞,陳巧敏,等. 基于機械化生產視角的中國蔬菜成本收益分析[J]. 農業(yè)機械學報,2015,46(5): 75-82. Xiao Tiqiong, He Chunxia, ??Chen Qiaomin, et al. Analysis of chinese vegetable cost and income based on mechanized production perspective[J]. Transactions of the Chinese Society forAgricultural Machinery, 2015, 46(5): 75-82. (in Chinese with English abstract)
[4] 武傳宇,楊太瑋,童俊華,等. 旋轉式花椰菜切削裝置:中國專利,CN106863444A[P].2017-06-20.
[5] 賀磊盈,劉曉晨,童俊華. 莖花分離式西蘭花自動切削裝置:中國專利,CN106863443A[P]. 2017-06-20.
[6] Brussel sprout trimming machines[Z]. http://www. mhmelincolnshire.com/index.htm, 2018-10-26.
[7] Air-driven broccoli floret machine[Z]. http:// charliesmachineandsupply.com/catalog/broccolifloret.shtml, 2018-10-26.
[8] 王洪明,王芳,楊錚,等. 向日葵莖稈切割阻力影響因素試驗研究[J]. 中國農業(yè)大學學報,2018,23(5):102-107. Wang Hongming, Wang Fang, Yang Zheng, et al. Experimental study on influencing factors of cutting resistance of sunflower stem[J]. Journal of China Agricultural University, 2018, 23(5): 102-107. (in Chinese with English abstract)
[9] 楊靜,李曉蓮,郭楠. 啤酒花莖稈力學性能與微觀結構的試驗研究[J]. 農業(yè)機械,2017,42(3):93-94,96. Yang Jing, Li Xiaolian, Guo Nan. Experimental study on mechanical properties and microstructure of hops stalks[J]. Transactions of the Chinese Society of Agricultural Machinery, 2017, 42(3): 93-94, 96. (in Chinese with English abstract)
[10] 袁巧霞,胡凌. 蓮藕切割阻力影響因素試驗分析[J]. 農業(yè)機械學報,2008,36(2):208-211. Yuan Qiaoxia, Hu Ling. Experimental analysis of influence factors on cutting resistance of lotus root[J]. Transactions of the Chinese Society for Agricultural Machinery, 2008, 36(2): 208-211. (in Chinese with English abstract)
[11] 吳良軍,楊洲,段潔利,等. 龍眼樹枝修剪機具刀片切割力的影響因素試驗[J]. 農業(yè)工程學報,2012,28(24):8-14. Wu Liangjun, Yang Zhou, Duan Jieli, et al. Influencing factors of cutting force of longan branch tree trimmer blade[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2012, 28(24): 8-14. (in Chinese with English abstract)
[12] 宋占華,宋華魯,耿愛軍,等. 棉花秸稈雙支撐切割性能試驗[J]. 農業(yè)工程學報,2015,31(16):37-45. Song Zhanhua, Song Hualu, Geng Aijun, et al. Experimental study on double-support cutting performance of cotton straw[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(16): 37-45. (in Chinese with English abstract)
[13] 杜冬冬,王俊,裘姍姍. 甘藍根莖部切割部位及方式優(yōu)化試驗研究[J]. 農業(yè)工程學報,2014,30(12):34-40. Du Dongdong, Wang Jun, Qiu Shanshan. Optimization of cutting position and mode for cabbage harvesting [J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(12): 34-40. (in Chinese with English abstract)
[14] 張世福,宋占華,閆銀發(fā),等. 農作物秸稈切割試驗臺測控系統(tǒng)的研制與試驗[J]. 農業(yè)工程學報,2013,29(增刊1):10-17. Zhang Shifu, Song Zhanhua, Yan Yinfa, et al. Development and experiment of the measure and control system for stalk cutting test bench[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013, 29(Supp.1): 10-17. (in Chinese with English abstract)
[15] 滕紹民,王澤群,李洋,等. 切割方式與切割阻力的理論研究[J]. 農機化研究, 2009,31(5):89-90,96. Teng Shaomin, Wang Zequn, Li Yang, et al. Theoretical study on cutting method and cutting resistance[J]. Journal of Agricultural Mechanization Research, 2009, 31(5): 89-90,96
[16] 劉慶庭,區(qū)穎剛,卿上樂,等. 甘蔗莖稈切割力試驗[J]. 農業(yè)工程學報,2007,33(7):90-94. Liu Qingting, Ou Yinggang, Qing Shangle, et al. The cutting force test of sugarcane stalk[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2007, 33(7): 90-94. (in Chinese with English abstract)
[17] 靳瑞生. 玉米收獲機莖稈切割刀體設計與改進[J]. 農業(yè)機械,2009,18(13):74-75. Jin Ruisheng. Design and improvement of stem cutter body for corn harvester[J]. Agricultural Machinery, 2009,18(13): 74-75. (in Chinese with English abstract)
[18] 吳明亮,官春云,湯楚宙,等. 油菜莖稈切割力影響因素試驗[J]. 農業(yè)工程學報,2009,25(6):141-144. Wu Mingliang, Guan Chunyun, Tang Chuzhou, et al. Experimental study on influencing factors of cutting power of rapeseed stalk[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2009, 25(6): 141-144. (in Chinese with English abstract)
[19] A. Ince; S. U?urluay; E. Güzel; et al. Bending and shearing characteristics of sunflower stalk residue[J].Biosystems Engineering, 2005, 92(2): 175-181.
[20] Chen Ying, Jean Louis Gratton, Liu Jude. Power requirements of hemp cutting and conditioning[J]. Biosystems Engineering, 2003, 87(4): 417-424.
[21] C.Igathinathane, A.R.Womac, S.Sokhansanj. Corn stalk orientation effect on mechanical cutting[J]. Biosystems Engineering, 2010, 107(2) : 97-106.
[22] 閆鵬,崔紅梅,趙滿全,等. 9R-60型揉碎機試驗臺設計及單因素試驗研究[J]. 農機化研究,2019,41(6):67-71. Yan Peng, Cui Hongmei, Zhao Manquan, et al. Design and single factor test study of 9 R-60 type crusher test bench[J]. Journal of Agricultural Mechanization Research, 2019, 41(6): 67-71. (in Chinese with English abstract)
[23] 丁素明,薛新宇,蔡晨,等. 梨樹枝條切割裝置刀片參數優(yōu)化與試驗[J]. 農業(yè)工程學報,2015,31(增刊2):75-82. Ding Suming, Xue Xinyu, Cai Chen, et al. Optimization and experiment of blade parameters of pear twig cutting device[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(Supp.2): 75-82. (in Chinese with English abstract)
[24] 董東營,王濤,廖宇蘭,等. 木薯桿多角度切割力學特性測試儀的設計與試驗[J]. 中國農機化學報,2015,36(3):59-62. Dong Dongying, Wang Tao, Liao Yulan, et al. Design and experiment of multi-angle cutting mechanical property tester for cassava rod[J]. Chinese Journal of Agricultural Mechanization, 2015, 36(03): 59-62. (in Chinese with English abstract)
[25] 尹秋,王濤,張喜瑞,等. 香蕉果梗切割力學特性試驗[J]. 中國農機化學報,2013,34(04):75-77. Yin Qiu, Wang Tao, Zhang Xirui, et al. Experimental study on mechanical properties of banana fruit stem cutting[J]. Chinese Journal of Agricultural Mechanization, 2013, 34(4): 75-77. (in Chinese with English abstract)
[26] 沈成,陳巧敏,周楊,等. 苧麻單莖稈切割試驗與分析[J]. 中國農機化學報,2015,36(6):40-43,63. Shen Cheng, Chen Qiaomin, Zhou Yang, et al. Test and analysis of single stem cutting of ramie[J]. Chinese Journal of Agricultural Mechanization, 2015, 36(6): 40-43, 63. (in Chinese with English abstract)
[27] 張園,李明福,李玉林,等. 胡椒鮮果力學性能測試與試驗分析[J]. 農機化研究,2015,37(11):157-160. Zhang Yuan, Li Mingfu, Li Yulin, et al. Test and experimental analysis of mechanical properties of fresh pepper fruit[J]. Journal of Agricultural Mechanization Research, 2015, 37(11): 157-160. (in Chinese with English abstract)
[28] 于昭洋,胡志超,楊柯,等. 大蒜聯合收獲切根試驗臺設計與試驗[J]. 農業(yè)工程學報,2016,32(22):77-85. Yu Zhaoyang, Hu Zhichao, Yang Ke, et al. Design and experiment of garlic combined harvesting root cutting test bench[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(22): 77-85. (in Chinese with English abstract)
[29] 高國華,王天寶,周增產,等. 設施蔬菜收獲切割影響因素優(yōu)化試驗[J]. 農業(yè)工程學報,2015,31(19):15-21. Gao Guohua, Wang Tianbao, Zhou ZengChan, et al. Optimization experiment on factors affecting harvesting and cutting of facility vegetables[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(19): 15-21. (in Chinese with English abstract)
[30] 陳燕,蔣志林,李嘉威,等. 基于機器人采摘的柑橘果柄切割力學特性研究[J]. 河南農業(yè)科學,2017,46(4): 147-150. Chen Yan, Jiang Zhilin, Li Jiawei, et al. Study on mechanical characteristics of citrus fruit handle cutting based on robot picking[J]. Journal of Henan Agricultural Sciences, 2017, 46(4): 147-150. (in Chinese with English abstract)
[31] 李小強,王芬娥,郭維俊,等. 甘藍根莖切割力影響因素分析[J]. 農業(yè)工程學報,2013,29(10):42-48. Li Xiaoqiang, Wang Fene, Guo Weijun, et al. Analysis of factors influencing cutting power of cabbage roots[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013, 29(10): 42-48. (in Chinese with English abstract)
[32] 曹少波,李鑫,楊欣,等. 麻山藥根莖力學特性測試研究[J]. 農機化研究,2018,40(4):200-205. Cao Shaobo, Li Xin, Yang Xin, et al. Study on the mechanical properties of the roots and stalks of Mashan medicine[J]. Journal of Agricultural Mechanization Research, 2018, 40(4): 200-205. (in Chinese with English abstract)
[33] 宋占華,肖靜,張世福,等. 曲柄連桿式棉稈切割試驗臺設計與試驗[J]. 農業(yè)機械學報,2011,42(增刊1):162-167. Song Zhanhua, Xiao Jing, Zhang Shifu, et al. Design and experiment of crank link cotton stalk cutting test bench[J]. Transactions of the Chinese Society for Agricultural Machinery, 2011, 42(Supp.1): 162-167. (in Chinese with English abstract)
Study on blade parameter optimization analysis of broccoli cuts based on minimum slice stress
Chen Jianneng1,2, Chen Liqun1, Yu Chennan1, Cai Shuanglei1, Xia Xudong1,2
(1.310018,; 2.310018,)
In order to explore the effect of the broccoli cutter working parameters on cutting characteristics of broccoli branch stalk as well as to optimize the working parameters of the cutting blade, the cutting tests of broccoli branch stalk were performed with electronic universal material testing machine cutting test-bed. The samples were the outer branch stalk of broccoli with same diameter. The main test equipment included the electronic universal material testing machine, blades and cutting stand, a digital camera and its image processing and analysis software ImageJ, scorpion, meter ruler, vernier caliper, protractor and marker pen. The test method and scheme were designed based on the measurement and control system of the universal material testing machine, the data measured by the pressure sensor on the universal material testing machine automatically displayed, relation curve of cutting force and time of cutting blade could be get. The maximum cutting force obtained during the cutting process was taken as the maximum cutting forceFof broccoli branch stalk. Some researchers considered that it is more reasonable to use unit cutting force as the research target. therefore, in order to eliminate the influence of the diameter difference of broccoli branch stalk on the experimental results, the maximum cutting force per unit area was taken as the target value. The influence of the cutting blade working parameters on the maximum cutting force were studied, the cutting blade working parameters include blade structure, blade angle, cutting angle and cutting position on the branch stalk. The cutting tests were grouped into the single factor tests, multi-factor orthogonal test. The testing factors were cutting position(ranging from 30-50 mm), cutting blades (cone blade、straight blade、spherical blade), blade angle (5°-17°), cutting angle (45°-90°). Multi-factor orthogonal method was a three-factor three-level testing scheme. The multi-factor orthogonal method used to optimize the working parameters of broccoli cutter. The multi-factor test results showed that the change trends of the objective values (the maximum cutting force per unit cutting area) with the changes of the testing factors were basically consistent with the results of the single factor tests. Single factor test results show that the dicing performance is best when the cutting position is 40 mm, the straight blade, the cutting angle is 60°, and the blade edge angle is 5°-10°. The results of multi-factor test showed that the position of the cutting, the structure of the blade, the blade angle and the cutting angle of the cutting tests were the primary and secondary factors that affect the cutting performance, the cutting position was 40 mm, the blade structure was spherical blade, blade edge angle was 8°and the cutting angle is 90°. According to the experimental optimization results, the broccoli cutter was designed, and the cutting test was carried out on the prototype. The cutting effect was good and the cutting success rate reached 91%, the mean value of cutting force was 18.32kPa, which is basically close to the theoretical value of 17.45kPa, it verified the rationality of tool parameter setting. The study results provided theoretical support for the development of subsequent broccoli cutting machine and cutting blade parameters.
tools; stresses; broccoli; cuts; optimization
陳建能,陳禮群,喻陳楠,蔡雙雷,夏旭東. 基于最小切塊應力的西蘭花切塊加工刀具參數優(yōu)化研究[J]. 農業(yè)工程學報,2018,34(23):42-48.doi:10.11975/j.issn.1002-6819.2018.23.005 http://www.tcsae.org
Chen Jianneng, Chen Liqun, Yu Chennan, Cai Shuanglei, Xia Xudong. Study on blade parameter optimization analysis of broccoli cuts based on minimum slice stress[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(23): 42-48. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2018.23.005 http://www.tcsae.org
10.11975/j.issn.1002-6819.2018.23.005
S226.9
A
1002-6819(2018)-23-0042-07
2018-06-08
2018-10-17
國家自然科學基金(51675486)
陳建能,教授,博士,主要從事農業(yè)機械裝備與技術方面的研究。Email:jiannengchen@zstu.edu.cn
中國農業(yè)工程學會會員:陳建能(E041200166S)