• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Structural, Electronic, Optical and Thermodynamic Properties of Nanolaminated Boride Cr4AlB6①

    2018-11-22 01:58:52ZHANGRuiZhouCUIHongLingLIXioHongCollegeofPhysicsndEngineeringHennUniversityofSciencendTechnologyLuoyng471003ChinHennKeyLortoryofPhotoelectricEnergyStorgeMterilsndApplictionsLuoyng471023Chin
    結構化學 2018年10期

    ZHANG Rui-Zhou CUI Hong-Ling LI Xio-Hong, ② (College of Physics nd Engineering, Henn University of Science nd Technology, Luoyng 471003, Chin) (Henn Key Lortory of Photoelectric Energy Storge Mterils nd Applictions, Luoyng 471023, Chin)

    The structural, electronic, optical and thermal properties of Cr4AlB6were investigated by density functional theory.The investigated results confirm the metallic nature of Cr4AlB6and the maximum optical conductivity occurs at about 8.12 eV.Thermodynamic properties such as thermal expansion, bulk modulus, and heat capacity were further investigated with increasing the temperature and pressure.

    1 INTRODUCTION

    In recent years, a family of ternary nano-layered compounds known as MAX alloys or MAX phases[1-3]was investigated.The general formula for MAX phases is Mn+1AXn, where M is an early transition metal, A is an A-group (mostly IIIA and IVA) element, X is either C or N, and n is an integer,commonly equal to 1, 2 or 3[4,5].Such a nanolaminated structure endows the unique property combination of metals and ceramics because of a hard carbide or nitride part (MX)nand a ductile intermetallic part MA[1-3,6].The MAX phases have the properties such as: good electrical and thermal conductivity, machinability, low thermal expansion, and reversible plasticity[7].Furthermore, they are the only polycrystalline solids in which single grains can deform by a combination of slip, kink band formation and delamination[8,9].The MAX phases have been applied into the defense, high temperature reactor, automobile, protective coatings, etc[10-12].The remarkable property collection of the MAX phases makes them open the door to viable commercial applications from catalysis to aerospace in future[13].

    In the 1960s, the metallic ceramics MAX phases were discovered[14]and became the research focus in recent years[1-3].Now, about 70 MAX compounds are discovered[15].In the MAX phases, the oxidation of alumina can make materials used at extended high temperature[16], and this is observed only in the Al-containing MAX carbides such as Ti3AlC2[17]and Cr2AlC[18].So, it is reasonable to assume that other Al-containing MAX phases would also exhibit a similar oxidation resistance.Ade et al.[19]thought that inserting Al layer to form nanolaminated, ternary transition-metal borides (called MAB phases) can improve the intrinsic brittleness and poor oxidation resistance of binary borides.The general formula for MAB phases is (MB)2Alm(MB2)n(n = 1, 2, ···; m = 1,2, 3, ···).Bai et al.[20]investigated the electronic structure, elastic properties of ternary layered boride MoAlB and thought that there exhibit similarities in properties between MAB and MAX.Li et al.[21]investigated the electrical and mechanical properties of polycrystalline Fe2AlB2bulk from element powders.They thought that Fe2AlB2is quite damage tolerant and the energy-absorbing mechanisms are delamination and pullout of Fe2AlB2grains.Li et al.[22]investigated the mechanical, electronic and bonding properties of MAB phases (CrB2)nCrAl (n =1,2 3), Dai et al.[23]further calculated the shear response of nanonaminated (CrB2)nCrAl and thought that dislocations tend to nucleate in basal planes and may result from the local open structure around Al layers.

    The structure of CrB was determined[24]and the combination of the polygons beyond hexagons appears such as YCrB4[25].The crystal structure of Cr3AlB4was determined in 1972[26].By insertion of additional boron atoms in the surrounding of Cr in Cr3AlB4, Martin et al.[19]synthesized the ternary borides Cr4AlB6, a new MAB phase, and its structure is similar to the MAX phases with two Al layers interleaving the transition metal boride sublattice.To the best of our knowledge, little experimental and theoretical information about the electronic, optical and thermodynamic information is available for Cr4AlB6.Thus, investigating these properties theoretically can help Cr4AlB6to be used in industrial applications.

    The all-electron projector augmented wave (PAW)method was reported to investigate the structural and electronic properties of MnB4-type structure[27].This method has also been used by Wang et al.[28]to investigate the elastic constants of B4CO4.Using the PAW method, we calculated the structural, optical,and thermal properties of Cr4AlB6.Density functional theory (DFT) within the quasi harmonic approximation (QHA) was used to investigate the thermal properties of bulk materials[13,29].

    2 COMPUTATIONAL DETAILS

    Cr4AlB6has orthorhombic crystal structure and belongs to Cmmm space group[19].The calculations about energy and electronic structure were carried out within the generalized gradient approximation(GGA), as implemented in the Vienna ab-initio simulation package (VASP)[30].The PAW[31]and GGA[32]were used.Perdew-Burke-Ernzerhof (PBE)functional[33]was also used.Geometry optimizations were performed without any restriction.The plane wave cut-off energy is 800 eV.And the Monkhorst-Pack k-point mesh is set to 7 ′ 7 ′ 7 to ensure the energy differences of less than 10-6eV/atom.The k-point of 9 ′ 9 ′ 9 mesh was used to calculate the band structure.In the calculation of DOS, the tetrahedron method[34]was used for the Brillouinzone integration and a dense 15 ′ 15 ′ 15 k-points was used.

    The optical properties are determined by the complex dielectric function e(w) = e1(w) + ie2(w).The real part e1(w) and imaginary part e2(w) can be obtained by calculating the wave function matrix.Based on the dielectric function, the other optical properties such as the refraction index n(w), the extinction coefficient k(w), the optical reflectivity R(w), the absorption coefficient a(w), and the energyloss spectrum L(w) can be obtained[35].A dense sampling grid of 15 ′ 15 ′ 15 k-points was used for the calculation of optical properties.The related theoretical formulas of optical properties are as follows[36]:

    where C and V represent the conduction band and valence band, respectively.BZ means the first Brillouin zone, K is the reciprocal lattice, EC(K) and E(K) are the intrinsic energy levels of conduction and valence bands, respectively.the matrix element of momentum transition, e0is the vacuum permittivity, a is the unit direction vector, wis the angular frequency, n(w) is the refractive index,k(w) is the extinction coefficient, R(w) is the reflectivity, a(w) is the absorption coefficient, and L(w) is the energy loss function.

    For metal, the intraband transition is more important than the interband transition in the low energy (< 1 eV).So the intraband transition affects mainly the low-energy infrared part of the spectra and can be expressed using empirical Drude term,which can be expressed as

    where wpand gDare the plasma frequency and damping parameter, respectively and can be obtained from the experiment.

    The quasi-harmonic Debye model is applied to investigate the thermodynamic properties.In the quasi-harmonic Debye model, the non-equilibrium Gibbs function G*(V; P, T) can be expressed as

    where E(V) represents the total energy per unit cell of the crystal and can be obtained from the electronic structure calculations.PV represents the constant hydrostatic pressure condition.q (V) corresponds to the Debye temperature.AVibcorresponds to the vibrational Helmholtz free energy and can be obtained by the following equation[37,38]:

    where D(q/T) is the Debye integral, n is the number of atoms per formula unit, and q is the Debye temperature and related to an average sound velocity.For an isotropic solid, q can be computed as

    where M corresponds to the molecular mass per formula, Bsis the adiabatic bulk modulus, and f(s)and Bs are given by the following equations[39]:

    Therefore, the non-equilibrium Gibbs function G*(V; P, T) can be minimized with respect to volume V.

    One could get the thermal equation of state (EOS)V(P, T) by solving Eq.(14).The thermodynamic function was fitted to the integral form of Vinet's equation of state (EOS) at zero pressure[40].The heat capacity Cpwas determined by a numerical differentiationand by polynomial fitting for both Cvand S.The phonon modes were calculated from the force constants using the PHONOPY package[41].A 2 ′ 1 ′ 2 supercell including 88 atoms with 11 ′ 11 ′ 11 k-mesh was used to ensure the convergence.

    3 RESULTS AND DISCUSSION

    3.1 Structural and elastic properties

    Cr4AlB6crystal is in orthogonal system with space group Cmmm and Fig.1 shows its crystal structure.Its unit cell contains two unit formulas.Table 1 lists the lattice constants, structural parameters and available experimental values[19]of Cr4AlB6.Obviously, the calculated results are in good agreement with the experimental values, which confirms the reliability of our computation.

    Fig.1.Crystal structure and molecular numbering of Cmmm-Cr4AlB6

    In Table 1, the calculated lattice constants agree well with the experimental values of 2.9517,21.2803, and 3.0130 ? for a, b and c, respectively.For the lattice constants, the maximum differences between the calculated and experimental values are 0.17%, 0.19% and 0.82% for a, b, and c,respectively.The B6–B10bond length is 1.7396 ?,which is close to the experimental value of 1.7384 ?[19].The B6–B10and B10–B11bonds form a zigzag chain with B6–B10–B11bond angle of 120.19°, close to the experimental value of 120.23°.The B10–B11distance is 1.761 ? for the Cr2AlB2crystal, 1.739 ? for Cr3AlB4and 1.708 ? for Cr4AlB6[19].This shows that the B–B bond length shortens with increasing the boron content.Thereby, the stronger B–B covalent interactions and shorter B–B bond in Cr4AlB6may play an important role in resisting the plastic deformation and make Cr4AlB6tougher than Cr2AlB2and Cr3AlB4.In addition, it is noted that the other bond lengths and bond angles are all close to the corresponding experimental values[19].

    Table 1.Experimental and Calculated Lattice Constants, Atomic Position,Bond Lengths and Bond Angles of the Cmmm-Cr4AlB6 Crystal at Standard Pressure

    From Fig.1, all B atoms form the planar hexagons and the hardness of materials can be improved by adding metal binder[42], so we think that Cr4AlB6is a hard material.We further investigated the elastic constants of Cr4AlB6by CASTEP program[43].For orthorhombic system, nine independent components of the elastic constants must satisfy the necessary conditions for mechanical stability[44]:

    Table 2 lists the calculated elastic constants Cij(GPa), bulk modulus B (GPa), shear modulus G(GPa), Young's modulus Y (GPa), the G/B ratio,Poisson's ratio v and Vicher's hardnesss Hv(GPa) at ambient pressure.The available experimental values[45]were also included.From Table 2, the whole set of elastic constants matrix Cijsatisfies the mechanical stability criteria[46], which shows that Cr4AlB6is mechanically stable at ambient pressure.

    Table 2.Calculated Elastic Constants, Cij (GPa), Bulk Moduli, B (GPa), Shear Moduli, G (GPa),Young's Moduli, Y (GPa), the G/B Ratio, Poisson's Ratio n and Vicker's Hardness, Hn (GPa) at Ambient Pressure, Compared with the Available Experimental and Theoretical Results

    Fig.2 presents the graph of the total energy (E)versus the volume (V).By fitting the E-V data to Birch-Murnaghan's equation of state[46], we can obtain the equilibrium lattice volume, the bulk modulus B0and the pressure derivative of the bulk modulus

    Fig.2.Graph of the total energy versus volume

    From Table 2, the calculated bulk modulus is 234 GPa, which is close to the fitted value (237 GPa)from the Birch-Murnaghan equation of state.The shear modulus and Pugh's ratio[47](k = G/B) are two important elastic properties which are related with the hardness according to the empirical formulation of Chen et al.[48], and the hardness can be written as

    where K = G/B.

    Using Eq.(9), the hardness of Cr4AlB6is estimated to 28.4 GPa, which is smaller than the hardness' of B4C, c-BN, and diamond[36]listed in Table 2.Compared to other materials with similar structures, such as WAlB (Hv: ~21.7 GB)[19]and W45.6Re30.4B24(Hv= 23.5 GPa)[49], the hardness of Cr4AlB6is moderate.In Table 2, the C11value is larger than the C22and C33values, which implies the strong resistances to deformation along the a-direction when compared with that along the c- and b-directions.

    3.2 Electronic and dynamic properties

    In our previous paper[22], we have confirmed the dynamical stability of Cr4AlB6and Fig.S1 in Supporting Information shows the phonon dispersion.Fig.3 illustrates the density of states (DOS) and partial density of states (PDOS) of Cr4AlB6.There is a large finite DOS of 11.67 states/eV at the Fermi energy level for Cr4AlB6, which confirms the metallic characteristic of Cr4AlB6.The DOS near Fermi level are mainly from the Cr-3d orbital electrons, with some of the B-2p orbital electrons and negligible contributions from Al-2p states.Few electrons are available from the s orbital near the Fermi energy level.From –7.8 to –3.7 eV, the PDOS for Cr-d and B-p orbitals are similar, indicating the strong hybridization between Cr-d and B-p states.

    Fig.3.Total electronic density of states and the projected atomic orbital density of states of Cr4AlB6

    Fig.4 shows the normalized total phonons density of states and the total atomic projected density of states of Cr4AlB6.From Figs.S1 and 4, there are two distinct peaks of bands of frequency.The first peak of frequencies ranges from 0 to 11.48 THz and characterized as the optical and acoustic bands of the Cr and Al atoms.The second peak of frequency ranges from 11.48 to 30 THz and corresponds to the optical mode of B atoms.In addition, from Fig.4, the intensity of Cr and B compositions is much stronger than that of the Al bands.And the frequency compositions of Cr and B atoms form the relative broad peak of bands, when compared with the Al atom.

    Fig.5 presents the calculated band structure of Cr4AlB6along the high-symmetry directions of the Brillouin zone.The overlap between the conduction and valence bands confirmed its metallic nature once again.This suggests that Cr4AlB6would exhibit metallic conductivity like other MAX phases.From Fig.5, the Fermi energy (EF) is crossed by several different bands along the G-X, S-Y, G-Z and Z-U directions, indicating metallic behavior along the directions parallel to the a- and c-directions.While the buckling along the b- direction opens band gaps of 0.86 and 0.12 eV along X-S and Y-G, respectively.Thus Cr4AlB6behaves as a metal with strong anisotropy.And the electrical conductivity is confined along the b-direction.

    3.3 Optical properties

    The dielectric function was investigated and Fig.6(a)presents the real part e1(w) and imaginary part e2(w)of dielectric functions of Cr4AlB6as a function of photon energy.The investigation of e1(w) can make us understand the electronic polarizability of the material[50].For Cr4AlB6, e1(w) decreases drasticcally when the photon energy ranges from 0 to 2 eV.When the photon energy varies between 7.87 and 23.48 eV, e1(w) 0, indicating the metallic behavior of Cr4AlB6.When the photon energy is above 23.48 eV, e1(w) increases with increasing the photon energy and is nearly a constant at higher energy.This shows that Cr4AlB6becomes a transparent material at higher energy radiation.When the photon energy is zero, the static dielectric constant e1(0) is about 128.0,much larger than those of BaTiO3, BiInO3and Ti3N4[51-53].Thereby, Cr4AlB6may be useful for manufacturing the high value capacitors[54].

    Fig.4.(a) Normalized total phonons density of states and (b~d)heir total atomic projected density of states of Cr4AlB6

    Fig.5.Electronic band structures of Cr4AlB6

    Fig.6.Dielectric functions and refractive index of Cr4AlB6

    The peak of e2(w) is related to the electron excitation.From Fig.6(a), the metallic behavior of Cr4AlB6is observed once again, since for small frequencies, w ? 0, e2(w) is much larger compared with the rest of the spectrum.e2(w) has three main peaks for Cr4AlB6.At low energy, where intraband transitions occur, an abrupt rise appears below 1 eV,and e2(w) reaches the first minimum at about 2.04 eV,which confirms the low energy divergence for metallic materials.e2(w) reaches the first dielectric peak at 3.63 eV and the second and third peaks at 6.95 and 9.47 eV, respectively.The first and second peaks are derived from the transition between Cr-d and B-p states, while B-s and Al-s states contribute to the third peaks.For Cr4AlB6, e2(w) is zero at about 55 eV.This indicates that Cr4AlB6becomes transparent above 55 eV.

    The refractive index exhibits the fundamental optical and electronic properties.The refractive index n(w) and extinction coefficient k(w) are illustrated in Fig.6(b).From Fig.6(b), the static refractive index n(0) is 11.3, which satisfies the condi-When the photon energy ranges from 0 to 11.25 eV, refractive index n(w) is greater than 1, which indicates that the interactions with the electrons make the photons slow down.According tothe valley of e1(w)corresponds to the peak of k(w) in this frequency range.The extinction coefficient k first increases, and reaches the first peak at 1.24 eV.Then k fluctuates and reaches the second and third peaks at 5.23 and 8.55 eV, respectively.k decreases to zero at about 55 eV, so the intrinsic oscillation frequency of Cr4AlB6is about 55 eV and Cr4AlB6possesses the characteristics of transparent ultraviolet.k is bigger than n when the photon energy varied between 7.87 and 23.48 eV, and Cr4AlB6shows a metal reflective property.

    Fig.7 presents the absorption, energy loss function,reflectivity, and the optical conductivity of Cr4AlB6as a function of photon energy.Fig.7(a) presents the absorption coefficient spectrum of Cr4AlB6, which begins at zero photon energy due to the metallic nature.The absorption coefficient of Cr4AlB6has two main peaks.The first peak of 3.60058 ′ 105cm-1is at 14.2 eV and the second peak of 4.95160 ′ 105cm-1at 44.5 eV.Then the absorption coefficient decreases to zero at about 60 eV, which indicates that Cr4AlB6is colorless and transparent above 60 eV.Meanwhile, the absorption coefficient is greater than 105cm-1, indicating that Cr4AlB6is a promising candidate for optical applications.

    Fig.7(b) presents the energy loss function with the increasing photon energy.And the plasma resonance frequency wpis the highest peak.From Fig.7(b), wpof Cr4AlB6is at 23.85 eV.If the frequencies of incident light are larger than the plasma frequencies of Cr4AlB6, Cr4AlB6will change from metal to dielectric material.

    Fig.7(c) presents the variation of reflectivity of Cr4AlB6with incident photon energy.The average reflectivity is more than 40% for Cr4AlB6in the infrared-visible -UV range up to ~20.1 eV.When the photon energy is bigger than 20.1 eV, the reflectivity sharply decreases to very low reflectivity (high transparency) for short wavelength.According to Li et al.[55], a MAX-phase compound can reduce solar heating if it has a reflectivity of ~44% in the visible light region, so we think that Cr4AlB6is a candidate material for coating to reduce solar heating.

    Fig.7.Absorption (a), energy loss function (b), refractivity (c) and optical conductivity (d) of Cr4AlB6

    Fig.7(d) presents the optical conductivity of Cr4AlB6.The photoconductivities start with zero photon energy, which indicates that Cr4AlB6has no band gap and has metallic nature.The maximum optical conductivity occurs at the photon energy about 8.12 eV.

    3.4 Thermodynamic properties

    The quasi-harmonic Debye approximation is applied to investigate the thermodynamic properties of Cr4AlB6.The thermodynamic properties are determined in the temperature range from 0 to 2000 K and pressure range from 0 to 100 GPa.

    Fig.8 presents the dependence of the primitive cell volume and thermal expansion coefficient as the function of T and P.From Fig.8(a), the volume increases nearly linearly with increasing T for a given P, and decreases with increasing P for a given T.The rate of increase is nearly zero from 0 to 250 K and becomes very moderate for T > 250 K.At T =300 K and P = 0 GPa, the calculated equilibrium primitive cell volume V is 187.28 ?3, which is close to the experimental values of 189.26 ?3[19].From Fig.8(b), the thermal expansion coefficient a firstly increases quickly with increasing T up to 500 K for a given P.When T > 500 K, a tends to a linear increase and the propensity of increment becomes very moderate, which means that the effect of T on ais very small at high T.In addition, a decreases quickly with increasing P for a given T.At T = 300 K and P = 0 GPa, a is 2.16 ′ 10-5K-1.

    Fig.8.Dependence of the primitive cell volume (a) and thermal expansion (b) as a function of temperature and pressure

    Fig.9 shows the variations of bulk modulus and heat capacity Cvas a function of T and P.From Fig.9(a),the compressibility is nearly a constant when T 150 K, then decreases linearly with increasing T for a given P.The bulk modulus increases with increasing P for a given T.This indicates that the ability to resist the volume change becomes weaker with increasing T and stronger with increasing P.Heat capacity Cvcan provide the information about the vibrational properties.Two famous limiting cases are correctly predicted by the standard elastic continuum theory[56].Cvis proportional to T3at very low temperature[53]and tends to the Dulong-Petit limits[57]at high T.From Fig.9(b), Cvincreases exponentially from 0 to 500 K and tends to the Dulong-Petit limits(548.7 J×mol-1×K-1).The interactions between ions in Cr4AlB6have great effect on Cv, especially at low T.In addition, Cvdecreases gradually with the increasing P for a given T.And the effect of T on Cvis more significant than that of P.At T = 300 K and P= 0 GPa, Cvis 243.94 J×mol-1×K-1.

    Fig.9.Dependence of the bulk modulus (a) and heat capacity Cv (b) as a function of temperature and pressure

    4 CONCLUSION

    Using PAW method based on the DFT within GGA, the electronic, optical and thermodynamic properties of Cr4AlB6were investigated.The obtained conclusions are as follows:

    (1) The stronger B-B covalent interactions in Cr4AlB6play an important role in resisting the plastic deformation.(2) Like other MAX phases, Cr4AlB6exhibits metallic nature from the analysis of band structure and DOS.(3) The analysis of optical properties shows that Cr4AlB6is a promising dielectric material with e1(0) of 128.0.In the photon energy range from 7.87 to 23.48 eV, Cr4AlB6presents a metal reflective property.(4) The obtained thermal properties under different T and P show that the heat capacity Cvis proportional to T3at very low T for a given P and tends to the Dulong-Petit limits (541.1 J×mol-1×K-1).The effect of T on Cvis more significant than that of P, while the effect of T on the thermal expansion coefficient a is very small at high T.

    REFERENCES

    (1) Hadi, M.A.; Naqib, S.H.; Christopoulos, S.R.; Isiam, A.K.M.A.Mechanical behavior, bonding nature and defect processes of Mo2ScAlC2: a new ordered MAX phase.J.Alloys.Comp.2017, 724, 1167-1175.

    (2) Zapata-Solvas, E.; Hadi, M.A.; Horlait, D.; Parfitt, D.C.; Thibaud, A.; Chroneos, A.; Lee, W.E.Synthesis and physical properties of(Zr1?x,Tix)3AlC2MAX phases.J.Am.Ceram.Soc.2017, 100, 3393-3401.

    (3) Hadi, M.A.; Rohnuzzaman, M.; Chroneos, A.; Naqib, S.H.; Islam, A.K.M.A.; Vovk, R.V.; Ostrikov, K.Elastic and thermodynamic properties of new (Zr3?xTix)AlC2MAX-phase solid solutions.Comp.Mater.Sci.2017, 137, 318-326.

    (4) Barsoum, M.W.; El-Raghy, T.Synthesis and characterization of a remarkable ceramic: Ti3SiC2.J.Am.Ceram.Soc.1996, 79, 1953-1956.

    (5) Wang, J.Y.; Zhou, Y.C.Recent progress in theoretical prediction, preparation, and characterization of layered ternary transition-metal carbides.Annu.Rev.Mater.Res.2009, 39, 1-29.

    (6) Eklund, P.; Beckers, M.; Jansson, U.The Mn+1AXnphases: materials science and thin-film processing.Thin Solid Films 2010, 518, 1851-1878.

    (7) Radovic, M.; Barsoum, M.W.MAX phases: bridging the gap between metals and ceramics.Am.Ceram.Soc.Bull.2013, 92, 20-27.

    (8) Barsoum, M.W.; Ei-Raghy, T.Room-temperature ductile carbides.Met.Mater.Trans.1999, 30A, 363-369.

    (9) Barsoum, M.W.; Farber, L.; Ei-Raghy, T.Dislocations, kink bands, and room-temperature plasticity of Ti3SiC2.Mater.Trans.1999, 30A,1727-1738.

    (10) Guilera, G.; Gorges, B.; Pascarelli, S.; Hara, N.Novel high-temperature reactors for in situ studies of three-way catalysts using turbo-XAS.J.Synchrotron Radiat.2009, 16, 628-634.

    (11) Yin, K.D.; Zhang, X.T.; Huang, Q.; Xue, J.M.Theoretical investigation on radiation tolerance of Mn+1AXnphase.Thin Solid Films 2017, 26,060703-8.

    (12) Sun, Z.M.Progress in research and development on MAX phases: a family of layered ternary compounds.Int.Mater.Rev.2011, 56, 143-166.

    (13) Lofland, S.E.; Hettinger, J.D.; Harrell, K.; Finkel, P.; Gupta, S.; Barsoum, M.W.; Hug, G.Elastic and electronic properties of select M2AX phase.Appl.Phys.Lett.2004, 84, 508-510.

    (14) Nowotny, V.H.Strukturchemie einiger verbindungen der ü bergangsmetalle mit den elementen C, Si, Ge, Sn.Prog.Solid State Chem.1970, 2,27-70.

    (15) Hu, C.; Zhang, H.; Li, F.; Huang, Q.; Bao, Y.New phases’ discovery in MAX family.Int.J.Refract.Met.Hard Mater.2013, 36, 300-312.

    (16) Barsoum, M.W.MAX Phases.Wiley-VCH Verlag GmbH & Co.KGaA: Weinheim, Germany 2013, p89-92.

    (17) Bai, Y.L.; He, X.D.; Zhu, C.C.; Chen, G.Microstructures, electrical, thermal and mechanical properties of bulk Ti2AlC synthesized by self-propagating high temperature combustion synthesis with pseudo hot isostatic pressing.J.Am.Ceram.Soc.2012, 95, 358-364.

    (18) Lin, Z.J.; Li, M.S.; Wang, J.Y.; Zhou, Y.C.High-temperature oxidation and hot corrosion of Cr2AlC.Acta Mater.2007, 55, 6182-6191.

    (19) Ade, M.; Harald, H.Ternary borides Cr2AlB2, Cr3AlB4, and Cr4AlB6: the first members of the series (CrB2)nCrAl with n = 1, 2, 3 and a unifying concept for ternary borides as MAX-phases.Inorg.Chem.2015, 54, 6122-6135.

    (20) Bai, Y.; Qi, X.; Duff, A.; Li, N.; Kong, F.; He, X.; Wang, R.; Lee, W.E.Density functional theory insights into ternary layered boride MoAlB.Acta Mater.2017, 132, 69-81.

    (21) Li, N.; Bai, Y.; Wang, S.; Zheng, Y.; Kong, F.; Qi, X.; Wang, R.; He, X.; Duff, A.I.Rapid synthesis, electrical, and mechanical properties of polycrystalline Fe2AlB2bulk from elemental powders.J.Am.Ceram.Soc.2017, 100, 4407-4411.

    (22) Li, X.H.; Chagas, da Silva, M.; Salahub, D.R.First-principles calculations of the structural, mechanical, electronic and bonding properties of(CrB2)nCrAl with n = 1, 2, 3.J.Alloys.Comp.2017, 698, 291-303.

    (23) Dai, F.Z.; Feng, Z.H.; Zhou, Y.C.Easily tiltable B_Al_B linear chain: the origin of unusual mechanical properties of nanolaminated MAB phases(CrB2)nCrAl.J.Alloys.Comp.2017, 723, 462-466.

    (24) Bertaut, F.; Blum, P.Existence et structure d'une nouvelle phase dans le systè me Mo–B.Acta Crystallogr.1951, 4, 72-72.

    (25) Kuz’ma, Y.B.Crystal structure of the compound YCrB4and its analogs.Sov.Phys.Crystallogr.1970, 15, 312-314.

    (26) Kuz’ma, Y.B.; Krypyakevich, P.I.; Chaban, N.F.Crystal structure of Cr3AlB4.Dopov.Akad.Nauk Ukr.RSR, Ser.A: Fiz.-Mat.Tekh.Nauki.1972,34, 1118-1125.

    (27) Zhao, W.J.; Xu, B.First-principles calculations of MnB4, TcB4, and ReB4with the MnB4-type structure.Comp.Mater.Sci.2012, 65, 372-376.

    (28) Wang, S.; Oganov, A.R.; Qian, G.; Zhu, Q.; Dong, H.; Dong, X.; Mahdi Davari Esfahani, M.Novel superhard B-C-O phases predicted from first principles.Phys.Chem.Chem.Phys.2016, 18, 1859-1863.

    (29) Magnuson, M.; Mattesini, M.; Wilhelmsson, O.; Emmerlich, J.; Palmquist, J.P.; Li, S.; Ahuja, R.; Hultman, L.; Eriksson, O.; Jansson, U.Electronic structure and chemical bonding in Ti4SiC3investigated by soft X-ray emission spectroscopy and first-principles theory.Phys.Rev.B 2006, 74,205102-12.

    (30) Kresse, G.; Furthmuller, J.Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set.Phys.Rev.B 1996, 54,11169-11186.

    (31) Kresse, G.; Joubert, D.From ultrasoft pseudopotentials to the projector augmented-wave method.Phys.Rev.B 1999, 59, 1758-1775.

    (32) Perdew, J.P.; Wang, Y.Accurate and simple analytic representation of the electron-gas correlation energy.Phys.Rev.B 1992, 45, 13244-13249.

    (33) Perdew, J.P.; Bruke, K.; Ernzerhof, M.Generalized gradient approximation made simple.Phys.Rev.Lett.1996, 77, 3865-3868.

    (34) Jepsen, O.; Anderson, O.K.The electronic structure of h.c.p.ytterbium.Solid State Commun.1971, 9, 1763-1757.

    (35) Pan, L.; Lu, T.C.; Su, R.Study of electronic structure and optical properties of g-AlON crystal.Acta Phys Sin.2012, 61, 027101-6.

    (36) Shen, X.C.The Spectrum and Optical Property of Semiconductor.Science Press: Beijing 1992, p121-130.

    (37) Blanco, M.A.; Pendá s, A.M.; Francisco, E.; Recio, J.M.; Franco, R.Thermodynamical properties of solids from microscopic theory: applications to MgF2and Al2O3.J.Mol.Struct.1996, 368, 245-255.

    (38) Fló rez, M.; Recio, J.M.; Francisco, E.; Blanco, M.A.; Pendas, A.M.First-principles study of the rocksalt-cesium chloride relative phase stability in alkali halides.Phys.Rev.B 2002, 66, 144112-7.

    (39) Wang, Y.; Tan, J.; Wang, Y.; Chen, X.First-principles calculations of structural and thermodynamic properties of BeB2compound.Chin.Phys.2007,16, 3046-3051.

    (40) Vinet, P.; Rose, J.H.; Ferrante, J.; Smith, J.R.Universal features of the equation of state of solids.J.Phys.: Condens.Matter.1989, 1,1941-1963.

    (41) Togo, A.; Oba, F.; Tanaka, I.First-principles calculations of the ferroelastic transition between rutile-type and CaCl2-type SiO2at high pressures.Phy.Rev.B 2008, 78, 134106-9.

    (42) Ezzat Elshazly, S.; Abdelrahman, A.A.M.; Elmasry, M.A.A.Mechanical properties of Cr3B4cermets cemented by different metallic binders.Inter.J.Mater.Eng.2012, 2, 57-60.

    (43) Segall, M.D.; Lindan, P.J.D.; Probert, M.J.; Pickard, C.J.; Hasnip, P.J.; Clark, S.J.; Payne, M.C.First-principles simulation: ideas, illustrations and the CASTEP code.J.Phys.: Condens.Matter.2002, 14, 2717-2744.

    (44) Patil, S.K.R.; Khare, S.V.; Tuttle, B.R.; Bording, J.K.; Kodambaka, S.Mechanical stability of possible structures of PtN investigated using first-principles calculations.Phys.Rev.B 2006, 73, 104118-8.

    (45) Wang, S.; Yu, X.; Zhang, J.; Wang, L.; Leinenweber, K.; Xu, H.; Popov, D.; Park, C.; Yang, W.; He, D.; Zhao, Y.Crystal structures, elastic properties,and hardness of high-pressure synthesized CrB2and CrB4.J.Superhard Mater.2014, 36, 279-287.

    (46) Murnaghan, F.D.On the theory of the tension of an elastic cylinder.Proc.Natl.Acad.Sci.1944, 30, 382-384.

    (47) Pugh, S.F.XCII.Relations between the elastic moduli and the plastic properties of polycrystalline pure metals.Philos.Mag.Ser.1954, 45,823-842.

    (48) Chen, X.Q.; Niu, H.Y.; Li, D.Z.; Li, Y.Modeling hardness of polycrystalline materials and bulk metallic glasses.Intermetallics 2011, 19,1275-1281.

    (49) Thakoor, A.P.; Lamb, J.L.; Khanna, S.K.; Mehra, M.; Johnson, W.L.Refractory amorphous metallic (W0.6Re0.4)76B24coatings on steel substrates.J Appl.Phys.1985, 58, 3409-3414.

    (50) Lokman Ali, M.; Zahidur Rahaman, M.The structural, elastic, electronic and optical properties of cubic perovskite SrVO3compound: an ab initio study.Inter.J.Mater.Sci.App.2016, 5, 202-206.

    (51) Li, C.L.; Wang, H.; Wang, B.; Wang, R.First-principles study of the structure, electronic, and optical properties of orthorhombic BiInO3.Appl.Phys.Lett.2007, 91, 071902-3.

    (52) Wang, H.; Wang, B.; Li, Q.K.; Zhu, Z.Y.; Wang, R.; Woo, C.H.First-principles study of cubic perovskites BiMO3(M = Al, Ga, In and Sc).Phys.Rev.B 2007, 75, 245209-9.

    (53) Xu, M.; Wang, S.Y.; Yin, G.; Li, J.; Zheng, Y.; Chen, L.; Jia, Y.Optical properties of cubic Ti3N4, Zr3N4, and Hf3N4.Appl.Phys.Lett.2009, 89,151908-151910.

    (54) Rahman, M.; Rahaman, M.The structural, elastic, electronic and optical properties of MgCu under pressure: a first-principles study.Inter.J.Modern Phys.B 2016, 30, 1650199-13.

    (55) Li, S.; Ahuja, R.; Barsoum, M.W.; Jena, P.; Johansson, B.Optical properties of Ti3SiC2and Ti4AlN3.Appl.Phys.Lett.2008, 92, 221907-3.

    (56) Debye, P.Zur Theorie der spezifischen W? rmen.Ann.Phys.1912, 39, 789-839.

    (57) Petit, A.T.; Dulong, P.L.Recherches sur quelques points importants de la theoreie de la chaleur.Ann.Chim.Phys.1819, 10, 395-413.

    女人精品久久久久毛片| 人成视频在线观看免费观看| 亚洲av成人精品一二三区| 国产亚洲午夜精品一区二区久久| 国产精品熟女久久久久浪| 精品99又大又爽又粗少妇毛片| 精品视频人人做人人爽| 黑丝袜美女国产一区| 亚洲色图 男人天堂 中文字幕 | 免费大片18禁| 欧美3d第一页| 蜜桃在线观看..| 永久免费av网站大全| 亚洲一级一片aⅴ在线观看| 午夜福利视频精品| 99久久人妻综合| 国产一区二区三区综合在线观看 | 男人舔女人的私密视频| 黄色配什么色好看| 69精品国产乱码久久久| 一边亲一边摸免费视频| 超色免费av| 水蜜桃什么品种好| 亚洲欧美中文字幕日韩二区| av卡一久久| av在线播放精品| 97在线视频观看| 最黄视频免费看| 中文欧美无线码| 亚洲精品久久久久久婷婷小说| 高清黄色对白视频在线免费看| 国产一区二区激情短视频 | 亚洲精品久久成人aⅴ小说| 日韩电影二区| 免费播放大片免费观看视频在线观看| 观看av在线不卡| 人人妻人人澡人人爽人人夜夜| 久久久久久久久久成人| 国产日韩欧美亚洲二区| 18禁观看日本| 国产日韩欧美亚洲二区| 亚洲精品中文字幕在线视频| 熟妇人妻不卡中文字幕| 国产黄色视频一区二区在线观看| 久久韩国三级中文字幕| a 毛片基地| 久久综合国产亚洲精品| 国产亚洲最大av| 综合色丁香网| 国产1区2区3区精品| 看免费av毛片| 国产成人免费无遮挡视频| 一二三四中文在线观看免费高清| 亚洲国产精品成人久久小说| 国产亚洲精品久久久com| 亚洲av免费高清在线观看| 日韩成人av中文字幕在线观看| 亚洲欧美清纯卡通| 久久婷婷青草| 日本av手机在线免费观看| 精品国产乱码久久久久久小说| 国产精品一二三区在线看| 国产精品一国产av| 国产色婷婷99| 婷婷色综合www| 一区在线观看完整版| 欧美人与善性xxx| 国产一级毛片在线| 亚洲精品国产色婷婷电影| 一级毛片黄色毛片免费观看视频| 国产爽快片一区二区三区| 国产精品99久久99久久久不卡 | 久久99蜜桃精品久久| 久久久久久久久久久免费av| 性高湖久久久久久久久免费观看| 精品少妇内射三级| 精品人妻偷拍中文字幕| 亚洲国产毛片av蜜桃av| 国产亚洲精品久久久com| 久久人人爽人人爽人人片va| 日本色播在线视频| 在线观看免费视频网站a站| 亚洲av综合色区一区| 久久国产亚洲av麻豆专区| 中文天堂在线官网| 丰满饥渴人妻一区二区三| 久久久国产一区二区| 成人免费观看视频高清| 亚洲欧美色中文字幕在线| 一级黄片播放器| 美女主播在线视频| 日本91视频免费播放| 如日韩欧美国产精品一区二区三区| 亚洲国产欧美在线一区| 高清毛片免费看| 看十八女毛片水多多多| 国产国拍精品亚洲av在线观看| 久久女婷五月综合色啪小说| 国产xxxxx性猛交| 久久久久久人人人人人| 久久 成人 亚洲| 国产精品无大码| 黄色 视频免费看| 我的女老师完整版在线观看| 大陆偷拍与自拍| 国产成人欧美| 男女国产视频网站| 成人免费观看视频高清| 如何舔出高潮| 毛片一级片免费看久久久久| 中国三级夫妇交换| 国产极品粉嫩免费观看在线| 亚洲精品久久久久久婷婷小说| 久久久国产精品麻豆| a级片在线免费高清观看视频| 成年av动漫网址| 少妇熟女欧美另类| 国产精品久久久久久av不卡| 免费av中文字幕在线| 国产永久视频网站| 免费大片黄手机在线观看| 亚洲av在线观看美女高潮| 精品久久久精品久久久| 欧美日韩国产mv在线观看视频| 青青草视频在线视频观看| 丰满迷人的少妇在线观看| 一边亲一边摸免费视频| 免费av中文字幕在线| 久久久精品94久久精品| 国产亚洲午夜精品一区二区久久| 最黄视频免费看| 久久99蜜桃精品久久| 成年美女黄网站色视频大全免费| 色94色欧美一区二区| 国精品久久久久久国模美| 永久网站在线| 精品人妻一区二区三区麻豆| 妹子高潮喷水视频| 亚洲欧洲日产国产| 少妇被粗大猛烈的视频| 汤姆久久久久久久影院中文字幕| 成人毛片60女人毛片免费| 91精品三级在线观看| 80岁老熟妇乱子伦牲交| 丝瓜视频免费看黄片| 18禁动态无遮挡网站| 亚洲五月色婷婷综合| 男人爽女人下面视频在线观看| 看非洲黑人一级黄片| 全区人妻精品视频| 久久精品熟女亚洲av麻豆精品| 晚上一个人看的免费电影| 国国产精品蜜臀av免费| 一级毛片黄色毛片免费观看视频| 国产激情久久老熟女| 国产伦理片在线播放av一区| 国产亚洲av片在线观看秒播厂| 女人被躁到高潮嗷嗷叫费观| 欧美成人午夜精品| 亚洲,欧美,日韩| 免费播放大片免费观看视频在线观看| 亚洲精品日本国产第一区| av在线老鸭窝| 国产极品天堂在线| 91精品伊人久久大香线蕉| 少妇熟女欧美另类| 成人影院久久| 色哟哟·www| 日韩一区二区三区影片| 看十八女毛片水多多多| 色哟哟·www| 久久99热6这里只有精品| 免费大片黄手机在线观看| 国产一区二区在线观看av| 亚洲精品国产av成人精品| 亚洲第一av免费看| av免费观看日本| 美女内射精品一级片tv| 精品视频人人做人人爽| 男女免费视频国产| 免费看光身美女| 亚洲美女搞黄在线观看| 久久 成人 亚洲| 日韩三级伦理在线观看| 日本与韩国留学比较| 亚洲精品美女久久久久99蜜臀 | av免费观看日本| 日韩人妻精品一区2区三区| 伊人亚洲综合成人网| 久久久久久久久久久免费av| 成人免费观看视频高清| 成年人免费黄色播放视频| 伦理电影大哥的女人| 女性生殖器流出的白浆| 蜜臀久久99精品久久宅男| 亚洲欧美成人综合另类久久久| 美女xxoo啪啪120秒动态图| 亚洲国产色片| 蜜桃在线观看..| av在线观看视频网站免费| 欧美日韩视频高清一区二区三区二| 中文字幕亚洲精品专区| 国产在线视频一区二区| 美女主播在线视频| 18禁在线无遮挡免费观看视频| 老熟女久久久| 捣出白浆h1v1| 香蕉丝袜av| 日本免费在线观看一区| 国产精品国产三级国产av玫瑰| 老司机影院成人| 欧美 日韩 精品 国产| 欧美+日韩+精品| 欧美日韩视频精品一区| 亚洲国产最新在线播放| 青春草视频在线免费观看| freevideosex欧美| 国产高清国产精品国产三级| 亚洲人与动物交配视频| 精品人妻熟女毛片av久久网站| 亚洲美女视频黄频| 中文字幕精品免费在线观看视频 | 99热网站在线观看| 美女福利国产在线| 涩涩av久久男人的天堂| 亚洲av日韩在线播放| 精品久久蜜臀av无| 少妇熟女欧美另类| 免费看不卡的av| 99精国产麻豆久久婷婷| 欧美人与性动交α欧美精品济南到 | 久久久精品94久久精品| 午夜福利影视在线免费观看| 巨乳人妻的诱惑在线观看| 天堂中文最新版在线下载| 大码成人一级视频| 人妻人人澡人人爽人人| 秋霞在线观看毛片| 新久久久久国产一级毛片| 日韩精品免费视频一区二区三区 | 哪个播放器可以免费观看大片| 亚洲综合色惰| 成人漫画全彩无遮挡| 99热这里只有是精品在线观看| 欧美最新免费一区二区三区| 啦啦啦中文免费视频观看日本| 青春草视频在线免费观看| 最新中文字幕久久久久| 国产成人a∨麻豆精品| 欧美成人精品欧美一级黄| 欧美人与善性xxx| 狠狠婷婷综合久久久久久88av| 少妇被粗大猛烈的视频| 精品少妇久久久久久888优播| 97在线人人人人妻| 99热国产这里只有精品6| 亚洲精品第二区| 日本免费在线观看一区| 亚洲婷婷狠狠爱综合网| 国产在线视频一区二区| 两个人看的免费小视频| 午夜视频国产福利| 亚洲av男天堂| 欧美亚洲日本最大视频资源| 亚洲一码二码三码区别大吗| 亚洲精品国产av成人精品| 久久久久精品人妻al黑| www.熟女人妻精品国产 | 97在线视频观看| 熟妇人妻不卡中文字幕| 欧美精品一区二区免费开放| 2021少妇久久久久久久久久久| 一区二区日韩欧美中文字幕 | 国产男女内射视频| 成年av动漫网址| 2022亚洲国产成人精品| 午夜激情av网站| 国产有黄有色有爽视频| videossex国产| 国产探花极品一区二区| 国产精品一区二区在线不卡| 成年女人在线观看亚洲视频| 七月丁香在线播放| 国产精品蜜桃在线观看| 成人黄色视频免费在线看| a级毛片黄视频| 99国产综合亚洲精品| xxxhd国产人妻xxx| 欧美+日韩+精品| 国产精品欧美亚洲77777| 午夜福利视频在线观看免费| 久久免费观看电影| 日日摸夜夜添夜夜爱| 久久毛片免费看一区二区三区| 亚洲精品乱久久久久久| 亚洲少妇的诱惑av| 精品一区二区免费观看| 欧美成人精品欧美一级黄| 视频在线观看一区二区三区| 亚洲欧美一区二区三区国产| 国产成人精品无人区| 久久精品国产综合久久久 | 久久国内精品自在自线图片| 亚洲经典国产精华液单| 伦理电影免费视频| 中文字幕亚洲精品专区| 国产白丝娇喘喷水9色精品| 国产在线视频一区二区| 亚洲精品久久久久久婷婷小说| 免费大片18禁| 久久这里有精品视频免费| 一本—道久久a久久精品蜜桃钙片| 天堂俺去俺来也www色官网| 高清黄色对白视频在线免费看| 美女福利国产在线| 午夜免费观看性视频| 免费观看a级毛片全部| 亚洲欧美一区二区三区国产| 捣出白浆h1v1| 午夜久久久在线观看| 免费黄频网站在线观看国产| www.色视频.com| 狠狠精品人妻久久久久久综合| 一区二区三区精品91| 国产成人aa在线观看| 午夜福利网站1000一区二区三区| 久久国内精品自在自线图片| 99视频精品全部免费 在线| 久久青草综合色| 久久亚洲国产成人精品v| 黑人猛操日本美女一级片| 欧美精品高潮呻吟av久久| 亚洲av.av天堂| 99久久人妻综合| 欧美bdsm另类| 国产爽快片一区二区三区| 街头女战士在线观看网站| 少妇 在线观看| 亚洲第一区二区三区不卡| 日韩欧美精品免费久久| 中文字幕人妻丝袜制服| 久久国内精品自在自线图片| 亚洲欧美一区二区三区黑人 | 国产色爽女视频免费观看| 精品久久久久久电影网| 国产深夜福利视频在线观看| 亚洲国产av新网站| 三上悠亚av全集在线观看| 欧美日韩视频精品一区| 欧美成人精品欧美一级黄| 制服诱惑二区| 妹子高潮喷水视频| 国产一区二区三区av在线| 麻豆精品久久久久久蜜桃| 视频在线观看一区二区三区| a级毛色黄片| 午夜日本视频在线| 性色av一级| 免费人妻精品一区二区三区视频| 久久久久国产精品人妻一区二区| 免费观看av网站的网址| 国产精品嫩草影院av在线观看| 中文字幕另类日韩欧美亚洲嫩草| 国内精品宾馆在线| 制服丝袜香蕉在线| 国产片特级美女逼逼视频| 久久久久国产网址| av国产精品久久久久影院| 亚洲精品美女久久久久99蜜臀 | 最近中文字幕2019免费版| 王馨瑶露胸无遮挡在线观看| 五月开心婷婷网| 日日爽夜夜爽网站| 久久女婷五月综合色啪小说| 亚洲综合精品二区| 中文字幕另类日韩欧美亚洲嫩草| 在线 av 中文字幕| 久久免费观看电影| 国产亚洲一区二区精品| 一区在线观看完整版| 国产精品久久久久久久久免| 免费播放大片免费观看视频在线观看| 久久精品国产a三级三级三级| 极品人妻少妇av视频| 久久精品国产鲁丝片午夜精品| www.色视频.com| 十八禁高潮呻吟视频| 搡女人真爽免费视频火全软件| 女的被弄到高潮叫床怎么办| 最新中文字幕久久久久| 新久久久久国产一级毛片| 桃花免费在线播放| 精品一区二区三卡| 亚洲综合色网址| 男女无遮挡免费网站观看| 大码成人一级视频| 久久久精品免费免费高清| 一边亲一边摸免费视频| 另类亚洲欧美激情| 久久热在线av| 日本黄色日本黄色录像| 精品少妇内射三级| 亚洲第一区二区三区不卡| 久久 成人 亚洲| 一区二区日韩欧美中文字幕 | 日韩精品有码人妻一区| 国产精品久久久久久精品电影小说| 亚洲国产精品999| 美女主播在线视频| 最近中文字幕高清免费大全6| 嫩草影院入口| 亚洲精品国产av蜜桃| 一区二区日韩欧美中文字幕 | 久久99精品国语久久久| 制服人妻中文乱码| 久久人人97超碰香蕉20202| 国产男女超爽视频在线观看| 18禁裸乳无遮挡动漫免费视频| 丝袜在线中文字幕| 肉色欧美久久久久久久蜜桃| 久久热在线av| 亚洲第一av免费看| 亚洲av成人精品一二三区| 侵犯人妻中文字幕一二三四区| 日韩熟女老妇一区二区性免费视频| 精品久久国产蜜桃| 免费看av在线观看网站| 男女啪啪激烈高潮av片| 美女福利国产在线| 丁香六月天网| av播播在线观看一区| 中文字幕精品免费在线观看视频 | √禁漫天堂资源中文www| 性色av一级| 在线观看免费日韩欧美大片| 国产成人欧美| 国产成人免费观看mmmm| 精品一品国产午夜福利视频| 狂野欧美激情性xxxx在线观看| 99国产精品免费福利视频| 日本爱情动作片www.在线观看| 色94色欧美一区二区| 国产色婷婷99| 又粗又硬又长又爽又黄的视频| 午夜免费观看性视频| 黑人欧美特级aaaaaa片| 国产一区二区激情短视频 | 涩涩av久久男人的天堂| 九色成人免费人妻av| 熟女av电影| 午夜免费鲁丝| 色网站视频免费| 精品一区二区三区视频在线| 日韩一本色道免费dvd| 超碰97精品在线观看| 免费播放大片免费观看视频在线观看| 国产精品久久久av美女十八| 男女高潮啪啪啪动态图| 亚洲内射少妇av| 午夜免费观看性视频| 中国国产av一级| 黄色配什么色好看| 一本大道久久a久久精品| 天天操日日干夜夜撸| 在线免费观看不下载黄p国产| 91国产中文字幕| 女的被弄到高潮叫床怎么办| 18禁裸乳无遮挡动漫免费视频| 成年动漫av网址| 亚洲精品国产色婷婷电影| 久久av网站| 免费av中文字幕在线| 亚洲在久久综合| 卡戴珊不雅视频在线播放| 大陆偷拍与自拍| 亚洲国产精品成人久久小说| 波多野结衣一区麻豆| 精品人妻一区二区三区麻豆| 国产亚洲午夜精品一区二区久久| 国产在线视频一区二区| 最近手机中文字幕大全| 精品人妻偷拍中文字幕| 国产精品蜜桃在线观看| 一本色道久久久久久精品综合| 成年动漫av网址| 天美传媒精品一区二区| 你懂的网址亚洲精品在线观看| 一二三四在线观看免费中文在 | 一级黄片播放器| 国产精品一国产av| 精品亚洲成国产av| www.熟女人妻精品国产 | 色婷婷久久久亚洲欧美| 国产黄频视频在线观看| 亚洲图色成人| 免费不卡的大黄色大毛片视频在线观看| 午夜视频国产福利| 91精品伊人久久大香线蕉| 男女免费视频国产| 欧美亚洲日本最大视频资源| 亚洲精品乱久久久久久| 人妻一区二区av| 视频中文字幕在线观看| 中文字幕人妻丝袜制服| 久久99热6这里只有精品| 日本wwww免费看| 午夜福利乱码中文字幕| 久久青草综合色| 日本免费在线观看一区| 在线观看www视频免费| 日韩伦理黄色片| 青春草视频在线免费观看| 国产成人av激情在线播放| 90打野战视频偷拍视频| 亚洲欧美中文字幕日韩二区| 欧美精品一区二区免费开放| 少妇精品久久久久久久| 在线观看国产h片| 国产高清不卡午夜福利| 国产 精品1| 免费在线观看黄色视频的| 成人综合一区亚洲| 色视频在线一区二区三区| 精品国产一区二区三区久久久樱花| 少妇人妻精品综合一区二区| 草草在线视频免费看| 免费人成在线观看视频色| 制服人妻中文乱码| 人体艺术视频欧美日本| 国产精品国产三级国产专区5o| 精品一区二区免费观看| kizo精华| 日韩欧美精品免费久久| 只有这里有精品99| 日本91视频免费播放| 两个人看的免费小视频| 99视频精品全部免费 在线| 人妻系列 视频| 搡女人真爽免费视频火全软件| 精品人妻在线不人妻| 在线观看免费高清a一片| 午夜福利网站1000一区二区三区| 晚上一个人看的免费电影| 国产亚洲欧美精品永久| 十八禁网站网址无遮挡| a级毛片黄视频| 中文字幕人妻熟女乱码| 精品一区二区三卡| 国产av国产精品国产| 成人毛片a级毛片在线播放| 亚洲av综合色区一区| 大码成人一级视频| 国产在线视频一区二区| 下体分泌物呈黄色| 亚洲欧洲国产日韩| 国产av一区二区精品久久| 丝袜美足系列| 欧美日韩成人在线一区二区| 丝袜喷水一区| 久久99热这里只频精品6学生| 在线看a的网站| 午夜精品国产一区二区电影| 精品午夜福利在线看| 亚洲成av片中文字幕在线观看 | 国产成人免费无遮挡视频| 黑丝袜美女国产一区| 国产老妇伦熟女老妇高清| 交换朋友夫妻互换小说| 天堂俺去俺来也www色官网| 国产极品粉嫩免费观看在线| 乱码一卡2卡4卡精品| 午夜激情久久久久久久| 成人免费观看视频高清| 亚洲精品第二区| 成人国产av品久久久| 高清欧美精品videossex| 国产一区二区三区av在线| 青春草视频在线免费观看| 中文字幕av电影在线播放| 日韩人妻精品一区2区三区| 日日啪夜夜爽| 国产成人av激情在线播放| 国产福利在线免费观看视频| 九九爱精品视频在线观看| 久久午夜综合久久蜜桃| 亚洲欧美一区二区三区黑人 | 久久久国产精品麻豆| 欧美成人午夜精品| 黑人高潮一二区| 久久亚洲国产成人精品v| 欧美国产精品va在线观看不卡| 午夜av观看不卡| 日韩一区二区视频免费看| 午夜91福利影院| av播播在线观看一区| 国产色婷婷99| 99久久综合免费| 亚洲精品久久久久久婷婷小说| 国产色爽女视频免费观看| 高清不卡的av网站| 国产黄色免费在线视频| 高清在线视频一区二区三区| 久久热在线av| 国产女主播在线喷水免费视频网站| 久久精品国产a三级三级三级| 精品第一国产精品| 人成视频在线观看免费观看| 久久人人97超碰香蕉20202| 欧美性感艳星| 永久免费av网站大全| 日日啪夜夜爽| 久久青草综合色| 亚洲精品日韩在线中文字幕| 亚洲第一av免费看| 亚洲成人手机|