• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Electrochemical Catalytic Properties of Pt/FeSnO(OH)5 towards Methanol Oxidation①

    2018-11-22 01:58:46ZHANXia-DanZHANYing-XuDUChang-Chao,LIChang-RongYUHan,LINCong
    結構化學 2018年10期

    The Pt/FeSnO(OH)5has been prepared by depositing Pt nanoparticles on the synthesized FeSnO(OH)5nanoboxes and demonstrates excellent catalytic activity towards methanol oxidation reaction as an electrode catalyst in DMFCs.The Pt/FeSnO(OH)5catalyst exhibits a higher mass activity (1182.35 mA/mgPt) compared with the Pt/C (594.57 mA/mgPt) catalyst.The result shows that the as-prepared Pt/FeSnO(OH)5has a great application prospect as a high-performance electrocatalyst in DMFCs.

    1 INTRODUCTION

    Direct methanol fuel cells (DMFCs) with Pt as the catalyst feasibly convert the chemical energy stored in methanol directly into electric energy, which have shown potential applications such as electric vehicles and portable electronic devices due to its attractive features including low operating temperature, easy refueling, high energy density and simplicity of system among the different types of fuel cells[1-3].However, some serious shortcomings need to be overcome before commercialization of DMFCs, including the high cost of noble-metal, the decay of catalytic activity of Pt catalyst, the low catalytic activity due to the slow methanol oxidation reaction kinetics and the low stability of the catalysts in acidic media[4].

    Deferent methods are employed to overcome these defects.One of them is to switch the working media from acidic solution to alkaline solution,which possesses apparent advantages, such as enormously enhanced methanol oxidation reaction kinetics, lower overpotential for oxygen reduction reaction and more choices for catalysts towards MOR[5,6].Another method is to fabricate composite catalysts by combining Pt with supports, which show higher electro-catalytic activity and platinum utilization efficiency compared with unsupported catalysts because of their large surface area and high dispersion of Pt on the supports[7].Nowadays the carbonaceous materials are commonly used as the electrocatalyst supports of commercial fuel cells for their high conductivity and large surface areas.However, carbon corrosion is a hard problem for all carbon supports[8].Therefore, it is significant to search for non-carbonaceous supports.

    As for the decay of catalytic activity of the Pt catalyst, this problem can be owed to the following reasons including CO poisoning of Pt during the methanol oxidation reaction (MOR), the weak interactions between Pt and support materials, the low intrinsic activity of Pt, the exfoliation of Pt element and electrochemical corrosion of the support materials[9].The CO species, the oxidation intermediates of MOR, adsorbed on the surface of Pt nanoparticles would lead to very low power densities and the loss of electrochemically active surface areas (ECSAs) by hampering further adsorption of methanol[10], so it is necessary to remove CO from the surface of platinum at a relatively negative potential.To solve the CO-poisoning problem, one common strategy is to combine Pt with other non-precious transition metals such as Ru, Fe, Co,Sn and Zn[11-15]to form Pt alloy or metal oxides like TiO2, CeO2, V2O5and WO3[16-19]to fabricate Pt-based catalysts, which would improve the catalytic activity and durability as well as lower the cost of Pt-based catalysts.The Pt-based catalysts combined with metals or metal oxides own a better CO resistance via the bifunctional mechanism and the electronic effect[20-24].According to the bifunctional mechanism model, the supporting materials can effectively activate H2O to form oxygen-containing species of OH adspecies (OHads), resulting in the oxidation of neighboring CO adspecies (COads) into CO2at a relatively negative potential, thus alleviating the CO poisoning effect and providing more active Pt sites for methanol oxidation.The electronic effect is a result of the modification of electronic structure of the Pt surface, which weakens the CO?Pt bonding and intermediate adsorptive strength for Pt, thereby improving the kinetics of methanol and CO oxidation.

    Among the supports, the stannate hydroxides have caught the attention of researchers.MSn(OH)6(M =Co, Cu, Fe, Mg, Mn, Zn), which are a kind of special perovskite-structural materials, have been used as photocatalysts and electrode materials for Li-ion batteries[25-27].Furthermore, the researchers have reported that the CoSn(OH)6supported Pt exhibited a high electro-catalytic activity, good CO resistant ability and catalytic stability towards methanol oxidation in alkaline solution[28].However,the catalytic mechanism of stannate hydroxide supported catalyst has not been deeply discussed,and fabrication of higher performance electrocatalyst towards MOR is still a challenge.

    In this paper, we synthesized hollow FeSnO(OH)5nanocubes as the support of Pt catalyst for methanol electro-oxidation.L-ascorbic acid was used as the soft reductant to prepare Pt/FeSnO(OH)5.It was found that the activity and stability toward MOR of Pt/FeSnO(OH)5was improved more effectively compared with Pt/C (Vulcan XC-72).The CO-stripping data also confirmed the enhanced electro-catalytic performance of Pt/FeSnO(OH)5as an anodic catalyst.

    2 EXPERIMENTAL

    2.1 Preparation

    All chemical reagents were used as received without further purification.Stannic chloride pentahydrate (SnCl4·5H2O, AR), iron(II) sulfate heptahydrate (FeSO4·7H2O), sodium hydroxide (NaOH,AR), L-ascorbic acid and methanol (CH3OH, AR)were purchased from Sinopharm Chemical Reagent Co., Ltd (China).Chloroplatinic acid hexahydrate(H2PtCl6·6H2O, AR) were purchased from Aladdin Reagent.Nafion solution 5% (Dupont) and carbon vulcan XC-72 (Cabot) were used as received.

    In a typical synthesis, a solution of SnCl4·5H2O in deionized water (DI water) (0.5 M, 5 mL) was added to a solution of FeSO4·7H2O (0.5 M, 5mL) at room temperature with vigorous agitation, and a solution of NaOH (2 M, 10 mL) was added to the mixture slowly, which was stirred for 6 hours in a beaker at 60℃.The synthesized FeSnO(OH)5was collected by centrifugation and washed several times with DI water, and dried under vacuum at 60 ℃ for 6 h.Afterwards, 0.3 g prepared FeSnO(OH)5was added to 45 ml water, and then 15 ml HCl solution (1.0 M)was dropped into the suspension, stirring for 2.5 h at room temperature.The product was washed with DI water and absolute alcohol for several times, and dried in vacuum oven at 60 ℃ for 6 h to obtain FeSnO(OH)5nanoboxes.

    The complex catalyst was prepared by a sonochemical reaction in the L-ascorbic acid.Firstly, 0.5 ml H2PtCl6·6H2O (0.019 M) was added into 10 mL ice water rapidly under a strong agitation.Then, 10 mL L-ascorbic acid ice-water solution (0.1 M) was dropped slowly into the above mixture.0.005 g prepared FeSnO(OH)5was dropped into the above pale-yellow solution and stirred for 10 minutes.Subsequently, the solution was treated in an ultrasonic cleaning instrument for 1 h and then was deposited for 24 h.The obtained product was washed with DI water and absolute alcohol for several times and dried at 60 ℃ for 6 h in a vacuum oven, which was denoted as Pt/FeSnO(OH)5.For comparison, the Pt/C (Vulcan XC-72) electrocatalyst was synthesized using the carbon vulcan XC-72 as the precursor following the same procedure.

    2.2 Characterization

    The X-ray diffraction (XRD) measurements of the powder samples were performed in the reflection mode (CuKα radiation, l = 1.5418 ?) on a Rigaku Ultima III X-ray diffractometer.The field emission scanning electron microscopy (FESEM) images were obtained by Hitachi S4800 field emission scanning electron microscopy.The field emission transmission electron microscopy (FETEM) images were obtained by FEI Tecnai G2 F20 S-TWIN with a field emission gun operated at 200 kV.The X-ray photoelectron spectroscopy (XPS) measurements were performed with an ESCALab250-XI electron spectrometer from VG Scientific using a 300 W AlKα radiation.The base pressure was about 3 ×10-9mbar and the binding energies were corrected by adjusting the binding energy of the C1s peak to 284.8 eV from adventitious carbon.

    2.3 Electrochemical measurement

    The electrochemical measurements were performed on a CHI-660D electrochemical workstation with a conventional three-electrode cell.The catalyst ink was prepared by dispersing 5 mg prepared nanocomposite in a mixture containing 1 ml ethanol and 0.025 mL 5% Nafion solution under ultrasonication for 30 min.A glassy carbon electrode (3 mm in diameter) was used as the working electrode,which was carefully polished with a diamond pad/0.3 μm polishing suspension and rinsed with DI water and ethanol.After dropping 5 μL of the catalyst ink onto the electrode surface, the electrode was dried in air.A Pt wire and an Ag/AgCl electrode were used as the counter electrode and the reference electrode, respectively.The electrochemical impedance spectroscopy (EIS) was measured in a mixture of N2-purged 1 M methanol and 1 M KOH under open-circuit conduction.The EIS tests were conducted by sweeping the frequency from 100 KHz to 1 Hz under open circuit potential with 5 mV of amplitude.For the measurement of hydrogen adsorption/desorption reaction, the potential was cycled between –1 and 0.4 V at 50 mV/s in N2-purged 1 M KOH solution.The electrocatalytic properties for methanol oxidation of the catalysts were measured in a mixture of 1 M methanol and 1 M KOH.The chronoamperometry (CA) was recorded at –0.2 V for 3600 s in a mixture of 1 M methanol and 1 M KOH.

    The electrocatalytic activity for CO-stripping was obtained through the following steps: (i) CO gas was bubbled into a N2saturated 1 M KOH aqueous solution for 10 min; (ii) then N2was bubbled to remove the dissolved CO in the electrolyte, while the CO molecules adsorbed on the Pt surface were not affected by this treatment; (iii) finally, the cyclic voltammetric (CV) measurements were carried out in a N2saturated 1 M KOH over the potential range from –1 to +0.4 V at a scan rate of 50 mV/s.The ECSA derived from the CO-stripping was calculated using the following equation[29].

    where QCOis the measured charge for the CO stripping and WPtis the mass of Pt.The value 420 represents the charge density required to oxidize a monolayer of CO on Pt.

    3 RESULTS AND DISCUSSION

    3.1 Structure and morphology

    As shown in the XRD profiles (Fig.1a), all peaks of the prepared FeSnO(OH)5can be indexed to the diffractions of FeSnO(OH)5(JCPDS 74-1745), indicating there is no other phase.However, four new broadened peaks located at 39.8°, 46.2°, 67.5° and 81.3° appear in the pattern of the synthesized Pt/FeSnO(OH)5, corresponding to the diffractions of Pt (1 1 1), (2 0 0), (2 2 0) and (3 3 1) planes of the face-centered cubic (fcc) Pt (JCPDS 87-0640),respectively, indicating the target complex has been prepared.As shown in Fig.1b, the Pt/C is also indexed to the cubic Pt phase (JCPDS No.87-0640).

    Fig.1.XRD patterns of (a) the prepared FeSnO(OH)5, Pt/FeSnO(OH)5 and (b) Pt/C

    The XPS measurements were used to explore the electronic states and surface composition of the catalysts.As shown in Fig.2a, the two peaks corresponding to the Pt 4f7/2and Pt 4f5/2states with a 3.3 eV spacing and a 3:4 atomic ratio can be found[30,31].For Pt/FeSnO(OH)5, the most intense doublet (at 71.00 and 74.32 eV) is the signature of metal Pt.The second and weaker doublet (at 72.40 and 75.70 eV)with the binding energy at 1.4 eV higher than Pt(0)can be attributed to the Pt(II) oxidation state (PtO and Pt(OH)2-like species)[32,33].It is notable that Pt

    in +4 oxidation state is present in Pt/C.Table 1 summarizes the relative intensities of Pt0, Pt2+and Pt4+in the catalysts, which can be estimated from their peak surface area.There is a significant difference between the relative intensities of Pt0in the catalysts.The chemical state of Pt is an important factor on the electrochemical activity.There are reports that metallic Pt is a superior catalyst to Pt in the +4 oxidation state, and Pt0has better electrocatalytic activity toward methanol electro-oxidation in comparison with Pt2+and Pt4+[34,35].

    Table 1.Atomic % of Different Valenced Pt for Different Catalysts

    As marked by the dashed lines in Fig.2a, the binding energy of Pt 4f7/2in the Pt/FeSnO(OH)5(71.0 eV) is negatively shifted almost 0.6 eV compared with the Pt/C (71.6 eV), which implies that the electronic structure of Pt was modified by the hydroxide support because of an enhanced interaction between the Pt and the support material,indicating a transfer of electrons from FeSnO(OH)5to Pt[36,37].The shift is mainly caused by the electronegativity difference between the transition element and Pt, leading to the charge transfer from the more electropositive element such as Fe to Pt[38,39].This notion can be further supported by a positive shift of the Fe 2p peaks shown in Fig.2b.

    Fig.2.(a) Pt 4f XPS spectra of Pt/FeSnO(OH)5 and Pt/C; (b) Fe 2p XPS spectra of Pt/FeSnO(OH)5

    As shown in Fig.2b, the Fe 2p XPS spectrum of Pt/FeSnO(OH)5is split into two parts, namely Fe 2p3/2and Fe 2p1/2, with an atomic ratio of about 2/1.Each part consists of a main peak and a “shake-up”satellite[40].The peaks at 712.4.0 eV (2p3/2) and 726.3 eV (2p1/2) are attributed to Fe3+species, while the second pair of peaks observed at 711.0 eV (2p3/2)and 725.0 eV (2p1/2) are related to Fe2+species[41].The shake-up satellite peaks at 734.0 eV (2p1/2) and 729.9 eV (2p1/2) confirm the species, respectively[42].Thus, there are mixed valence states of Fe3+/Fe2+in Pt/FeSnO(OH)5for the binding-energies of Fe 2p in Pt/FeSnO(OH)5to be positively shifted.

    The SEM and TEM images of the samples are displayed in Figs.3 and 4, respectively.It can be clearly seen from Fig.3a that the FeSnO(OH)5crystals are nanocubes with the size of about 200~500 nm.After etching, the morphology of FeSn-O(OH)5is maintained as shown in Fig.3b.However,it can be found from the TEM image (Figs.3a and 3b) that the FeSnO(OH)5nanocubes have been etched into hollow nanoboxes after being treated in the acid solution.Figs.3c and 3d show Pt particles have been dispersed on the FeSnO(OH)5nanoboxes and the carbon (Vulcan XC-72).The corresponding TEM images are displayed in Figs.4c and 4d,respectively, showing both Pt based complexes have been successfully synthesized.As shown in the corresponding selected area electron diffraction(SAED) pattern inserted in Fig.4c, the Pt-based catalysts possess the Pt fcc structure.The high-resolution TEM (HRTEM) image (Fig.4d) of Pt/FeSnO(OH)5exhibits the lattice fringes with the interplanar distance of 0.225 nm, corresponding to the (111) plane of the cubic Pt, and the average size of Pt nanoparticles in Pt/ FeSnO(OH)5is about 4 nm,while the Pt particles on the carbon shown in Fig.4f have a similar size and the lattice fringes of 0.226 nm, which can be also attributed to the (111) plane of the cubic Pt.Additionally, the element com-positions measured by EDX analysis (shown in Figs.4g and 4h) are in good matchup with the Pt/FeSnO(OH)5and Pt/C.

    Fig.3.SEM images of (a) FeSnO(OH)5, (b) FeSnO(OH)5 after etching, (c) Pt/FeSnO(OH)5 and (d) Pt/C, respectively

    Fig.4.TEM images of (a) FeSnO(OH)5, (b) FeSnO(OH)5 after etching and (c) Pt/FeSnO(OH)5 with the corresponding SAED patterns inserted and (e) Pt/C, respectively; HRTEM images of (d) Pt/FeSnO(OH)5 and (f) Pt/C, respectively; EDX patterns of (g) Pt/FeSnO(OH)5 and (h) Pt/C, respectively

    3.2 Electrochemical measurement

    Fig.5a presents the CV curves of the prepared samples, which has three typical regions described as the hydrogen region, the double layer region and the oxygen region.Their electrochemically active surface areas (ECSAs) are determined from the charge of the hydrogen adsorption-desorption (HAD)signatures, which are related to the dispersion and nanoparticle sizes of Pt.The ECSA value is estimated according to the following equation[43]:

    where [Pt] represents the platinum loaded in the electrode (g/cm2), QHis the charge for hydrogen desorption (mC/cm2), and 0.21 represents the charge required to oxidize a monolayer of adsorbed hydrogen on bright Pt (mC/cm2).The ECSAs for the catalysts determined by hydrogen desorption peaks are listed in Table 2.The ECSAs derived from the CO-stripping of these samples show similar values in Table 2, proving the validity of the ECSA data.The calculated ECSAHADvalues for Pt/FeSnO(OH)5and Pt/C are about 8.364 and 24.464 m2/gPt, respectively.

    In the CV curves for both catalysts, two peaks are observed.The more positive current peak in the forward scan (If) is ascribed to the electro-oxidation of methanol, while the anodic peak in the backward scan (Ib) is attributed to the removal of incompletely oxidized carbonaceous species mainly composed of CO species formed during the forward scan[44].Fig.5b displays the CV curves normalized by the loading mass of Pt on the electrode for different catalysts.As shown in Fig.5b, although the ECSAHADof Pt/FeSnO(OH)5is lower, its mass activity (1182.35 mA/mgPt) is obviously higher than that of Pt/C(594.57 mA/mgPt).The current densities normalized by ECSAHADare also compared in Fig.5c, showing the specific activity of Pt/C is 1.76 mA/cm2, which is much lower than that of Pt/FeSnO(OH)5(14.30 mA/cm2).These results indicate the excellent electrocatalytic activity of Pt/FeSnO(OH)5toward MOR.

    To compare the CO-resistance ability of the catalysts, the CO stripping experiment was carried out.Fig.5d shows the CO stripping voltammograms for different catalysts.In the first positive scan, CO adsorbed on the electrode surface limited the presence of hydrogen oxidation peaks, and the adsorbed CO was oxidized at more positive potentials subsequently.On the second positive scan, the reappearance of hydrogen peaks at negative potentials indicates the freedom of dissolved CO on the electrode surface[45].The onset potential and peak potential for the CO oxidation and ECSA estimate using the CO-stripping curves are listed in Table 2.The onset potential of Pt/FeSnO(OH)5catalyst is 59 mV more negative than that of the commercial Pt/C catalyst.The positive peak potential for CO oxidation on the Pt/FeSnO(OH)5(–0.338 V) is shifted negatively compared with the Pt/C electrode (–0.282 V).These results significantly indicate the favorable role of FeSnO(OH)5for CO-tolerance, which is in accordance with the mass activity in Fig.5b.

    Table 2.Results of CO Stripping with the Prepared Catalysts and ECSA from H Adsorption-desorption

    Fig.5.(a) CV curves of the catalysts; (b) mass-normalized CV curves and (c) ECSA-normalized CV curves of the catalysts; (d) electrochemical CO-stripping curves of the catalysts

    Fig.6a depicts the Nyquist plot of EIS for the electrodes modified with Pt/FeSnO(OH)5and Pt/C.Both catalysts show a typical characteristic semicircle at the high frequency region.The semicircle in the high frequency region is taken as a measure of the charge transfer resistance (Rct) between the aqueous solution and the modified electrode[46],showing that the Rctof Pt/FeSnO(OH)5is lower than that of Pt/C, suggesting the faster kinetics of methanol oxidation and the higher electrocatalytic activity of Pt/FeSnO(OH)5compared with Pt/C[47,48].

    Fig.6b shows the CA curves of Pt-based catalysts in a solution of 1 M KOH with 1 M methanol for 3600 s at –0.2 V vs.Ag/AgCl.Both catalysts showed an initial faster decay, which is attributed to a double layer capacitance effect[49].After the initial significant drop period, the current decreased slowly because the MOR byproducts such as COads,CH3OHadsand CHOadswere adsorbed on the active surface of the catalysts[50].Obviously, the current density on the Pt/FeSnO(OH)5catalyst is the highest during the 1 h measurement, displaying its excellent electrocatalytic activity.The better stability of Pt/C may be attributed to the stronger binding energy between Pt and the carbon compared with Pt/FeSnO(OH)5, which can be proved by the XPS analysis.

    Fig.6.(a) Nyquist plot of EIS of the catalysts.(b) CA curves of the catalysts

    The different performance of MOR between the Pt/FeSnO(OH)5and Pt/C can be explained by the following factors.The first factor is the different interaction between the Pt particles and the transition metal of the support.As shown in the XPS curves(Fig.2a), the binding energy of the 4f7/2in Pt/FeSnO(OH)5is negatively shifted 0.6 eV compared with Pt/C, indicating a stronger interaction between Pt and FeSnO(OH)5.The increase of electron charge transfer from the transition metal to Pt atom is the major factor for the weakening of CO?Pt bonding and intermediate adsorptive strength for Pt, leading to the enhancement of electrochemical performance[51,52].The second factor is based on the bifunctional mechanism of the support.The OHadsis formed at lower potential on Sn sites than on the Pt sites, thus CO and CO-like intermediates could be oxidized at low potential, resulting in the better electrochemical activity for Pt/FeSnO(OH)5compared with Pt/C[53].Thirdly, as shown in Table 1, the atomic percentage of Pt0in Pt/FeSnO(OH)5is higher than that in Pt/C, which is also responsible for the better electrocatalytic activity.The metallic Pt in zero oxidation state is beneficial to the electrocatalytic activity towards methanol electro-oxidation in comparison with Pt2+and Pt4+[34].Furthermore, the higher amount of metallic Pt in zero oxidation state in Pt/FeSnO(OH)5proved by XPS and the better electronic conductivity of Pt/FeSnO(OH)5confirmed by the EIS measurement are both in favor of the MOR performance.

    4 CONCLUSION

    In conclusion, FeSnO(OH)5nanoboxes have been synthesized and deposited with Pt nanoparticles as an electrode catalyst in DMFCs.The catalytic performance of the prepared Pt/FeSnO(OH)5toward MOR has been evaluated and compared with the commercial carbon supported Pt.The XRD, XPS, SEM,TEM and electrochemical experiments have been employed to explore the relationships between the crystal structure and the electrochemical properties.The characterizations show that the prepared Pt/FeSnO(OH)5catalyst obtains enhanced performance toward MOR compared with Pt/C, which can be attributed to the lower interaction between Pt and the FeSnO(OH)5support, the bifunctional effect of FeSnO(OH)5, the higher atomic percentage of Pt0in FeSnO(OH)5and the better electronic conductivity of FeSnO(OH)5.The study has revealed the effect of support on the electrochemical catalytic activity and shows that the Pt/FeSnO(OH)5is a promising anode catalyst in DMFCs.

    REFERENCES

    (1) Kim, Y.; Noh, Y.; Lim, E.J.; Lee, S.; Choi, S.M.; Kim, W.B.Star-shaped Pd@Pt core-shell catalysts supported on reduced graphene oxide with superior electrocatalytic performance.J.Mater.Chem.A2014, 2, 6976-6986.

    (2) Zhu, J.; Xiao, M.; Zhao, X.; Li, K.; Liu, C.; Xing, W.Nitrogen-doped carbon-graphene composites enhance the electrocatalytic performance of the supported Pt catalysts for methanol oxidation.Chem.Commun.2014, 50, 12201-12203.

    (3) Munjewar, S.S.; Thombre, S.B.; Mallick, R.K.Approaches to overcome the barrier issues of passive direct methanol fuel cell – review.Sustain.Energy Rev.2017, 67, 1087-1104.

    (4) Liu, H.; Song, C.; Zhang, L.; Zhang, J.; Wang, H.; Wilkinson, D.P.A review of anode catalysis in the direct methanol fuel cell.J.Power Sources2006, 155, 95-110.

    (5) Santos, M.C.L.D.; Dutra, R.M.; Ribeiro, V.A.; Spinacé, E.V.; Neto, A.O.Preparation of PtRu/C electrocatalysts by borohydride reduction for methanol oxidation in acidic and alkaline medium.Int.J.Electrochem.Sci.2017, 12, 3549-3560.

    (6) Hu, Y.; Zhu, A.; Zhang, C.; Zhang, Q.; Liu, Q.Microwave-assisted synthesis of double-shell PtRu/TiO2catalyst towards methanol electro-oxidation.Int.J.Hydrogen Energy.2015, 40, 15652-15662.

    (7) Chakroune, N.; Viau, G.; Ammar, S.; Poul, L.; Veautier, D.; Chehimi, M.M.; Mangeney, C.; Villain, F.; Fiévet, F.Acetate- and thiol-capped monodisperse ruthenium nanoparticles:? XPS, XAS, and HRTEM studies.Langmuir.2005, 21, 6788-6796.

    (8) Huang, H.J.; Wang, X.Recent progress on carbon-based support materials for electrocatalysts of direct methanol fuel cells.J.Mater.Chem.A2014,2, 6266-6291.

    (9) Sun, S.; Zhang, G.; Geng, D.; Chen, Y.; Li, R.; Cai, M.; Sun, X.Cover picture: a highly durable platinum nanocatalyst for proton exchange membrane fuel cells: multiarmed starlike nanowire single crystal.Angew.Chem.Int.Ed.2011, 50, 422-426.

    (10) Zhang, N.; Bu, L.; Guo, S.; Guo, J.; Huang, X.Screw thread-like platinum-copper nanowires bounded with high-index facets for efficient electrocatalysis.Nano Lett.2016, 16, 5037-5043.

    (11) Bavand, R.; Wei, Q.; Zhang, G.; Sun, S.; Yelon, A.; Sacher, E.PtRu alloy nanoparticles II.Chemical and electrochemical surface characterization for methanol oxidation.J.Phys.Chem.C2017, 121, 23120-23128.

    (12) Lv, Q.; Xiao, Y.; Yin, M.; Ge, J.; Xing, W.; Liu, C.Reconstructed PtFe alloy nanoparticles with bulk-surface differential structure for methanol oxidation.Electrochim.Acta2014, 139, 61-68.

    (13) Liu, H.; Li, C.; Chen, D.; Cui, P.; Ye, F.; Yang, J.Uniformly dispersed platinum-cobalt alloy nanoparticles with stable compositions on carbon substrates for methanol oxidation reaction.Sci.Rep.2017, 7, 11421.

    (14) Lu, X.Q.; Deng, Z.G.; Guo, C.; Wang, W.L.; Wei, S.X.; Ng, S.P.; Chen, X.F.; Ding, N.; Guo, W.Y.; Wu, C.M.L.Methanol oxidation on Pt3Sn(111) for direct methanol fuel cells: methanol decomposition.ACS Appl.Mater.Interfaces2016, 8, 12194-12204.

    (15) Zhu, J.; Zheng, X.; Wang, J.; Wu, Z.X.; Han, L.L.; Lin, R.Q.; Xin, H.L.L.; Wang, D.L.Structurally ordered Pt–Zn/C series nanoparticles as efficient anode catalysts for formic acid electrooxidation.J.Mater.Chem.A2015, 3, 22129-22135.

    (16) Su, N.; Hu, X.; Zhang, J.; Huang, H.; Cheng, J.; Yu, J.; Ge, C.Plasma-induced synthesis of Pt nanoparticles supported on TiO2nanotubes for enhanced methanol electro-oxidation.Appl.Surf.Sci.2017, 399, 403-410.

    (17) Wang, H.; Xue, Y.; Zhu, B.; Yang, J.; Wang, L.; Tan, X.CeO2nanowires stretch-embedded in reduced graphite oxide nanocomposite support for Pt nanoparticles as potential electrocatalyst for methanol oxidation reaction.Int.J.Hydrogen Energy2017, 42, 20549-20559.

    (18) Pan, K.Y.; Wei, D.H.Enhanced electronic and electrochemical properties of core-shelled V2O5-Pt nanowires.Appl.Surf.Sci.2018, 427,1064-1070.

    (19) Yang, C.; Zhou, M.; Zhang, M.; Gao, L.Mitigating the degradation of carbon-supported Pt electrocatalysts by tungsten oxide nanoplates.Electrochim.Acta2016, 188, 529-536.

    (20) Ting, C.C.; Liu, C.H.; Tai, C.Y.; Hsu, S.C.; Chao, C.S.; Pan, F.M.The size effect of titania-supported Pt nanoparticles on the electrocatalytic activity towards methanol oxidation reaction primarily via the bifunctional mechanism.J.Power Sources2015, 280 166-172.

    (21) Fan, H.; Cheng, M.; Wang, Z.; Wang, R.Layer-controlled Pt-Ni porous nanobowls with enhanced electrocatalytic performance.Nano.Res.2017,10, 187-198.

    (22) Chen, C.S.; Pan, F.M.Electrocatalytic activity of Pt nanoparticles deposited on porous TiO2supports toward methanol oxidation.Appl.Catal.B:Environ.2009, 74, 663-669.

    (23) Tammam, R.H.; Fekry, A.M.; Saleh, M.M.Electrocatalytic oxidation of methanol on ordered binary catalyst of manganese and nickel oxide nanoparticles.Int.J.Hydrogen Energy2015, 40, 275-283.

    (24) Lee, M.J.; Kang, J.S.; Kang, Y.S.; Chung, D.Y.; Shin, H.; Ahn, C.Y.; Park, S.; Kim, M.J.; Kim, S.; Lee, K.S.; Sung, Y.E.Understanding the bifunctional effect for removal of CO poisoning: blend of a platinum nanocatalyst and hydrous ruthenium oxide as a model system.ACS Catal.2016, 6, 2398-2407.

    (25) Huang, D.; Fu, X.; Long, J.; Jiang, X.; Chang, L.; Meng, S.; Chen, S.Hydrothermal synthesis of MSn(OH)6(M = Co, Cu, Fe, Mg, Mn, Zn) and their photocatalytic activity for the destruction of gaseous benzene.Chem.Eng.J.2015, 269,168-179.

    (26) Fu, X.; Wang, X.; Ding, Z.; Leung, D.Y.C.; Zhang, Z.; Long, J.; Zhang, W.; Li, Z.; Fu, X.Hydroxide ZnSn(OH)6: a promising new photocatalyst for benzene degradation.Appl.Catal.B: Environ.2009, 91, 67-72.

    (27) Huang, F.; Yuan, Z.; Zhan, H.; Zhou, Y.; Sun, J.A novel tin-based nanocomposite oxide as negative-electrode materials for Li-ion batteries.Mater.Lett.2003, 57, 3341-3345.

    (28) Luo, B.; Xu, S.; Yan, X.; Xue, Q.Graphene nanosheets supported hollow Pt&CoSn(OH)6nanospheres as a catalyst for methanol electro-oxidation.J.Power Sources2012, 205, 239-243.

    (29) Kunitomo, H.; Ishitobi, H.; Nakagawa, N.Optimized CeO2content of the carbon nanofiber support of PtRu catalyst for direct methanol fuel cells.J.Power Sources2015, 297, 400-407.

    (30) Wagner, C.D.; Riggs, W.M.; Davis, L.E.; Moulder, J.F.; Muilenberg, G.E.Handbook of X-ray photoelectron spectroscopy.Physical Electronics Division1979, p152-153.

    (31) Shyu, Z.J.; Otto, K.Identification of platinum phases on γ-alumina by XPS.Appl.Surf.Sci.1988, 32, 246-252.

    (32) Yang, J.; Deivaraj, T.C.; Too, H.; Lee, J.Y.An alternative phase-transfer method of preparing alkylamine-stabilized platinum nanoparticles.J.Phys.Chem.B2004, 108, 2181-2185.

    (33) Yang, J.; Lee, J.Y.; Deivaraj, T.C.; Too, H.An improved procedure for preparing smaller and nearly monodispersed thiol-stabilized platinum nanoparticles.Langmuir.2003, 19, 10361-10365.

    (34) Bisht, A.; Zhang, P.; Shivakumara, C.; Sharma, S.Pt-doped and Pt-supported La1–xSrxCoO3: comparative activity of Pt4+and Pt0toward the CO poisoning effect in formic acid and methanol electro-oxidation.J.Phys.Chem.C2015, 119, 14126-14134.

    (35) Sharma, S.; Ganguly, A.; Papakonstantinou, P.; Miao, X.; Li, M.; Hutchison, J.L.; Delichatsios, M.; Ukleja, S.Rapid microwave synthesis of CO tolerant reduced graphene oxide-supported platinum electrocatalysts for oxidation of methanol.J.Phys.Chem.C2010, 114, 19459-19466.

    (36) Hu, Y.; Zhu, A.; Zhang, C.; Zhang, Q.; Liu, Q.Microwave-assisted synthesis of double-shell PtRu/TiO2catalyst towards methanol electro-oxidation.Int.J.Hydrogen Energy2015, 40, 15652-15662.

    (37) Higgins, D.; Hoque, A.M.; Seo, H.M.; Reinecke, T.Development and simulation of sulfur-doped graphene supported platinum with exemplary stability and activity towards oxygen reduction.Adv.Funct.Mater.2014, 27, 4325-4336.

    (38) Flórez-Monta?o, J.; García, G.; Rodríguez, J.L.; Pastor, E.; Cappellari, P.; Planes, G.A.On the design of Pt based catalysts.Combining porous architecture with surface modification by Sn for electrocatalytic activity enhancement.J.Power Sources2015, 282, 34-44.

    (39) Park, K.; Choi, J.; Kwon, B.; Lee, S.; Sung, Y.; Ha, H.; Hong, S.; Kim, H.; Wieckowski, A.Chemical and electronic effects of Ni in Pt/Ni and Pt/Ru/Ni alloy nanoparticles in methanol electrooxidation.J.Phys.Chem.B2002, 106, 1869-1877.

    (40) Kuivila, C.S.; Butt, J.B.; Stair, P.C.Characterization of surface species on iron synthesis catalysts by X-ray photoelectron spectroscopy.Appl.Surf.Sci.1988, 32, 99-121.

    (41) Yamashita, T.; Hayes, P.Analysis of XPS spectra of Fe2+and Fe3+ions oxide materials.Appl.Surf.Sci.2008, 254, 2441-2449.

    (42) Dedryvère, R.; Maccario, M.; Croguennec, L.; Le Cras, F.; Delmas, C.; Gonbeau, D.X-ray photoelectron spectroscopy investigations of carbon-coated LixFePO4materials.Chem.Mater.2008, 207, 164-7170.

    (43) Pozio, A.; De Francesco, M.; Cemmi, A.; Cardellini, F.; Giorgi, L.Comparison of high surface Pt/C catalysts by cyclic voltammetry.J.Power Sources2002, 105, 13-19.

    (44) Qin, Y.; Yang, H.; Zhang, X.; Li, P.; Ma, C.Effect of carbon nanofibers microstructure on electrocatalytic activities of Pd electrocatalysts for ethanol oxidation in alkaline medium.Int.J.Hydrogen Energy2010, 35, 7667-7674.

    (45) Chen, X.; Si, C.; Gao, Y.; Frenzel, J.; Sun, J.; Eggeler, G.; Zhang, Z.Multi-component nanoporous platinum-ruthenium-copper-osmium-iridium alloy with enhanced electrocatalytic activity towards methanol oxidation and oxygen reduction.J.Power Sources2015, 273, 324-332.

    (46) Li, Z.; Zhang, L.; Huang, X.; Ye, L.; Lin, S.Shape-controlled synthesis of Pt nanoparticles via integration of graphene and β-cyclodextrin and using as a noval electrocatalyst for methanol oxidation.Electrochim.Acta2014, 121, 215-222.

    (47) Ruan, D.; Gao, F.; Gu, Z.Enhanced electrochemical properties of surface roughed Pt nanowire electrocatalyst for methanol oxidation.Electrochim.Acta2014, 147, 225-231.

    (48) Zhou, Z.H.; Li, W.S.; Fu, Z.; Xiang, X.D.Carbon nanotube-supported Pt-H x MoO3as electrocatalyst for methanol oxidation.Int.J.Hydrogen Energy2010, 35, 936-941.

    (49) Jiang, L.; Sun, G.; Zhao, X.; Zhou, Z.; Yan, S.; Tang, S.; Wang, G.; Zhou, B.; Xin, Q.Preparation of supported PtRu/C electrocatalyst for direct methanol fuel cells.Electrochim.Acta2005, 50, 2371-2376.

    (50) Kabbabi, A.; Faure, R.; Durand, R.; Beden, B.; Hahn, F.; Leger, J.M.; Lamy, C.In situ FTIRS study of the electrocatalytic oxidation of carbon monoxide and methanol at platinum-ruthenium bulk alloy electrodes.J.Electroanal.Chem.1998, 444, 41-53.

    (51) Wang, D.; Chou, H.; Lin, Y.; Lai, F.; Chen, C.; Lee, J.; Hwang, B.; Chen, C.Simple replacement reaction for the preparation of ternary Fe1–xPtRuxnanocrystals with superior catalytic activity in methanol oxidation reaction.J.Am.Chem.Soc.2012, 134, 10011-10020.

    (52) Fu, Q.; Li, W.X.; Yao, Y.; Liu, H.; Su, H.Y.; Ma, D.; Gu, X.K.; Chen, L.; Wang, Z.; Zhang, H.; Wang, B.; Bao, X.Interface-confined ferrous centers for catalytic oxidation.Science2010, 328, 1141-1144.

    (53) Sharma, S.; Ganguly, A.; Papakonstantinou, P.; Miao, X.; Li, M.; Hutchison, J.L.; Delichatsios, M.; Ukleja, S.Rapid microwave synthesis of CO tolerant reduced graphene oxide-supported platinum electrocatalysts for oxidation of methanol.J.Phys.Chem.C2010, 114, 19459-19466.

    午夜久久久久精精品| 美女 人体艺术 gogo| 亚洲aⅴ乱码一区二区在线播放| 1024手机看黄色片| 国内久久婷婷六月综合欲色啪| 午夜视频国产福利| 麻豆久久精品国产亚洲av| 波多野结衣高清无吗| 国产精品av视频在线免费观看| 久久中文看片网| АⅤ资源中文在线天堂| 欧美黑人欧美精品刺激| 色在线成人网| 人妻夜夜爽99麻豆av| 国产精品国产高清国产av| 亚洲人成网站在线播放欧美日韩| 男女下面进入的视频免费午夜| 国产亚洲欧美在线一区二区| 国产精品爽爽va在线观看网站| 欧美黑人巨大hd| 最近最新免费中文字幕在线| 18禁在线播放成人免费| 欧美日韩中文字幕国产精品一区二区三区| 国产精品av视频在线免费观看| 亚洲av成人av| 精品欧美国产一区二区三| 亚洲天堂国产精品一区在线| 欧美三级亚洲精品| 一级a爱片免费观看的视频| 九九久久精品国产亚洲av麻豆| 男女下面进入的视频免费午夜| 国产极品精品免费视频能看的| 亚洲av二区三区四区| 在线十欧美十亚洲十日本专区| 成人永久免费在线观看视频| 亚洲av第一区精品v没综合| 很黄的视频免费| 真实男女啪啪啪动态图| 赤兔流量卡办理| 老司机午夜十八禁免费视频| 久久性视频一级片| 精品午夜福利在线看| 无遮挡黄片免费观看| 99久久久亚洲精品蜜臀av| 久久热精品热| 男人舔奶头视频| 色噜噜av男人的天堂激情| 麻豆国产97在线/欧美| 色综合站精品国产| 国产精品免费一区二区三区在线| 日本 av在线| 一级a爱片免费观看的视频| eeuss影院久久| 精品久久久久久久久av| 美女xxoo啪啪120秒动态图 | a在线观看视频网站| 天美传媒精品一区二区| 97热精品久久久久久| 给我免费播放毛片高清在线观看| 亚洲在线自拍视频| 黄色一级大片看看| 在线天堂最新版资源| 在线十欧美十亚洲十日本专区| 国产精品乱码一区二三区的特点| 18+在线观看网站| 欧美潮喷喷水| 国产精品99久久久久久久久| 女同久久另类99精品国产91| 日韩国内少妇激情av| 国产伦在线观看视频一区| 特级一级黄色大片| 麻豆久久精品国产亚洲av| 在线免费观看的www视频| 少妇裸体淫交视频免费看高清| 亚洲精品久久国产高清桃花| 亚洲av熟女| 少妇人妻精品综合一区二区 | 99久久精品国产亚洲精品| 久久久精品大字幕| 免费av不卡在线播放| 久久人人精品亚洲av| 99热只有精品国产| 久久久久久久精品吃奶| 狂野欧美白嫩少妇大欣赏| 国内精品久久久久精免费| 又爽又黄a免费视频| 国产伦一二天堂av在线观看| 一区二区三区高清视频在线| 国产私拍福利视频在线观看| 久久中文看片网| 久久久精品欧美日韩精品| 亚洲av免费高清在线观看| 久久伊人香网站| 国产探花极品一区二区| 午夜福利在线观看免费完整高清在 | 精品国内亚洲2022精品成人| 一个人看的www免费观看视频| 97碰自拍视频| 国产精品,欧美在线| 狠狠狠狠99中文字幕| 熟女人妻精品中文字幕| 男女那种视频在线观看| 天天一区二区日本电影三级| 久久精品人妻少妇| 丁香欧美五月| 亚洲av.av天堂| 综合色av麻豆| 午夜福利在线观看吧| 欧美成狂野欧美在线观看| 亚洲人成网站在线播| 99国产精品一区二区三区| 日本成人三级电影网站| 国语自产精品视频在线第100页| 女同久久另类99精品国产91| 男人舔奶头视频| 亚洲av免费在线观看| 90打野战视频偷拍视频| 亚洲aⅴ乱码一区二区在线播放| x7x7x7水蜜桃| 欧美最黄视频在线播放免费| 亚洲专区国产一区二区| 丁香欧美五月| 欧美性猛交╳xxx乱大交人| 欧美乱妇无乱码| 亚洲久久久久久中文字幕| 午夜日韩欧美国产| 欧美不卡视频在线免费观看| 国产精品1区2区在线观看.| 午夜免费成人在线视频| 热99在线观看视频| 综合色av麻豆| 十八禁人妻一区二区| 桃色一区二区三区在线观看| 国产 一区 欧美 日韩| 韩国av一区二区三区四区| 亚洲 欧美 日韩 在线 免费| 国产伦精品一区二区三区视频9| 欧美性猛交╳xxx乱大交人| 51国产日韩欧美| 国产又黄又爽又无遮挡在线| 国产成+人综合+亚洲专区| 久久人人精品亚洲av| 在线观看美女被高潮喷水网站 | 久久久久久久久中文| 日韩欧美 国产精品| 国产欧美日韩一区二区三| 亚洲精华国产精华精| 国内久久婷婷六月综合欲色啪| 伦理电影大哥的女人| 美女大奶头视频| 久久人人爽人人爽人人片va | 91在线观看av| 神马国产精品三级电影在线观看| 九九热线精品视视频播放| 国产美女午夜福利| 精品久久久久久久久久免费视频| 日韩欧美在线乱码| 村上凉子中文字幕在线| 丰满乱子伦码专区| 成人av在线播放网站| 看免费av毛片| 中文亚洲av片在线观看爽| 久久精品91蜜桃| 男人舔奶头视频| 97碰自拍视频| 婷婷六月久久综合丁香| 欧美激情在线99| 乱码一卡2卡4卡精品| 亚洲精品亚洲一区二区| 性色avwww在线观看| 亚洲欧美日韩高清在线视频| 亚洲成人精品中文字幕电影| 久久久色成人| 中文资源天堂在线| 色吧在线观看| 极品教师在线视频| 久久热精品热| 久久久久九九精品影院| 日韩大尺度精品在线看网址| 丁香欧美五月| 51国产日韩欧美| 99久久九九国产精品国产免费| www.999成人在线观看| 欧美xxxx性猛交bbbb| 99国产精品一区二区三区| 在线免费观看的www视频| 亚洲欧美激情综合另类| 999久久久精品免费观看国产| 一个人免费在线观看的高清视频| 高清在线国产一区| 2021天堂中文幕一二区在线观| 久久午夜福利片| 精品一区二区三区av网在线观看| 精品久久久久久久久亚洲 | 日本在线视频免费播放| 午夜福利18| 亚洲五月婷婷丁香| 麻豆一二三区av精品| 97碰自拍视频| 性色avwww在线观看| 欧美一级a爱片免费观看看| 亚洲国产高清在线一区二区三| 露出奶头的视频| 亚洲成人久久爱视频| av黄色大香蕉| 老女人水多毛片| 日韩精品中文字幕看吧| 国产老妇女一区| av在线观看视频网站免费| 12—13女人毛片做爰片一| 午夜福利在线在线| 五月伊人婷婷丁香| 国产蜜桃级精品一区二区三区| 天堂动漫精品| 欧美日韩中文字幕国产精品一区二区三区| av在线天堂中文字幕| 天美传媒精品一区二区| 在线观看午夜福利视频| 久9热在线精品视频| 欧美日韩福利视频一区二区| x7x7x7水蜜桃| 国产精品一区二区免费欧美| 国产午夜精品久久久久久一区二区三区 | 精品一区二区免费观看| 国产中年淑女户外野战色| 亚洲成av人片在线播放无| 深夜a级毛片| 天美传媒精品一区二区| 欧美潮喷喷水| 男女做爰动态图高潮gif福利片| 日本 欧美在线| 成人美女网站在线观看视频| 波多野结衣高清无吗| 免费搜索国产男女视频| 国产色爽女视频免费观看| 白带黄色成豆腐渣| 色吧在线观看| 中出人妻视频一区二区| 夜夜看夜夜爽夜夜摸| 在线免费观看的www视频| 一级黄片播放器| 日韩精品中文字幕看吧| 久久久久久久午夜电影| 一卡2卡三卡四卡精品乱码亚洲| 全区人妻精品视频| 亚洲最大成人av| 一卡2卡三卡四卡精品乱码亚洲| 在线天堂最新版资源| 亚洲国产欧美人成| 欧美另类亚洲清纯唯美| .国产精品久久| 黄片小视频在线播放| 男人和女人高潮做爰伦理| 午夜日韩欧美国产| 色综合亚洲欧美另类图片| 一进一出抽搐动态| 午夜两性在线视频| 国产精品自产拍在线观看55亚洲| 国产aⅴ精品一区二区三区波| 12—13女人毛片做爰片一| 女人十人毛片免费观看3o分钟| 色综合欧美亚洲国产小说| 欧美不卡视频在线免费观看| 国产精品爽爽va在线观看网站| 99热这里只有精品一区| 免费在线观看影片大全网站| 亚洲aⅴ乱码一区二区在线播放| 99久久成人亚洲精品观看| 国产白丝娇喘喷水9色精品| 少妇人妻一区二区三区视频| 成人美女网站在线观看视频| 国产色爽女视频免费观看| 国产免费一级a男人的天堂| 制服丝袜大香蕉在线| 级片在线观看| 一区二区三区高清视频在线| 97超视频在线观看视频| 日韩欧美精品免费久久 | 乱码一卡2卡4卡精品| 成人国产综合亚洲| 国产午夜精品久久久久久一区二区三区 | 深爱激情五月婷婷| 久久九九热精品免费| 成人鲁丝片一二三区免费| 欧美潮喷喷水| 日韩免费av在线播放| 久久99热这里只有精品18| 亚洲av第一区精品v没综合| 欧美国产日韩亚洲一区| 国内精品久久久久精免费| 午夜两性在线视频| 热99在线观看视频| 日本a在线网址| 亚洲欧美激情综合另类| 精品国内亚洲2022精品成人| 三级国产精品欧美在线观看| 在线观看一区二区三区| 免费人成视频x8x8入口观看| 色视频www国产| 亚洲中文日韩欧美视频| 免费看a级黄色片| 97超视频在线观看视频| 久久久久九九精品影院| 日韩欧美在线二视频| h日本视频在线播放| 宅男免费午夜| 国产精品精品国产色婷婷| 很黄的视频免费| 亚洲va日本ⅴa欧美va伊人久久| 国产午夜精品久久久久久一区二区三区 | 免费av毛片视频| 少妇裸体淫交视频免费看高清| 免费在线观看成人毛片| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 神马国产精品三级电影在线观看| 国产黄色小视频在线观看| 欧美日韩亚洲国产一区二区在线观看| 精品久久久久久久久久免费视频| 久久久久久九九精品二区国产| 久久久久久久久大av| 在线观看午夜福利视频| 啦啦啦观看免费观看视频高清| 国产一级毛片七仙女欲春2| 成人特级av手机在线观看| 夜夜夜夜夜久久久久| 网址你懂的国产日韩在线| 我的女老师完整版在线观看| 欧美成狂野欧美在线观看| 99久久99久久久精品蜜桃| 国产午夜精品久久久久久一区二区三区 | 能在线免费观看的黄片| 国产精品99久久久久久久久| 亚洲狠狠婷婷综合久久图片| 午夜视频国产福利| a级毛片a级免费在线| 天堂网av新在线| 欧美午夜高清在线| 日韩欧美在线二视频| 国产一区二区在线观看日韩| 精品久久久久久成人av| 男人舔女人下体高潮全视频| 亚洲av不卡在线观看| 午夜影院日韩av| 老司机午夜十八禁免费视频| 午夜影院日韩av| 桃色一区二区三区在线观看| 亚洲自拍偷在线| 色视频www国产| 亚洲成人久久性| av视频在线观看入口| 国产av麻豆久久久久久久| 午夜福利在线在线| 51午夜福利影视在线观看| www.熟女人妻精品国产| 老熟妇乱子伦视频在线观看| 国产蜜桃级精品一区二区三区| 亚洲人成电影免费在线| 伦理电影大哥的女人| 亚洲无线在线观看| 国产真实乱freesex| 91狼人影院| 国产精品久久久久久亚洲av鲁大| 91久久精品国产一区二区成人| 国产色爽女视频免费观看| 波多野结衣高清无吗| 午夜福利在线观看吧| 亚洲av中文字字幕乱码综合| 国产av在哪里看| 99国产精品一区二区蜜桃av| 欧美高清性xxxxhd video| 午夜视频国产福利| 成人av一区二区三区在线看| 床上黄色一级片| 18禁黄网站禁片午夜丰满| 老熟妇乱子伦视频在线观看| 精品久久国产蜜桃| 男人狂女人下面高潮的视频| 日本成人三级电影网站| 欧美性猛交╳xxx乱大交人| 尤物成人国产欧美一区二区三区| 亚洲自拍偷在线| 久久午夜福利片| 日韩欧美精品免费久久 | 搡老熟女国产l中国老女人| 亚洲内射少妇av| 亚洲在线观看片| 欧美日本亚洲视频在线播放| 欧美黑人欧美精品刺激| 99久国产av精品| 亚洲美女黄片视频| 亚洲成av人片免费观看| 99久久九九国产精品国产免费| 亚洲av日韩精品久久久久久密| 国产中年淑女户外野战色| 老司机深夜福利视频在线观看| 女生性感内裤真人,穿戴方法视频| 中文字幕精品亚洲无线码一区| 精品欧美国产一区二区三| 亚洲成av人片在线播放无| 亚洲av成人av| 亚洲av成人精品一区久久| 国产主播在线观看一区二区| 成年免费大片在线观看| 日本黄色视频三级网站网址| 欧美激情在线99| 看片在线看免费视频| 国产蜜桃级精品一区二区三区| 少妇人妻精品综合一区二区 | 欧美日韩黄片免| 国产一区二区亚洲精品在线观看| 99热这里只有精品一区| 久久久久亚洲av毛片大全| 青草久久国产| 在线观看av片永久免费下载| 亚洲一区高清亚洲精品| 久久亚洲精品不卡| 精品一区二区三区av网在线观看| 丰满乱子伦码专区| 亚洲欧美日韩东京热| 国产一区二区在线av高清观看| 日本一本二区三区精品| a级毛片免费高清观看在线播放| 在线观看舔阴道视频| а√天堂www在线а√下载| 国产成+人综合+亚洲专区| 欧美zozozo另类| 一级黄色大片毛片| 91久久精品国产一区二区成人| 国产免费男女视频| 精品一区二区免费观看| 久久热精品热| 国产一区二区在线av高清观看| bbb黄色大片| 少妇高潮的动态图| 国产成年人精品一区二区| 亚洲精品456在线播放app | 久久久久精品国产欧美久久久| 成人毛片a级毛片在线播放| 女人十人毛片免费观看3o分钟| 色综合婷婷激情| 18禁黄网站禁片免费观看直播| 99久久无色码亚洲精品果冻| 人妻丰满熟妇av一区二区三区| 老鸭窝网址在线观看| 真实男女啪啪啪动态图| 少妇丰满av| 美女高潮的动态| 人人妻人人澡欧美一区二区| 日韩有码中文字幕| 亚洲精品在线美女| 日韩av在线大香蕉| 亚洲无线观看免费| or卡值多少钱| 丁香六月欧美| 美女黄网站色视频| 久久精品国产亚洲av天美| 美女免费视频网站| 日本黄色片子视频| 成人国产一区最新在线观看| 欧美日韩福利视频一区二区| 久久久久久九九精品二区国产| 日韩亚洲欧美综合| 中文亚洲av片在线观看爽| 免费人成视频x8x8入口观看| 国产探花极品一区二区| av在线天堂中文字幕| 9191精品国产免费久久| 亚洲熟妇熟女久久| 亚洲天堂国产精品一区在线| 亚洲欧美日韩无卡精品| 亚洲成人久久爱视频| 老熟妇仑乱视频hdxx| 久久性视频一级片| 国产毛片a区久久久久| 欧美成人性av电影在线观看| 国产熟女xx| 舔av片在线| 人人妻人人看人人澡| 日本精品一区二区三区蜜桃| 亚洲美女搞黄在线观看 | 中文字幕人妻熟人妻熟丝袜美| 午夜福利欧美成人| 特大巨黑吊av在线直播| 成人三级黄色视频| 欧美丝袜亚洲另类 | 国产男靠女视频免费网站| 别揉我奶头~嗯~啊~动态视频| 不卡一级毛片| av女优亚洲男人天堂| 亚洲 国产 在线| 国产成人av教育| 最好的美女福利视频网| 久久精品国产99精品国产亚洲性色| 午夜免费成人在线视频| 99热这里只有是精品在线观看 | 久久99热6这里只有精品| 嫩草影视91久久| 亚洲欧美清纯卡通| 国产精品乱码一区二三区的特点| 国产成人福利小说| 国产大屁股一区二区在线视频| 中文字幕人成人乱码亚洲影| 久99久视频精品免费| 午夜两性在线视频| 成人午夜高清在线视频| 好看av亚洲va欧美ⅴa在| 国产精品自产拍在线观看55亚洲| 中文资源天堂在线| 制服丝袜大香蕉在线| 激情在线观看视频在线高清| 狠狠狠狠99中文字幕| 亚洲欧美日韩东京热| 女人十人毛片免费观看3o分钟| 久久精品国产亚洲av涩爱 | 我要看日韩黄色一级片| 国内精品久久久久精免费| 99久久精品热视频| 亚洲第一欧美日韩一区二区三区| 日本免费一区二区三区高清不卡| www.www免费av| 少妇高潮的动态图| 免费人成视频x8x8入口观看| 久久久久国产精品人妻aⅴ院| 国产精品自产拍在线观看55亚洲| 色综合婷婷激情| 淫秽高清视频在线观看| 天堂av国产一区二区熟女人妻| 成年女人永久免费观看视频| 最近最新中文字幕大全电影3| 久久久久久久久大av| 九色国产91popny在线| 免费电影在线观看免费观看| 级片在线观看| www.色视频.com| 日本三级黄在线观看| 日韩欧美一区二区三区在线观看| 天堂影院成人在线观看| 美女高潮喷水抽搐中文字幕| 亚洲在线自拍视频| 亚洲熟妇熟女久久| 免费av观看视频| 国产黄色小视频在线观看| 亚洲国产精品合色在线| 一区二区三区四区激情视频 | 村上凉子中文字幕在线| 中出人妻视频一区二区| 少妇丰满av| 中文字幕人妻熟人妻熟丝袜美| 亚洲国产欧洲综合997久久,| av在线老鸭窝| 久久人人精品亚洲av| 内地一区二区视频在线| 97超视频在线观看视频| a级一级毛片免费在线观看| 美女xxoo啪啪120秒动态图 | 听说在线观看完整版免费高清| 亚洲va日本ⅴa欧美va伊人久久| 亚洲五月天丁香| 变态另类成人亚洲欧美熟女| 免费观看的影片在线观看| 大型黄色视频在线免费观看| 成人鲁丝片一二三区免费| 欧美在线黄色| 直男gayav资源| 午夜影院日韩av| 成年女人毛片免费观看观看9| 久久精品久久久久久噜噜老黄 | 欧美激情在线99| 欧美日韩综合久久久久久 | 在线观看午夜福利视频| 全区人妻精品视频| 久久久国产成人免费| 一级a爱片免费观看的视频| 免费人成在线观看视频色| 日本 欧美在线| av在线观看视频网站免费| 精品久久久久久久久久免费视频| 两个人视频免费观看高清| 大型黄色视频在线免费观看| 日韩欧美国产在线观看| 一夜夜www| 亚洲专区中文字幕在线| 亚洲精品乱码久久久v下载方式| 床上黄色一级片| 久久国产精品影院| 又爽又黄无遮挡网站| 床上黄色一级片| 在线a可以看的网站| 99热这里只有是精品在线观看 | 欧美日韩国产亚洲二区| 久9热在线精品视频| 黄色女人牲交| 日日摸夜夜添夜夜添av毛片 | 午夜精品一区二区三区免费看| 丝袜美腿在线中文| 午夜免费成人在线视频| 人妻丰满熟妇av一区二区三区| 一个人观看的视频www高清免费观看| 好男人电影高清在线观看| 尤物成人国产欧美一区二区三区| 欧美日韩乱码在线| 日韩免费av在线播放| 国产综合懂色| 亚洲欧美日韩卡通动漫| 午夜免费成人在线视频| 怎么达到女性高潮| 亚洲aⅴ乱码一区二区在线播放| 婷婷精品国产亚洲av在线| 国产综合懂色| 久久久久久久精品吃奶| 免费看a级黄色片| 欧美最黄视频在线播放免费| 国模一区二区三区四区视频| 97人妻精品一区二区三区麻豆| 国产欧美日韩精品一区二区|