• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    DFT Study on the Germanium Ion Activated C–H Bond in Methane①

    2018-11-22 01:58:46HOUXiuFangFUFengCHANGQingZHANGWenLin
    結(jié)構(gòu)化學 2018年10期

    HOU Xiu-Fang FU Feng CHANG Qing ZHANG Wen-Lin

    (Laboratory of Analytical Technology and Detection,College of Chemistry and Chemical Engineering, Yan’an University, Yan’an 716000, China)

    Density functional calculations show that the GeO+and [OGeOH]+can activate the H3C-H bond, in contrast to the inertness of Ge+and GeOH+.

    1 INTRODUCTION

    Methane is the smallest saturated hydrocarbon and the principal component in natural gas.It is characterized by the absence of a dipole moment, the extremely high pKa value, the rather small polarizability, the modest proton affinity, an anomalously high ionization energy (12.61±0.01 eV)[1], and a negative electron affinity or the significant energies required for both the homo- and heterolytic cleavage of the C–H bond[2].These properties lead to the lower reactivity of methane relative to desired products such as ethylene or methanol.How to activate methane C–H bonds into value-added products like methanol, acetic acid, hydrogen cyanide and so on under a less expensive and cleaner process is a major problem and a “grand challenge”[3]nowadays.The first thought is metal-mediated dehydrogenation of methane.Bohme’s[4]research indicates that only As+, Nb+, Ta+, W+, Os+, Ir+, and Pt+can bring dehydrogenation of methane to generate metal carbenes in 59 atomic cations, while Ge+and methane only form addition [Ge(CH4)][5].

    How can we improve the reactivity and selectivity of metal-mediated bond activation processes? There are chiefly changes of cluster size, charge state and ligands effect.Firstly, the cluster size is one of the most important factors in metal-mediated bond activation processes[5].The catalytic properties of small clusters show large variations with cluster size[6].For example, Pd8and Pd10are the most reactive clusters in Pd clusters activating CH4, while Pd3and Pd9are slower[7].Secondly, generally the cationic metals, owing to their electrophilic nature,are more reactive than their anionic and neutral counterparts, so the main group metal cluster cations Ge+, GeO+, GeOH+and OGeOH+are our objects of study.Thirdly, when the ligand attaches to the metal ion M+, it will affect the electronic character of metal centers, then the chemistry of [ML]+complexes may change greatly.Two or more ligands may tune the chemical features of cationic metal better.

    In the Periodic Table, the germanium lies on a special place that the non-metal As is situated at the top, Sn at the bottom, Ga on the left, and the nonmetal As on the right.The electronic structure of the germanium element is 4s24p2, with unfilled shells or unpaired electrons in p orbitals which may lead to special metal-ligand interactions.Benzi[8,9]reported the reactions of monogermane with O2, NH3, CO,CO2, and C2H4under high pressure using Fourier transform mass spectrometry.Tang and co-workers[10]investigated the reactions between M+(M = Si, Ge,Sn and Pb) and benzene in the gas phase using a laser ablation/inert buffer gas ion source coupled with a reflection time-of-flight mass spectrometer.Power[11]indicated that the main-group compounds generally do not interact strongly with CO, C2H4or H2.Ge+and methane only form addition [Ge(CH4)] with the reaction efficiency (2 × 10-4) using an inductivelycoupled plasma/selected-ion flow tube (ICP/SIFT)tandem mass spectrometer[5].These survey results suggest that the Ge chemical property is inactive and requires ligand to tune the reactivity.

    In the recent paper, Sun and co-workers[12]have investigated the metal free cluster OSiOH+activation methane system, and the present study is a logical extension to the OGeOH+and CH4system.By electrospray ionization, it failed to generate GeO+,while large amount of GeOH+was produced due to the rather high hydrogen-atom affinities of GeO+.A solid-state-based laser-ablation method can produce GeO+[13].Herein we present the gas-phase reactions of the main group metal Ge+, GeO+, GeOH+and OGeOH+with methane by state-of-the-art quantum chemical calculations so as to explore the origin of the ligand effect.

    2 COMPUTATIONAL DETAILS

    Full optimization of geometries for all stationary points involved the reaction underlying the main group metal Ge+, GeO+, GeOH+and OGeOH+mediating the methane activation process using the density functional theory (DFT) method[14-16]based on the hybrid of Becke’s three-parameter exchange functional and the Lee, Yang, and Parr correlation functional (B3LYP)[17-19].The 6-311++G** basis set was performed for hydrogen, carbon, nitrogen and germanium.Frequency analysis was calculated at the same theoretical level.Frequency analysis was carried out for all stationary points for two purposes.The first one was to check whether the optimized geometry corresponds to a minimum or a transition state, and the second was to obtain the zero-point vibrational energies and Gibbs free energies.Relative energies were corrected for unscaled zero-point vibrational energy contributions.Furthermore, the intrinsic reaction coordinate (IRC) calculations[20]were performed to confirm that the optimized transition states correctly connect the relevant reactants and products.To check the reliability of our theoretical geometrical and energetic results obtained at the B3LYP/6-311++G** level of theory, we optimized all the complexes with the highly accurate theoretical method.Optimization calculations were done at the CCSD and MP2 levels with 6-311++G**basis set.Besides, the relativistic effective core potential (ECP) of Stuttgart/Dresden (Lanl2dz) was adopted to describe the metal Ge with the label MP2①in Tables S1 and S2 (We mark MP2①to discriminate ECP (Lanl2dz) for Ge from that of 6-311++G** in the MP2 level.).As shown in the supplementary information, there was a good agreement between the geometrical parameters and relative energy calculated with B3LYP, CCSD and MP2, though individual data have big difference.It illustrated that the results are reliable.Furthermore,we should underline the complexation energy calculated with the B3LYP method.The Cartesian coordinates of all stationary points under B3LYP/6-311++G** had be provided in SI.The natural population analysis had been made with the natural bond orbital (NBO) analysis[21,22].We had plotted the map of electrostatic potential surface at 0.001 a.u.isosurface contours by using GaussView software.Furthermore, Multiwfn software was used for quantitative analysis of molecular surfaces[23].All computations reported here are carried out using the GAUSSIAN 09 program suit[24].

    3 RESULTS AND DISCUSSION

    3.1 Reaction of Ge+ with CH4

    We start to discuss the reaction between Ge+and CH4, with the potential energy profiles depicted in the supporting information Fig.S1.The electronic configuration of the ground state Ge+may be written as [Ar]3d104s24p1.For CH4, the C–H bond lengths are 1.09 ?, with the H–C–H angle of 109.5°.The doublet ground state of Ge+is 634.56 kJ/mol more stable than the quartet excited state, so we only take into account the ground state situation, marked 2 at the top left corner of the complex.For example, the methane coordinates to the metal center leading to the encounter complex2GeCH4+, which is –50.95 kJ/mol relative to the reactant asymptote.However, a H-atom transfer happens via transition state to form the complex2HGeCH3+.This step has high activation barrier (49.87 kJ/mol) and therefore is unlikely to happen at room temperature.Bohme’s[4]inductivelycoupled plasma/selected-ion flow tube (ICP/SIFT)tandem mass spectrometer research and Schwarz[25]DFT-based calculation results indicate that Ge+and methane only form the structural association product[Ge(CH4)]+.The Ge+(4s24p1) is incapable of activating CH4since it lacks electrons to donate to the C–H antibonding orbital of CH4in terms of the donoracceptor model.

    3.2 Reaction of GeO+ with CH4

    In order to improve the Ge+reactivity, we then study the reaction between GeO+and methane.The electronic configuration of the ground state GeO+may be written as(1σ)2(2σ)2(1π)4(3σ)2(4σ)2(5σ)2(2π)4(6σ)2(7σ)2(1δ)4(3π)4(8σ)2(9σ)2(10σ)2(4π)32?+.The equilibrium structure is determined to be re(GeO) = 1.67 ?.Hydrogenatom transfer (HAT) constitutes a key process in methane activation by metal-oxo species.The doublet ground state GeO+is more stable than the quartet excited state, so we only account the ground state situation.Regarding the mechanistic details of HAT, there are two modes.One is the direct HAT from CH4to the oxygen atom of MO+, and the other involves several steps, in which an empty coordinate site at the metal atom is required.The Ge in GeO+has no vacant coordination site, so we only consider the first situation.The direct HAT process prevails mainly for the open shell metal oxide and the high spin located at the terminal oxygen atom (0.72 spin density in O of GeO+).In the C–H bond activation of CH4by GeO+, the reaction proceeds barrier-free,directly to the complex [GeOH]+??CH3˙(0.85 spin density in CH3).In this HAT-product the methyl group loosely coordinates to the H of the newly formed hydroxyl group.The exothermic reaction is completed by liberation of the CH3˙ radical, resulting in the formation of [GeOH]+.This barrier-free step is exothermic by 169.9 kJ/mol.An alternative pathway is that a CH4molecule interacts with the terminal Ge in GeO+, thus forming an electrostatic complex[GeOCH4]+.Then the hydrogen transfer from carbon to Ge via the transition state2TS1/2 to form[HOGeCH3]+.The2TS1/2 lies 99.8 kJ/mol above the reactants, so the path does not occur under ambient conditions.In contrast to the bare metal cation Ge+,which exhibits no activity towards methane according to the above calculation, the reaction of metal monoxide GeO+due to the high spin density at the O atom (0.72) is efficient.In order to explore if the product GeOH+can further react with CH4, the following study is performed.

    Fig.1.Schematic potential-energy profiles from GeO+/CH4

    3.3 Reaction of GeOH+ with CH4

    The GeOH+species is linear and its electronic configuration is described as (1σ)2(2σ)2(1π)4(3σ)2(4σ)2-(5σ)2(2π)4(6σ)2(7σ)2(1δ)4(3π)4(8σ)2(9σ)2(10σ)2(4π)41?+.The equilibrium structure is determined to be re(GeO)= 1.68 ? and re(OH) = 0.97 ?, which are basically consistent with Yamaguchi’s[26]results.The GeO bond length in GeOH+is 0.01 ? longer than that of diatomic GeO+.It is seen that the hydrogen atom destabilizes the Ge–O bond in GeOH+.The single ground state GeOH+is more stable than the triplet excited state, so we only take into account the ground state situa- tion, marked 1 at the top left corner of the complex, for example ‘1M1’.The potential energy profiles are drawn in the supporting information (Fig.S2).The hydrogen atom in CH4transfers to Ge in GeOH+in the transition state1TS1/2.The1TS1/2 lies 341.6 kJ/mol above the reactants, so the path doesn’t occur under ambient conditions.

    3.4 Reaction of OGeOH+ with CH4

    In OGeOH+, we mark the terminal oxygen atom as*O to distinguish the two oxygen atoms.The equilibrium structure is determined to be re(*OGe) = 1.61 ? and re(GeO) = 1.69 ?, in which oxygen atom lies in the OH group, and re(OH) = 0.98 ?, ∠ OGeO =172° and ∠G eOH = 121°.The four atoms are in the same plane.The oxygen atom adds to the other side of GeOH+; the Ge–O and O–H bonds in OGeOH+are also 0.01 ? longer than that of GeOH+.It is seen that the O atom destabilizes the Ge–O and O–H bonds.The cluster ion OGeOH+is generated in the reaction of [GeO2]+with water based on DFT.Full details of the process are provided in the support information(Fig.S3).Then mechanistic insight into the details of the methane activation step by OGeOH+has been discussed.The most favorable pathways for the reactions of OGeOH+/CH4couple are located on the singlet potential energy surface (PES), as shown in Fig.2.In the first case, an encounter complex (1M1)is initially formed from the reactants.This step is exothermic by 61.9 kJ/mol, thus indicating a rather stronger interaction between the positively charged germanium atom and methane (the charge on the germanium atom of OGeOH+amounts to 2.2 |e|based on a natural bond orbital (NBO) analysis).Subsequently, one C–H of the incoming methane substrate is activated and a hydrogen atom is transferred to the terminal *O atom of OGeOH+via transition state TS1/2 to form the rather stable germanium cation compound M2.In the latter, the positive charge at the germanium atom amounts to 2.1 |e|, and the formations of strong Ge–C and *O–H bonds account for the high stability of M2.Next, the methyl group can migrate via TS2/3 to one of the hydroxide ligands, thus forming complex M3.For the latter route, OGeOH+may be attacked by me-thane at the terminal oxygen atom *O to give directly the intermediate complex M3.To clarify the reaction mechanism of the directly formed intermediate complex M3 by the terminal oxygen atom *O attacking the C–H bond of methane, the energy changes and selected structures have been given in Fig.3.First of all, the terminal oxygen atom *O is close to the C–H bond of methane, with the *O??H bond to be 2.50 ?.Secondly, the activated C–H bond is increased from 1.11 to 1.57 ?, and the *O–H bond(1.01 ?) is nearly formed.And then, the *O–C bond distance is 1.52 ?, and the *O–Ge bond is increased from 1.81 to 2.03 ?.Finally, the Ge–*O bond continues to lengthen to 2.04 ?.The analysis indicates that the process is barrier-free to yield M3.This intermediate then serves as a branching point to either produce CH3OH and [GeOH+] or generate[GeOCH3]+accompanied by the loss of H2O.

    Fig.2.Schematic potential-energy profiles from OGeOH+/CH4

    Fig.3.Changes of the potential energy along the OGeOH+ + CH4 reaction pathway, where the selected geometry is given

    Color-filled maps of the electron localization function along OGeOH++ CH4reaction pathway are presented in Fig.4.In M1, the absence of a disynaptic valence basin between Ge and the CH4carbon and hydrogen atoms confirms that interaction could be an electrostatic interaction.The first C–H bond breaking takes place due to the appearance of V(H,O*) basin in TS1/2.There is strength of disynaptic V(H,O*) basin, indicating that the H atom has shifted to *O completely in M2.As for TS2/3,the analysis reveals the weakening of disynaptic V(C,Ge) basin and the forming of disynaptic V(C,O)basin.There are two paths to form M3.One is[OGeOH+] + CH4→ M1 → TS1/2 → M2 → TS2/3→ M3, and the other is [OGeOH+] + CH4→ M1(Fig.2), which is obviously favorable.The ELF of M3 shows that CH3transfers to *O entirely.At the same time, the Ge–O bond breaks accompanied by the formation of a new *O–H bond.As for TS3/4, the appearance of H–O··H··*O bond by V(H,O,H,O)basin clearly proves the trend of H transferring into O of the OH.In the case of M4, a trisynaptic V(H,O,H) basin takes the place of V(H, O, H, O)basin, which indicates the formation of H2O.At the moment, the M4 intermediate dissociates into GeOCH3+and H2O.The energies of the intermediates and products are below the entrance channel,so the reaction can occur under ambient conditions.

    Fig.4.(Color online) ELF projection map of the key points on the OGeOH+ + CH4 reaction pathway

    3.5 Comparison of the four systems

    The reaction mechanism of the four main group metal cations towards methane can be explained in NBO charge distribution.The charge at the terminal oxygen atom in GeO+and OGeOH+are –0.72 and–0.83 |e| respectively, which reveals that the terminal oxygen atom is the active site.The interaction of terminal oxygen atom and the hydrogen atom in methane leads to the translocation of H to *O atom.In conclusion, the ligands affect the local charge distribution in the main group germanium metal cation compounds.

    Molecular electrostatic potential is another influence factor.The molecular electrostatic potential surface maps of the four metal ions and CH4are shown in Fig.5, which is drawn at 0.001 a.u.isosurface contours using GaussView software.The electron density distributions reveal the interaction between molecules.As shown in MEP map, due to electrostatic potential, there is a tendency between terminal oxygen *O in GeO+and OGeOH+and H in CH4to get close to each other.That explains the reason of GeO+and OGeOH+activate H3C–H bond.

    Fig.5.Map of molecular electrostatic potential surface of the four metal ion and CH4 plotted by GaussView software using the B3LYP/6-311++G** wave functions

    4 CONCLUSION

    The methane activation mechanistic by the main group metal Ge+, GeO+, GeOH+and OGeOH+have been studied by the density functional theory method.The main reaction channel of GeO+/CH4is that the H in CH4is abstracted by the O in GeO+to form GeOH+and CH3˙.The fast and efficient reaction is barrier-free process along with exothermicity, which is in agreement with literature.For the OGeOH+and CH4system, the optimal path is that OGeOH+reacts with methane to form M3 firstly, and then, M4, the transformation product of M3, decomposes into[GeOCH3]+and H2O.However, as for Ge+and GeOH+, the activation reaction is difficult to carry out under ambient temperature.Therefore, the ligands affect the main group germanium metal cation compounds reactivity to a certain extent.The results provide effective information for more sophisticated research in the future.

    REFERENCES

    (1) Berkowitz, J.; Greene, J.P.; Cho, H.; Rusci?, B.The ionization potentials of CH4and CD4.J.Chem.Phys.1987, 86, 674-676.

    (2) Schwarz, H.; González-Navarrete, P.; Li, J.; Schlangen, M.; Sun, X.; Weiske, T.; Zhou, S.Unexpected mechanistic variants in the thermal gas-phase activation of methane.Organometallics2017, 36, 8-17.

    (3) Gunsalus, N.J.; Koppaka, A.; Park, S.H.; Bischof, S.M.; Hashiguchi, B.G.; Periana, R.A.Homogeneous functionalization of methane.Chem.Rev.2017, 117, 8521-8573.

    (4) Shayesteh, A.; Lavrov, V.V.; Koyanagi, G.K.; Bohme, D.K.Reactions of atomic cations with methane: gas phase room-temperature kinetics and periodicities in reactivity.J.Phys.Chem.A2009, 113, 5602-5611.

    (5) Schwarz, H.; Schr?der, D.Concepts of metal-mediated methane functionalization.An intersection of experiment and theory.Pure Appl.Chem.2000,72, 2319-2332.

    (6) Bansmann, J.; Baker, S.H.; Binns, C.; Blackman, J.A.; Bucher, J.P.; Dorantes-dávila, J.; Dupuis, V.; Favre, L.; Kechrakos, D.; Kleibert, A.;Meiwes-Broer, K.H.; Pastor, G.M.; Perez, A.; Toulemonde, O.; Trohidou, K.N.; Tuaillon, J.; Xie, Y.Magnetic and structural properties of isolated and assembled clusters.Surf.Sci.Rep.2005, 56, 189-189.

    (7) Trevor, D.J.; Cox, D.M.; Kaldor, A.Methane activation on unsupported platinum clusters.J.Am.Chem.Soc.1990, 112, 3742-3749.

    (8) Benzi, P.; Operti, L.; Vaglio, G.A.; Volpe, P.; Speranza, M.; Gabrielli, R.Gas phase ion-molecule reactions of monogermane with oxygen and ammonia.J.Organomet.Chem.1988, 354, 39-50.

    (9) Benzi, P.; Operti, L.; Vaglio, G.A.; Volpe, P.; Speranza, M.; Gabrielli, R.Gas phase ion-molecule reactions of monogermane with carbon oxides and ethylene: Formation of germanium-carbon bonds.J.Organomet.Chem.1989, 373, 289-300.

    (10) Xing, X.; Tian, Z.; Liu, H.; Tang, Z.Reactions between M+(M = Si, Ge, Sn and Pb) and benzene in the gas phase.Rapid Commun.Mass Spectrom.2003, 17, 1743-1748.

    (11) Power, P.P.Main-group elements as transition metals.Nature2010, 463, 171-177.

    (12) Sun, X.; Zhou, S.; Schlangen, M.; Schwarz, H.Efficient room-temperature methane activation by the closed-shell.; metal-free cluster [OSiOH]+: a novel mechanistic variant.Chem.Eur.J.2016, 22, 14257-14263.

    (13) Chen, K.; Wang, Z.C.; Schlangen, M.; Wu, Y.D.; Zhang, X.; Schwarz, H.Thermal activation of methane and ethene by bare MO+(M = Ge, Sn, and Pb): a combined theoretical/experimental study.Chem.Eur.J.2011, 17, 9619-9625.

    (14) Bai, X.; Ling, R.R.; Lv, J.; Wu, H.S.; Structural, electronic and magnetic properties of ConO (n = 2~10) clusters: a density functional study.Chin.J.Struct.Chem.2018, 137, 175-185.

    (15) Li, Y.; Xing, Y.Y.; Liu, R.R.; Hu, J.M.; Zhang, Y.F.; Chen, W.K.Density functional theory study of the adsorption of C2H2on the Cu/Pt(111)bimetallic surfaces.Chin.J.Struct.Chem.2013, 32, 1211-1221.

    (16) Li, G.F.; Lu, S.Q.; Peng, P.Theoretical study of geometric structures for ground-state AlnC (n = 2~7) clusters.Chin.J.Struct.Chem.2012, 31,582-590.

    (17) Becke, A.D.Density-functional thermochemistry.III.The role of exact exchange.J.Chem.Phys.1993, 98, 5648-5652.

    (18) Becke, A.D.Density-functional exchange-energy approximation with correct asymptotic behavior.Phys.Rev.A1988, 38, 3098-3200.

    (19) Lee, C.; Yang, W.T.; Parr, R.G.Development of the Colle-salvetti correlation energy formula into a functional of the electron density.Phys.Rev.B1988, 37, 785-789.

    (20) Gonzalez, C.; Schlegel, H.B.An improved algorithm for reaction path following.J.Chem.Phys.1989, 90, 2154-2161.

    (21) Reed, A.E.; Weinstock, R.B.; Weinhold, F.Natural population analysis.J.Chem.Phys.1985,83, 735-746.

    (22) Carpenter, J.E.; Weinhold, F.Analysis of the geometry of the hydroxymethyl radical by the different hybrids for different spins natural bond orbital procedure.J.Mol.Struct.(Theochem.)1988, 169, 41-46.

    (23) Lu, T.; Chen, F.Multiwfn: a multifunctional wavefunction analyzer.J.Comput.Chem.2012,33, 580-592.

    (24) Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H.P.; Izmaylov, A.F.; Bloino, J.; Zheng, G.; Sonnenberg, J.L.; Hada, M.; Ehara, M.; Toyota, K.;Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J.A.Jr.; Peralta, J.E.; Ogliaro, F.;Bearpark, M.; Heyd, J.J.; Brothers, E.; Kudin, K.N.; Staroverov, V.N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J.C.;Iyengar, S, S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J.M.; Klene, M.; Knox, J.E.; Cross, J.B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts,R.; Stratmann, R.E.; Yazyev, O.; Austin, A.J.; Cammi, R.; Pomelli, C.; Ochterski, J.W.; Martin, R.L.; Morokuma, K.; Zakrzewski, V.G.; Voth, G.A.; Salvador, P.; Dannenberg, J.J.; Dapprich, S.; Daniels, A.D.; Farkas O.; Foresman, J.B.; Ortiz, J.V.; Cioslowski, J.; Fox, D.J.Gaussian 09,Revision A.02.Gaussian, Inc.Wallingford, CT2009.

    (25) Zhang, X.; Schwarz, H.A DFT-based analysis of the grossly varying reactivity pattern in room-temperature activation and dehydrogenation of CH4by main-group atomic M+(M = Ga, Ge, As, and Se).Chem.Eur.J.2009, 15,11559-11565.

    (26) Yamaguchi, Y.; Richards, C.A.; Schaefer, Ⅲ Jr H.F.The GeOH+-HGeO+system: a detailed quantum mechanical study.J.Chem.Phys.1995, 103,7975-7982.

    久久精品91蜜桃| 精华霜和精华液先用哪个| 黄色配什么色好看| 亚洲久久久久久中文字幕| 在线观看午夜福利视频| 美女黄网站色视频| 欧美最新免费一区二区三区| 极品教师在线视频| 国产精品爽爽va在线观看网站| 欧美黑人欧美精品刺激| 欧美一区二区精品小视频在线| 老熟妇乱子伦视频在线观看| 免费在线观看日本一区| 韩国av在线不卡| 亚洲va在线va天堂va国产| 日韩欧美一区二区三区在线观看| 黄色一级大片看看| 啦啦啦韩国在线观看视频| 亚洲第一电影网av| 国产精品一区www在线观看 | 老司机午夜福利在线观看视频| 亚洲aⅴ乱码一区二区在线播放| 少妇的逼好多水| 亚洲美女黄片视频| 欧美区成人在线视频| 亚洲精华国产精华液的使用体验 | 99热网站在线观看| 精品人妻视频免费看| 国产一级毛片七仙女欲春2| 日本黄色视频三级网站网址| av在线亚洲专区| 啦啦啦观看免费观看视频高清| 亚洲avbb在线观看| 亚洲成人久久爱视频| 嫁个100分男人电影在线观看| 日日干狠狠操夜夜爽| а√天堂www在线а√下载| 舔av片在线| 欧美精品国产亚洲| 久久这里只有精品中国| 亚洲乱码一区二区免费版| 22中文网久久字幕| 12—13女人毛片做爰片一| 日本黄大片高清| av.在线天堂| 国产毛片a区久久久久| 少妇熟女aⅴ在线视频| 精品久久久久久久久久免费视频| 观看免费一级毛片| 级片在线观看| 久久精品国产亚洲av天美| 夜夜夜夜夜久久久久| 在线免费观看不下载黄p国产 | 国产探花极品一区二区| 日韩一区二区视频免费看| 看片在线看免费视频| 国产激情偷乱视频一区二区| 淫妇啪啪啪对白视频| 日本一本二区三区精品| 成人二区视频| 亚洲一区高清亚洲精品| 简卡轻食公司| 国产精华一区二区三区| 性色avwww在线观看| 免费搜索国产男女视频| 美女xxoo啪啪120秒动态图| 午夜福利欧美成人| av在线蜜桃| 国产乱人伦免费视频| 色综合婷婷激情| 亚洲精品乱码久久久v下载方式| 99久国产av精品| 最新在线观看一区二区三区| 禁无遮挡网站| 日韩欧美免费精品| 国产亚洲91精品色在线| 色综合亚洲欧美另类图片| 村上凉子中文字幕在线| 成人特级黄色片久久久久久久| 国产乱人伦免费视频| 黄色配什么色好看| 日本熟妇午夜| 国产黄片美女视频| 国产免费男女视频| 国产精品99久久久久久久久| 中文字幕av在线有码专区| 中文字幕av在线有码专区| 欧美高清成人免费视频www| 亚洲av成人精品一区久久| 日韩欧美在线二视频| 婷婷丁香在线五月| 国产精品久久电影中文字幕| 中出人妻视频一区二区| 日本黄色片子视频| 成人二区视频| 国产v大片淫在线免费观看| 直男gayav资源| 给我免费播放毛片高清在线观看| 久久久久国内视频| 午夜福利在线观看吧| 欧美成人a在线观看| 啪啪无遮挡十八禁网站| 亚洲黑人精品在线| 亚洲七黄色美女视频| 男女之事视频高清在线观看| 欧美成人性av电影在线观看| 综合色av麻豆| 18禁在线播放成人免费| 亚洲国产欧美人成| 欧美一区二区国产精品久久精品| 欧美精品国产亚洲| 99在线人妻在线中文字幕| 99在线人妻在线中文字幕| 国产精品日韩av在线免费观看| 亚洲狠狠婷婷综合久久图片| 99在线人妻在线中文字幕| 有码 亚洲区| 欧美一区二区亚洲| 99国产精品一区二区蜜桃av| 乱人视频在线观看| 校园人妻丝袜中文字幕| 狠狠狠狠99中文字幕| 国产精品女同一区二区软件 | 能在线免费观看的黄片| 精品人妻熟女av久视频| 国产麻豆成人av免费视频| 一本久久中文字幕| 日本欧美国产在线视频| 别揉我奶头~嗯~啊~动态视频| 国产精品美女特级片免费视频播放器| 人妻少妇偷人精品九色| xxxwww97欧美| 成人亚洲精品av一区二区| 免费人成在线观看视频色| 啦啦啦韩国在线观看视频| av在线亚洲专区| 伦精品一区二区三区| 非洲黑人性xxxx精品又粗又长| 国产伦在线观看视频一区| 俺也久久电影网| 免费搜索国产男女视频| 97超视频在线观看视频| 日韩欧美三级三区| 少妇的逼好多水| 一区二区三区四区激情视频 | 成人国产综合亚洲| 国语自产精品视频在线第100页| 波野结衣二区三区在线| 亚洲最大成人中文| 中文亚洲av片在线观看爽| 亚洲中文字幕一区二区三区有码在线看| 悠悠久久av| 日日啪夜夜撸| 日韩精品有码人妻一区| 神马国产精品三级电影在线观看| 亚洲精品在线观看二区| 精品久久久久久,| 久久精品国产自在天天线| 最新中文字幕久久久久| 国产私拍福利视频在线观看| 国内精品久久久久久久电影| 在线免费观看不下载黄p国产 | 两个人的视频大全免费| 欧美日韩黄片免| 22中文网久久字幕| 精品人妻1区二区| 久久国产乱子免费精品| 91av网一区二区| 草草在线视频免费看| 国产高清激情床上av| 搡女人真爽免费视频火全软件 | 人妻制服诱惑在线中文字幕| 午夜免费男女啪啪视频观看 | 国产美女午夜福利| 亚洲人成伊人成综合网2020| a在线观看视频网站| 国产精品自产拍在线观看55亚洲| 久久精品国产自在天天线| 中文字幕av成人在线电影| 久久久午夜欧美精品| avwww免费| 3wmmmm亚洲av在线观看| 国产精品久久久久久精品电影| 丰满人妻一区二区三区视频av| 亚洲精品国产成人久久av| 在线观看美女被高潮喷水网站| 最近最新免费中文字幕在线| 男人的好看免费观看在线视频| 成人鲁丝片一二三区免费| 亚洲国产精品久久男人天堂| 天堂影院成人在线观看| 亚洲欧美精品综合久久99| 国内久久婷婷六月综合欲色啪| 99久久成人亚洲精品观看| 国产精品野战在线观看| 欧美激情久久久久久爽电影| 国产高清不卡午夜福利| 1000部很黄的大片| 国产男靠女视频免费网站| 国产高清激情床上av| 精品午夜福利在线看| 麻豆国产97在线/欧美| 91在线精品国自产拍蜜月| 久久国内精品自在自线图片| 18禁黄网站禁片午夜丰满| 麻豆精品久久久久久蜜桃| 成年免费大片在线观看| 久久久久精品国产欧美久久久| 国产精品电影一区二区三区| av在线亚洲专区| 亚洲av二区三区四区| av在线蜜桃| 国产精品福利在线免费观看| 国产女主播在线喷水免费视频网站 | 老熟妇乱子伦视频在线观看| 日本-黄色视频高清免费观看| 亚洲av中文av极速乱 | 中文字幕精品亚洲无线码一区| 女的被弄到高潮叫床怎么办 | 国产精品av视频在线免费观看| 国国产精品蜜臀av免费| 少妇猛男粗大的猛烈进出视频 | 春色校园在线视频观看| 男插女下体视频免费在线播放| bbb黄色大片| 欧洲精品卡2卡3卡4卡5卡区| 日韩欧美在线乱码| 国产亚洲精品久久久久久毛片| 99国产极品粉嫩在线观看| 日韩欧美一区二区三区在线观看| 亚洲最大成人av| videossex国产| 国产中年淑女户外野战色| 亚洲avbb在线观看| 看黄色毛片网站| 国产精品一区二区三区四区免费观看 | 成人鲁丝片一二三区免费| 一本精品99久久精品77| 国产综合懂色| 欧美+日韩+精品| 国产一级毛片七仙女欲春2| 少妇被粗大猛烈的视频| 亚洲熟妇熟女久久| 色播亚洲综合网| 99热6这里只有精品| 亚洲avbb在线观看| netflix在线观看网站| 亚洲人成网站在线播放欧美日韩| 日韩精品青青久久久久久| 久久婷婷人人爽人人干人人爱| 极品教师在线免费播放| 给我免费播放毛片高清在线观看| 久久草成人影院| 免费观看精品视频网站| 精品久久久久久久人妻蜜臀av| 两人在一起打扑克的视频| 91麻豆av在线| 91狼人影院| 国产免费一级a男人的天堂| 亚洲精品日韩av片在线观看| 国产男人的电影天堂91| 免费搜索国产男女视频| 国产亚洲欧美98| 波多野结衣巨乳人妻| 国产熟女欧美一区二区| 一区二区三区高清视频在线| 黄色女人牲交| 乱人视频在线观看| 亚洲最大成人手机在线| 日本黄色片子视频| 日日摸夜夜添夜夜添小说| 婷婷精品国产亚洲av| 国产真实伦视频高清在线观看 | 极品教师在线视频| 中文字幕久久专区| 亚洲人成网站在线播放欧美日韩| 欧美日本亚洲视频在线播放| 麻豆国产97在线/欧美| 狠狠狠狠99中文字幕| 国产精品一区www在线观看 | 亚洲国产精品sss在线观看| 有码 亚洲区| 久久久国产成人免费| 亚洲第一电影网av| 日韩精品中文字幕看吧| 日本免费一区二区三区高清不卡| 黄色女人牲交| 亚洲aⅴ乱码一区二区在线播放| 18禁黄网站禁片午夜丰满| 级片在线观看| 特级一级黄色大片| 色噜噜av男人的天堂激情| 少妇的逼水好多| 国产极品精品免费视频能看的| 热99在线观看视频| 国产精品,欧美在线| 嫩草影院新地址| 又爽又黄无遮挡网站| 成人永久免费在线观看视频| 欧美三级亚洲精品| 国产免费av片在线观看野外av| 一级毛片久久久久久久久女| 国产淫片久久久久久久久| 老司机福利观看| 伦精品一区二区三区| 亚洲精品在线观看二区| 亚洲av日韩精品久久久久久密| 成人av在线播放网站| 天堂影院成人在线观看| 又黄又爽又免费观看的视频| 亚洲国产精品sss在线观看| 偷拍熟女少妇极品色| 免费在线观看成人毛片| 成人一区二区视频在线观看| 一区二区三区激情视频| 久久亚洲精品不卡| 校园人妻丝袜中文字幕| x7x7x7水蜜桃| 日日摸夜夜添夜夜添小说| ponron亚洲| 亚洲内射少妇av| 高清毛片免费观看视频网站| 99久久成人亚洲精品观看| 少妇高潮的动态图| 少妇被粗大猛烈的视频| 欧美zozozo另类| 欧美极品一区二区三区四区| 天天一区二区日本电影三级| 男女啪啪激烈高潮av片| 男女边吃奶边做爰视频| 能在线免费观看的黄片| 在线国产一区二区在线| 在线天堂最新版资源| 99久久中文字幕三级久久日本| 一个人观看的视频www高清免费观看| 99热这里只有精品一区| 韩国av一区二区三区四区| 此物有八面人人有两片| 久久久久久国产a免费观看| 99久久精品国产国产毛片| 日本三级黄在线观看| 亚洲,欧美,日韩| 男人舔奶头视频| a级毛片免费高清观看在线播放| 成人av在线播放网站| 成人一区二区视频在线观看| 亚洲国产高清在线一区二区三| 国产成年人精品一区二区| 亚洲欧美清纯卡通| 中文字幕精品亚洲无线码一区| 级片在线观看| 国产精品一区二区性色av| 亚洲av成人av| 日韩 亚洲 欧美在线| 国产激情偷乱视频一区二区| 日韩人妻高清精品专区| 十八禁网站免费在线| 亚洲国产色片| 91在线观看av| 五月伊人婷婷丁香| 91在线精品国自产拍蜜月| 麻豆精品久久久久久蜜桃| 亚洲va日本ⅴa欧美va伊人久久| 国产一区二区三区av在线 | a级一级毛片免费在线观看| 午夜福利18| 国产精品久久久久久av不卡| 亚洲天堂国产精品一区在线| 精品不卡国产一区二区三区| 国产av不卡久久| 桃色一区二区三区在线观看| 久久久久免费精品人妻一区二区| 午夜福利高清视频| 偷拍熟女少妇极品色| 色视频www国产| 日韩精品青青久久久久久| 久久久成人免费电影| 成人性生交大片免费视频hd| 午夜日韩欧美国产| 久久久成人免费电影| 国内精品宾馆在线| 国产av麻豆久久久久久久| 国内少妇人妻偷人精品xxx网站| 在线观看美女被高潮喷水网站| 欧美另类亚洲清纯唯美| 亚洲第一区二区三区不卡| 亚洲av成人av| 国产视频内射| 91狼人影院| 他把我摸到了高潮在线观看| 午夜精品在线福利| 欧美高清成人免费视频www| 精华霜和精华液先用哪个| 欧美成人一区二区免费高清观看| 国产成人a区在线观看| 国产午夜精品论理片| 国产高清激情床上av| 在现免费观看毛片| 天堂av国产一区二区熟女人妻| 一a级毛片在线观看| 亚洲欧美清纯卡通| 欧美高清成人免费视频www| 国产午夜精品久久久久久一区二区三区 | 最后的刺客免费高清国语| 久久久久久久亚洲中文字幕| 成人av一区二区三区在线看| 日韩强制内射视频| 色av中文字幕| 日本-黄色视频高清免费观看| 国产精品人妻久久久影院| 很黄的视频免费| 日韩精品中文字幕看吧| 亚洲精品色激情综合| 亚洲四区av| 日韩欧美在线乱码| 国产精品久久久久久亚洲av鲁大| 丰满的人妻完整版| 免费看a级黄色片| 日本免费a在线| 成人性生交大片免费视频hd| 联通29元200g的流量卡| 神马国产精品三级电影在线观看| 亚洲av成人av| 99在线视频只有这里精品首页| 欧美+日韩+精品| 99热网站在线观看| 熟女人妻精品中文字幕| 欧美激情久久久久久爽电影| 97超视频在线观看视频| 免费在线观看成人毛片| 国产白丝娇喘喷水9色精品| 长腿黑丝高跟| 欧美丝袜亚洲另类 | 国产精品三级大全| 校园春色视频在线观看| 永久网站在线| 超碰av人人做人人爽久久| 天堂网av新在线| 亚洲精品成人久久久久久| 欧美在线一区亚洲| 91麻豆av在线| 免费人成在线观看视频色| 免费看a级黄色片| 丝袜美腿在线中文| 国产aⅴ精品一区二区三区波| 久久欧美精品欧美久久欧美| 久久久久久久精品吃奶| 成人一区二区视频在线观看| 亚洲美女视频黄频| 乱系列少妇在线播放| 波野结衣二区三区在线| 最近视频中文字幕2019在线8| 九九爱精品视频在线观看| 久久久久久九九精品二区国产| 日本a在线网址| 欧美另类亚洲清纯唯美| 国产免费男女视频| 天堂动漫精品| 日韩欧美在线二视频| 国产乱人视频| 午夜a级毛片| 简卡轻食公司| 变态另类成人亚洲欧美熟女| 俄罗斯特黄特色一大片| 国产色婷婷99| 少妇丰满av| 在线免费观看不下载黄p国产 | 亚洲国产欧美人成| 久久精品国产亚洲av天美| 亚洲乱码一区二区免费版| 久久久色成人| 色综合色国产| 黄色视频,在线免费观看| 久久久久精品国产欧美久久久| 欧美日本亚洲视频在线播放| 日韩亚洲欧美综合| 看免费成人av毛片| 国产一区二区亚洲精品在线观看| 天堂影院成人在线观看| 2021天堂中文幕一二区在线观| 97热精品久久久久久| 99热精品在线国产| 日本与韩国留学比较| 18禁在线播放成人免费| 最新在线观看一区二区三区| 看黄色毛片网站| 中文字幕av成人在线电影| 国产91精品成人一区二区三区| 久久久久久大精品| 亚洲精品影视一区二区三区av| 亚洲国产精品久久男人天堂| 日本黄大片高清| 精品免费久久久久久久清纯| 精品久久久噜噜| 在线观看一区二区三区| 麻豆精品久久久久久蜜桃| 午夜福利在线观看免费完整高清在 | 久久99热6这里只有精品| 身体一侧抽搐| 一边摸一边抽搐一进一小说| 国产一区二区在线av高清观看| 色av中文字幕| 人人妻,人人澡人人爽秒播| 久久久色成人| 黄色日韩在线| 黄色视频,在线免费观看| 精品国内亚洲2022精品成人| 国产精品,欧美在线| 校园春色视频在线观看| 无遮挡黄片免费观看| 熟女人妻精品中文字幕| av.在线天堂| 国产精品久久视频播放| 久久精品国产亚洲av涩爱 | 人人妻人人看人人澡| 久久中文看片网| 国产精品久久久久久久久免| 欧美日韩黄片免| 99riav亚洲国产免费| 国产乱人伦免费视频| 校园人妻丝袜中文字幕| 欧美高清成人免费视频www| 国产一区二区在线av高清观看| av黄色大香蕉| 午夜a级毛片| 91麻豆av在线| 亚洲真实伦在线观看| 一进一出抽搐动态| 亚洲一区二区三区色噜噜| 午夜老司机福利剧场| 伊人久久精品亚洲午夜| 国产精品爽爽va在线观看网站| 免费观看精品视频网站| 国产91精品成人一区二区三区| 色av中文字幕| av国产免费在线观看| 麻豆av噜噜一区二区三区| 成人国产一区最新在线观看| 能在线免费观看的黄片| 人妻夜夜爽99麻豆av| 国产亚洲av嫩草精品影院| 精品不卡国产一区二区三区| 久久久久久久精品吃奶| 网址你懂的国产日韩在线| 日韩av在线大香蕉| 熟妇人妻久久中文字幕3abv| 国产精品精品国产色婷婷| 18+在线观看网站| 亚州av有码| 国产色爽女视频免费观看| 久久精品国产清高在天天线| 亚洲第一电影网av| www日本黄色视频网| 精品人妻熟女av久视频| 日日啪夜夜撸| 亚洲av成人av| 精品午夜福利视频在线观看一区| 国产高清视频在线播放一区| a在线观看视频网站| 免费av不卡在线播放| 搡老妇女老女人老熟妇| 在线播放无遮挡| 淫秽高清视频在线观看| 亚洲三级黄色毛片| 国产精品人妻久久久影院| 成人美女网站在线观看视频| 免费不卡的大黄色大毛片视频在线观看 | 免费av观看视频| 床上黄色一级片| 精品久久久久久久久久久久久| 黄片wwwwww| 国产单亲对白刺激| 精品久久久久久,| 国产69精品久久久久777片| 此物有八面人人有两片| 欧美xxxx性猛交bbbb| 我的老师免费观看完整版| 春色校园在线视频观看| 中文亚洲av片在线观看爽| 中国美女看黄片| 日韩中文字幕欧美一区二区| 最近最新免费中文字幕在线| 亚洲专区国产一区二区| 狠狠狠狠99中文字幕| 婷婷亚洲欧美| 一个人观看的视频www高清免费观看| 国产黄片美女视频| 国产成人影院久久av| 不卡一级毛片| 别揉我奶头~嗯~啊~动态视频| 国产精品综合久久久久久久免费| 人妻少妇偷人精品九色| 免费在线观看影片大全网站| 97热精品久久久久久| 熟女电影av网| 精品一区二区三区视频在线| 日本免费一区二区三区高清不卡| 国产美女午夜福利| av中文乱码字幕在线| 91麻豆av在线| 精品一区二区免费观看| 午夜久久久久精精品| 日本精品一区二区三区蜜桃| 免费一级毛片在线播放高清视频| 舔av片在线| 日韩一区二区视频免费看| 欧美性猛交╳xxx乱大交人| 亚洲欧美日韩东京热| а√天堂www在线а√下载| 日韩精品中文字幕看吧| 中亚洲国语对白在线视频| 亚洲成人免费电影在线观看| 在现免费观看毛片| 又粗又爽又猛毛片免费看| 美女高潮的动态|