• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    ONE-DIMENSIONAL VISCOUS RADIATIVE GAS WITH TEMPERATURE DEPENDENT VISCOSITY?

    2018-11-22 09:23:50LinHE何躪
    關(guān)鍵詞:王濤

    Lin HE(何躪)

    Institute of Applied Mathematics,Academy of Mathematics and System Science The Chinese Academy of Sciences,Beijing 100190,China

    E-mail:helin19891021@163.com

    Yongkai LIAO(廖勇凱)? Tao WANG(王濤)Huijiang ZHAO(趙會(huì)江)

    School of Mathematics and Statistics,Wuhan University,Wuhan 430072,China

    Hubei Key Laboratory of Computational Science,Wuhan University,Wuhan 430072,China

    E-mail:yongkai.liao@whu.edu.cn;tao.wang@whu.edu.cn;hhjjzhao@hotmail.com

    Abstract This paper is concerned with the construction of global,large amplitude solutions to the Cauchy problem of the one-dimensional compressible Navier–Stokes system for a viscous radiative gas when the viscosity and heat conductivity coefficients depend on both speci fic volume and absolute temperature.The data are assumed to be without vacuum,mass concentrations,or vanishing temperatures,and the same is shown to be hold for the global solution constructed.The proof is based on some detailed analysis on uniform positive lower and upper bounds of the speci fic volume and absolute temperature.

    Key words compressible Navier–Stokes system;temperature-dependent viscosity;viscous radiative gas;global solution;asymptotic behavior

    1 Introduction

    The dynamics of one-dimensional compressible viscous and heat-conducting flow can be described in the Lagrangian coordinates by the compressible Navier–Stokes system:

    Here t>0 and x∈R are the time and Lagrangian spatial variables,respectively.The speci fic volume v,velocity u,and absolute temperature θ are unknown functions of t and x.The pressure p,internal energy e,viscosity coefficientμ >0,and heat conductivity coefficient κ >0 are prescribed through constitutive relations as functions of v and θ.The thermodynamic variables are related through Gibbs’equation de= θds?pdv with s being the speci fic entropy.

    This paper concerns system(1.1)with prescribed initial data

    which are assumed to satisfy the far- field condition:

    Our main purpose is devoted to the construction of global,smooth,large amplitude,non-vacuum solution(v(t,x),u(t,x),θ(t,x))to Cauchy problem(1.1)–(1.3)with temperaturedependent transport coefficientsμ and κ when the thermodynamic variables v,p,e,θ,and s do not satisfy the equations of state for ideal polytropic gases.In fact,our choice of constitutive relations are motivated by the following system describing the motion of compressible radiative and reactive gas:

    where z=z(t,x)represents the reactant mass fraction.The positive constants d and λ are the species di ff usion coefficient and the di ff erence in the heat between the reactant and the product,respectively.The reaction rate function φ = φ(θ)is de fined by the first-order Arrhenius law(cf.[11]):

    where positive constants K and A are the coefficients of the rate of the reactant and the activation energy,respectively,and β is a non-negative number.

    When the radiation is treated as a continuous field and both the wave and photonic e ff ect are considered,the high-temperature radiation is at thermal equilibrium with the fluid.Then pressure p consists of a linear term in θ corresponding to the perfect polytropic contribution and a fourth-order radiative part due to the Stefan–Boltzmann radiative law(see[36]for instance)so that

    where positive constants R,cv,and a are the perfect gas constant,the speci fic heat,and the Stefan–Boltzmann constant,respectively.

    Since the energy producing process inside the medium is taken into account in system(1.4),where the gas consists of a reacting mixture and the combustion process is current at the high temperature stage,the experimental results for gases at high temperatures in[54]show that both μ and κ may depend on the speci fic volume v and/or the absolute temperature θ.In this paper,we focus on the case when the heat conductivity κ takes the following form(cf.[7])

    for some positive constants κ1,κ2,and b.As for the viscosity coefficient μ,motivated by the work[52]for the one-dimensional viscous,heat-conducting ideal polytropic gas,we assume that

    where h(v)is a smooth function of v for v>0,and α, ?1, ?2,and C are positive constants.Here and in the rest of this paper,f(x)~g(x)(x→x0)means that there exists a constant C ≥ 1 such that C?1g(x)≤ f(x)≤Cg(x)holds in a neighborhood of x0.

    Before stating our main result,it is worth to pointing out that the study on the global solvability and large time behaviorsof the global solutions to the initial value problem and/or the initial-boundary value problems of the one-dimensional compressible Navier–Stokes equations(1.1)is one of the hottest topics in the field of nonlinear partial di ff erential equations and many results have been obtained up to now.To go to the theme of this paper,we will only review some results on the compressible Navier–Stokes type equations(1.4)–(1.7)describing the motion of compressible radiative and reactive gas as follows:

    When the viscosity coefficientμis a positive constant,the results obtained can be summarized as in the following.

    For the initial-boundary value problem of(1.4)–(1.7)in the bounded interval(0,1)with the free boundary conditions

    on the stress σ(t,x)and homogeneous Neumann condition

    on both θ(t,x)and z(t,x),Umehara–Tani[46]proved the global existence,uniqueness of a classical solutions under the assumptions 4≤b≤16 and 0≤β≤13/2.Later on,they improved the results in[47]to the case of b ≥ 3 and 0 ≤ β

    See also the result by Jiang–Zheng[17]for more general assumptions on κ;

    For the initial-boundary value problem of(1.4)–(1.7)in(0,1)with homogeneous Dirichlet boundary condition u(t,0)=u(t,1)=0 and homogeneous Neumann condition

    on θ(t,x)and z(t,x),Documet[7]established the global existence and exponential decay in H1(0,1)of solutions for b ≥ 4 and β >0.Recently,Jiang–Zheng[18]improved this result to the case of b≥ 2 and 0≤ β

    For the Cauchy problem of(1.4)–(1.7),results on the global solvability and the precise description of large time behavior of the global solution constructed were established very recently by Liao–Zhao in[33]for b>11/3 and 0≤ β

    For sphericallty symmetric motions of compressible radiative and reactive gases,the global existence,uniqueness and exponential stability of spherically symmetric solutions in the bounded annular domain ? ={x ∈ Rn:01}was showed by Liao–Wang–Zhao in[29].

    For the case when the viscosity coefficientμis a smooth,possible degenerate function of the speci fic volume v for positive v,the two types of initial-boundary value problems of(1.4)–(1.7)in the bounded interval(0,1)mentioned above were studied in[31,32],while the Cauchy problem was treated in Liao–Xu–Zhao[30].It is worth to pointing out that all the estimates obtained in[30–32]depend on the time variable t,and thus the problem on the large time behavior of global solutions constructed in[30–32]remains unsolved.

    Even so,to the best of our knowledge,no result is available for the case when the viscosity coefficientμdepends on the absolute temperature up to now.As pointed out before,since the physical phenomena described by system(1.4)involve high temperature process and the experimental results for gases at high temperatures in[54]show that the viscosity coefficientμ may also depend on the speci fic volume v and/or the absolute temperature θ,a natural and interesting question is:Whether can we obtain a global solvability result for the Cauchy problem(1.4)–(1.7)with large initial data or not for a class of density and temperature dependent viscosity coefficientμsatisfying(1.8)?The main goal of this paper is devoted to such a problem.Since the appearance of the reaction equation,i.e.,the fourth one in(1.4),does not cause any essential difficulty in our analysis,we will focus on the Cauchy problem of(1.1),(1.6)–(1.8)with prescribed large initial data(1.2)satisfying the far field condition(1.3)in the rest of this paper.

    Now we are in a position to state our main result.To do so,for each given positive constant 0

    and then our result can be stated as follows.

    Theorem 1.1Suppose that

    (i)The viscosity coefficientμsatis fies(1.8);

    (ii)The parameters b,?1,and ?2are assumed to satisfy:

    where Π0and V0≤ 1 are given positive constants.Then there exists ?0>0,which depends only on Π0,V0and H(C0),such that if

    the Cauchy problem(1.1)–(1.3),(1.6)–(1.8)admits a unique solution(v(t,x),u(t,x), θ(t,x))satisfying

    Remark 1.2Several remarks concerning our main result are listed below:

    (i)It is easy to see that for each b ≥ 7,one can easily find ?1>1 and ?2>1 sufficiently large such that the assumption(1.11)holds.Since our main purpose is to show that we can indeed obtain a global solvability result for the Cauchy problem(1.1)–(1.3),(1.6)–(1.7)for a class of density and temperature dependent viscosityμwhich satis fies(1.8),assumptions(1.10)and(1.11)that we imposed on the parameters b, ?1,and ?2are far from being optimal;

    (ii)If we take α=0,then our main result Theorem 1.1 tells us that one can obtain a result on the global solvability together with the precise description of the large time behaviors of solutions to the Cauchy problem(1.1)–(1.3),(1.6)–(1.7)for a class of density dependent viscosityμwhich satis fies

    Here C>0, ?1and ?2are some positive constants satisfying(1.10)and(1.11).Recall that for the case when the viscosity coefficientμis a degenerate function of v(cf.μ=v?α,α ∈ [1/3,1/2)),although a global solvability result is obtained in[30],we do not know how to deduce the desired large time behaviors of the global solutions constructed there due to the lack of uniform-in-time estimates.We note,however,that our main result,i.e.,Theorem 1.1,yields the large time behaviors of the global solutions for a class of nondegenerate density dependent viscosity coefficientμ.

    Now we outline the main difficulties encountered in the proof of Theorem 1.1.As is well known,the key point to deduce the global solvability result of the Cauchy problem(1.1)–(1.3),(1.6)–(1.8)is to derive the desired positive lower and upper bounds on the speci fic volume v(t,x)and the absolute temperature θ(t,x).

    For the case when the viscosity coefficientμis a positive constant,motivated by the work of Jiang[19–21]for the viscous,heat-conducting ideal polytropic gas,Liao–Zhao[33]have used the following cut-o fffunction

    By virtue of(1.14),one can deduce the uniform-in-time positive lower and upper bound of v(t,x).

    As for the uniform positive lower and upper estimate on θ(t,x),motivated by the work of[25]for the initial-boundary value problem of the one-dimensional compressible Navier–Stokes equation in bounded interval for general gas,the following auxiliary functions

    are introduced in[33]to derive the uniform upper bound of the absolute temperature θ(t,x).It is worth to emphasizing that the argument used in[33]to deduce the desired upper bound estimate on θ(t,x)relies highly on the uniform bounds on v(t,x)obtained before.

    When the viscosity coefficientμis not a positive constant but depends only on the speci fic volume v,the above argument can not be used any longer.In fact,for such case we can not deduce a similar explicit repression for v(t,x)and consequently we can not deduce the desired positive lower and upper bounds on v(t,x) first.The main ideas used in[30]are the following:

    (i)Based on the following identity

    which is observed first by Kanel’in[24]for isentropic viscous flow,one can deduce an estimate on the lower and upper bounds of the speci fic volume v in terms ofby employing Kanel’s argument provided that μ satis fies suitable growth conditions as v→0+and v→+∞;(ii)Noticing that h(t,x)=1/θ(t,x)satis fies

    one can employ the standard maximum principle to yield an estimate on the lower bound of the absolute temperature in terms of

    (iii)By utilizing the argument used in[44]and[4,25,33],one can then deduce an estimate onFrom which and the estimates on the lower and upper bounds on v(t,x),the lower estimate on θ(t,x),one can then deduce the desired positive lower and upper estimates on both v(t,x)and θ(t,x)provided that the parameter b appearing in(1.7)and growth rates of the viscosity coefficientμas v→0+and v→+∞satisfy certain conditions and then the desired global solvability result follows immediately.

    For the case considered in this paper,the viscosity coefficientμdepends on both the speci fic volume v and the absolute temperature θ.For such a case,the identity corresponding to(1.15)becomes

    Since the last term in(1.18)is a highly nonlinear term,the temperature dependence of the viscosityμhas a strong in fluence on the solution and leads to difficulties in mathematical analysis for global solvability with large data,and as pointed out in[16],such a dependence has turned out to be especially problematic and challenging.

    A natural way to go on is to use certain smallness mechanism induced by the structure of the system to control the last term in(1.18)suitably.It was to do so that we need to ask the viscosity coefficientμ to take the form(1.8)and our main idea is to the smallness of|α|to control the last highly nonlinear term in(1.18).We note,however,that to close the analysis,or in other words to determine the upper bound of|α|in terms of the initial data,one had to deduce the uniform positive lower and upper bounds on the absolute temperature θ which are independent of the time variable t.It is worth to pointing out that such a problem is considered by Wang–Zhao in[52]for the one-dimensional,compressible Navier–Stokes system for a viscous and heat conducting ideal polytropic gas for a class of density and temperature dependent viscosity coefficientμsatisfying(1.8).We recall,however,that the argument of Wang–Zhao in[52]is first to use Kanel’s method[24]to obtain the lower and the upper bound of v(t,x)in terms of(see Lemma 2.3 in[52]),then to employ the technique used in Li–Liang in[27]to derive the uniform upper bound of θ(t,x).Note that the method used by Wang–Zhao in[52]to deduce the uniform upper bound of θ(t,x)relies on the following Sobolev inequality(see also(2.72)in Wang–Zhao[52])For our problemis bounded due to Lemma 2.1,but the method employed in[52]to deduce the estimate onloses its power in our case which is caused by the fourthorder radiative part in both p(v,θ)and e(v,θ),cf.(1.6);Besides,one can see the assumptionμ = κ also plays an important role in the process of deriving the upper bound of θ(t,x)in their discussion.Thus the story is di ff erent sinceμ6=κ in our case.

    To overcome the above difficulties,we introduce some new auxiliary functions X(t),W(t),Z(t)and W(t)(see(3.1)in section 3)to deduce the uniform-in-time upper bound of θ(t,x).More precisely,our strategy to prove Theorem 1.1 can be stated as follows:

    (i)We first apply Kanel’s method[24]to deduce the lower and the upper bounds of v(t,x)in terms ofsimultaneously in Lemma 2.3.Notice that the assumption(1.10)plays an important role in our discussion.To control the last term in(1.18),we will use the smallness of|α|;

    (ii)Due to(3.12)and(3.13),we introduce the auxiliary functions X(t),Y(t),Z(t)and W(t)(see(3.1))to deduce the upper bound of θ(t,x)in Lemmas 3.1–3.4.Thus the lower and the upper bound of v(t,x)follows from Lemma 2.3.We should emphasize that all the bounds obtained above are independent of the time variable t;We then adopt the method in Liao–Zhao[33]to deduce the positive local-in-time lower bound of θ(t,x)and notice that such a bound depends on the time variable t;

    (iii)By using the dedicated energy method,we can derive energy type estimates of higherorder derivatives in Section 4 and Section 5;Then by using the continuation argument designed in Wang–Zhao[52],we can then prove Theorem 1.1.

    Before concluding this section,we recall that there are also many results on the construction of global,smooth,large amplitude,non-vacuum solutions and on the precise description of the large time behaviors of the global solutions constructed to compressible Navier–Stokes system for a viscous and heat conducting ideal polytropic gas,cf.[1–3,16,26,40]for the one-dimensional initial-boundary value problem in bounded interval,[1,6,12–15,20–22,27,34,38,39,41,44,45,50–53]for the corresponding one-dimensional problem in unbounded domain and[19,28,37,48,49]for global symmetric flows of multi-dimensional compressible Navier–Stokes equations.For compressible Navier–Stokes equations with general constitutive relations and other related compressible Navier–Stokes type equations,see[4,25,35,55]and the references therein.

    The rest of the paper is organized as follows.We derive pointwise bounds on the speci fic volume in Section 2.Then pointwise bounds on the absolute temperature will be derived in Section 3.Some second-order and third-order energy type estimates and the proof of our main result will be given in Section 4 and Section 5,respectively.

    NotationsThroughout this paper,C ≥ 1 or Ci≥ 1(i=1,2,···)is used to denote a generic positive constant which may depend only on Π0,V0and H(V0),where Π0,V0and H are given by(1.12),(1.13)and(1.9),respectively.Note that these constants may vary from line to line.C(·,·)stands for some generic constant depending only on the quantities listed in the parenthesis.?<1 represents some small positive constant.

    For function spaces,Lq(R)(1≤q≤∞)denotes the usual Lebesgue space on R with norm k ·kLq(R),while Hq(R)denotes the usual Sobolev space in the L2sense with norm k·kHq(R).We denote by C(I;Hq(R))the space of continuous functions on the internal I with values in Hq(R)and L2(I;Hq(R))stands for the space of L2-functions on I with values in Hq(R).For simplicity,we use k·k∞to denote the norm in L∞([0,T]×R)with T>0 being some given positive constant,k·k and k·kqare used to denote the norm k·kL2(R)and the norm k·kHq(R),respecitively.

    Finally,A.B(or B&A)means that A≤CB holds uniformly for some generic positive constant C.

    2 Pointwise Bounds for the Speci fic Volume

    We de fine the set

    Since the existence and uniqueness of solution(v(t,x),u(t,x),θ(t,x))to the Cauchy problem(1.1)–(1.3)with constitutive relations(1.6),(1.7)and(1.8)in the set of functions X(0,t1;m1,m2,N)for some sufficiently small t1>0 and certain positive constants m1,m2and N is guaranteed by the well-established local existence result for hyperbolic-parabolic system,cf.[23],suppose that the local solution(v(t,x),u(t,x),θ(t,x))to the Cauchy problem(1.1)–(1.3)with constitutive relations(1.6)–(1.8)has been extended to the time step t=T for some positive constant T>0 and(v(t,x),u(t,x),θ(t,x)) ∈ X(0,T;m1,m2,N)for some positive constants T,mi≤1(i=1,2)and N≥1,then in order to prove Theorem 1.1,we only need to derive certain a priori estimates on the solution(v(t,x),u(t,x),θ(t,x))in terms of the initial data(v0(x),u0(x),θ0(x))but independent of the constants mi≤ 1(i=1,2)and N ≥ 1.

    Applying Sobolev’s inequality yields

    This section is devoted to deducing lower and upper bounds on the speci fic volume v(t,x)in terms of.In the next lemma,we present the basic energy estimate.

    Lemma 2.1Under the assumptions listed in Theorem 1.1,for any 0≤t≤T,we have

    where

    Proof According to[38],the function η is nothing but the normalized entropy around(v,u,θ)=(1,0,1)for system(1.1),(1.6),(1.7)and(1.8)(see[33]for the derivation).

    Multiply(1.1)2and(1.1)3with u and(1?θ?1),respectively,add the resulting identities,and use(1.1)1to discover

    The lemma follows by integrating the above identity over[0,t]×R.

    The derivation of pointwise bounds for v(t,x)relies on the following lemma.

    Lemma 2.2Suppose that the conditions listed in Theorem 1.1 hold.Then there is a constant 0< ?1≤ 1,depending only on Π0and V0,such that if

    Integrating the above identity over[0,t]× R,we obtain from Cauchy’s inequality and(2.2)the following estimate:

    which combined with(1.8)implies

    Then(2.5)follows by inserting(2.9)–(2.13)and(2.18)into(2.8).

    By applying the Kanel′technique(cf.[24]),we obtain pointwise bounds for the speci fic volume v(t,x)in the following lemma.

    Lemma 2.3 Assume that the conditions listed in Lemma 2.2 hold.Then

    In view of ?1>1 and ?2>1,we plug(2.5)into(2.22)and utilize Young’s inequality to conclude the estimates(2.19).

    A direct corollary follows from Lemmas 2.2 and 2.3.

    Corollary 2.4Assume that the conditions listed in Lemma 2.2 hold.Then for any 0≤t≤T,we have

    3 Pointwise Bounds for the Absolute Temperature

    In this section,we will obtain a uniform-in-time upper bound and a local-in-time lower bound for the absolute temperature θ.For this purpose,we set

    We first employ the basic energy estimate(2.2)to derive the following lemma.

    Lemma 3.1Assume that the conditions listed in Theorem 1.1 hold,then we can get that

    Since 2b+6> ?1+2?2,we deduce(3.2)from Young’s inequality.This completes the proof of Lemma 3.1.

    The next lemma follows directly from Gagliardo–Nirenberg and Sobolev’s inequalities.

    Lemma 3.2Assume that the conditions listed in Theorem 1.1 hold.Then one can get for each 0≤t≤T that

    With the above preparations in hand,our next result is to show that X(T)and Y(T)can be controlled by Z(T)and W(T).

    Lemma 3.3Under the assumptions listed in Theorem 1.1,we have

    ProofIn the same manner as in[25]an[46],if we set

    then it is easy to verify that

    We first rewrite(1.1)3in the following form where the de finition of Hk(4≤k≤9)will be given below.

    We now turn to control Hk(k=4,5,···,9)term by term.To do so,we can infer from(2.19)that

    where we have used(1.8),(1.10),(3.8)and Young’s inequality.

    Next,by virtue of(1.8),(1.10),(2.2)and(3.8),we can conclude

    As for the term H6,it follows from(1.8),(1.10),(2.2),(2.15)and(3.14)that

    Now we deal with the term H7.For this purpose,we have by integration by parts that

    For the first term on the right-hand side of(3.17),it follows from(1.8),(1.10)and(2.19)that

    It is worth to pointing out that we can deduce from(1.10)and(2.20)that

    For the last term on the right-hand side of(3.17),one can get that

    where we have used(1.8),(2.4),(2.19),(3.2),(3.3)and the fact that

    where we have used(1.1)3,(2.2),(3.2),(3.3),(3.8)and H?lder’s inequality.Consequently,to yield an estimate on H8,it suffices to bound the term.To this end,we can get that

    where we have used(1.8),(1.10),(2.2),(2.19),(2.20),(3.2),(3.3)and Young’s inequality.Thus we can deduce from(3.25)and(3.26)that

    As for the term H9,we can deduce from(1.1)3,(2.2),(2.23),(3.8),H?lder’s inequality and the following fact

    then combining all the above estimates and choosing ?>0 small enough,we can complete the proof of our lemma.

    Our next result in this section is to show that Z(T)can be bounded by X(T)and Y(T).

    Lemma 3.4Under the assumptions listed in Theorem 1.1,we have

    ProofDifferentiating(1.1)2with respect to t and multiplying the resulting identity with ut,we have

    On the other hand,according to(1.8),we have

    Thus combining(3.33)–(3.37),we obtain

    In view of(1.10),one can deduce that

    Then by virtue of(3.1)and Young’s inequality,we can complete the proof of our lemma.

    We are in a position to deduce the upper bound of θ(t,x)now.In fact,(3.4),(3.32)and(3.38)tell us that

    Thus with the hand of Young’s inequality and Lemma 3.3,we can deduce from(3.42)that

    Finally,choosing ?>0 small enough then using(3.4)and Young’s inequality again,we immediately obtain

    Recalling the de finition of X(T),Y(T),Z(T)and W(T),then combining Lemmas 2.1–3.4,we have the following lemma.

    Lemma 3.5Under the assumptions listed in Theorem 1.1,there exist positive constants C1and C2,which depend only on Π0and V0,such that

    Before concluding this section,let us deduce uniform bounds onandwhich will be used later on.In fact,we have the following lemma.

    Lemma 3.6Under the assumptions listed in Theorem 1.1,for any 0≤t≤T,we have

    Integrating the above identity with respect to t and x over(0,t)×R and taking advantage of(3.41),we arrive at

    Here we have used(2.2),Lemma 3.5 and Sobolev’s inequality.

    Moreover,it follows from(2.2),Lemma 3.5 and Cauchy’s inequality that

    Then combining(3.52)–(3.54)and choosing ?>0 small enough,we can get(3.50).

    Finally,choosing ?>0 small enough,integrating(3.55)with respect to t over(0,t)and using(2.2)as well as(3.49),we can obtain(3.51).

    As a result of Lemmas 2.1–3.6,we can obtain the following corollary immediately.

    Corollary 3.7Under the assumptions listed in Theorem 1.1,there exists a positive constants C3,such that

    The next estimate is concerned with the local-in-time estimate on the lower bound on the absolute temperature θ(t,x).To this end,we can deduce by repeating the method used in[33]that

    Lemma 3.8Under the assumptions stated in Theorem 1.1,for each 0≤s≤t≤T and x∈R,there exist a positive constant C4,such that

    4 Estimates of Second-order Derivatives

    In the following sections,to simplify the presentation,we introduceholds uniformly for some constant Ch,depending only on Π0,V0and H(C2)with C2given in Lemma 3.5.The letter C(m2)will be employed to denote some positive constant which depends only on m2,Π0,V0and H(C2).We note from(1.9)and(3.48)that

    We estimate the second-order derivatives of(u(t,x),θ(t,x))with respect to the space variable x in the next lemma.

    Lemma 4.1Under the assumptions listed in Theorem 1.1,for any 0≤t≤T,we have

    ProofFirst,di ff erentiating(1.1)2with respect to x,and multiplying the resulting identity by uxxx,we have

    To estimate the last term in(4.3),we first make some estimate of θα.It follows from(2.4)that

    Since v(t,x)is bounded,for general smooth function f(v),we have

    Combining(4.7)and(4.8),we have

    We plug(4.11),(4.12)and(4.13)into(4.10),and use(4.3)–(4.10)to deduce that

    Integrating the above identity over[0,t]× R,we obtain from Cauchy’s inequality,(2.4)and(3.48)that

    Combining(4.14)and(4.19)and taking δ>0 small enough,we can obtain(4.2). ?

    We next obtain a m2-dependent bound for the second-order derivatives with respect to x of the solution(v(t,x),u(t,x),θ(t,x)).

    Lemma 4.2Under the assumptions listed in Theorem 1.1,for any 0≤t≤T,we have

    ProofDifferentiate(2.7)with respect to x and multiply the result byto find

    We integrate the above identity over[0,t]× R,and Cauchy’s inequality to obtain

    On the other hand,one can deduce from(2.14)that

    In view of(4.4)and

    Hence applying Cauchy’s inequality yields

    which combined with(4.2)implies(4.20).

    5 Estimates of Third-order Derivatives

    Estimates on the third-order derivatives of(v(t,x),u(t,x),θ(t,x))with respect to x will be proved in this subsection.We first give an estimate on the third-order derivatives of u(t,x)and θ(t,x)with respect to x in the following lemma.

    Lemma 5.1Under the assumptions listed in Theorem 1.1,for any 0≤t≤T,we have

    In view of(3.56)and(4.20),we deduce that

    Next,we di ff erentiate(3.9)with respect to x twice and multiply the result by θxxxxto obtain

    Combining(5.5)and(5.10)and taking δ>0 small enough,we can obtain(5.1).

    By using(2.4)and Gronwall’s inequality,we can deduce the m2-dependent bound for the third-order derivatives of(v(t,x),u(t,x),θ(t,x))with respect to x.The proof is similar to that of Lemma 4.2 and hence we omit the details for brevity.

    Lemma 5.2Under the assumptions listed in Theorem 1.1,for any 0≤t≤T,we have

    By virtue of Lemma 2.1–Lemma 5.2,we can get the following corollary.

    Corollary 5.3Under the assumptions listed in Theorem 1.1,there exists a positive constants C(m2)>0 which depends only on m2,Π0,V0and H(C2)with C2being given in Lemma 3.5,such that for all t∈[0,T],

    With Corollary 5.3 in hand,Theorem 1.1 follows by the combing the well-established local existence of solution(v(t,x),u(t,x),θ(t,x))of the Cauchy problem(1.1)–(1.3)with constitutive relations(1.6),(1.7)and(1.8)which is without vacuum,mass concentrations,or vanishing temperatures,cf.[23],and the continuation argument designed in[52]and we omit the details for brevity.

    猜你喜歡
    王濤
    綿師學(xué)人
    ——王濤
    Review of a direct epitaxial approach to achieving micro-LEDs
    “雞兔同籠”問(wèn)題解法探析及思考
    Nonlinear excitation of a geodesic acoustic mode by reversed shear Alfvén eignemodes
    Transition to chaos in lid–driven square cavity flow?
    王濤油畫(huà)作品
    大眾文藝(2020年23期)2021-01-04 08:48:40
    王濤 李佳星作品
    大眾文藝(2020年22期)2020-12-13 11:37:16
    Effect of Pore Distribution on Melting Behavior of Paraffin in Fractal Metal Foam?
    Study on the Reduced Traffic Congestion Method Based on Dynamic Guidance Information?
    王濤作品
    久久久久精品人妻al黑| 色吧在线观看| 国产精品.久久久| 亚洲,欧美精品.| 免费av不卡在线播放| 免费高清在线观看视频在线观看| 亚洲国产欧美在线一区| 人妻人人澡人人爽人人| 国产精品一二三区在线看| 精品人妻一区二区三区麻豆| 日韩熟女老妇一区二区性免费视频| 汤姆久久久久久久影院中文字幕| 少妇的逼好多水| 国产综合精华液| 2021少妇久久久久久久久久久| 丰满饥渴人妻一区二区三| 男人添女人高潮全过程视频| 国产精品久久久久久久电影| 国产精品久久久久久久电影| 日韩熟女老妇一区二区性免费视频| 99精国产麻豆久久婷婷| 精品熟女少妇av免费看| 日韩一本色道免费dvd| 日韩一本色道免费dvd| 婷婷色麻豆天堂久久| 蜜臀久久99精品久久宅男| 国产精品一国产av| 日本色播在线视频| 亚洲av男天堂| 日本wwww免费看| 十分钟在线观看高清视频www| 日韩大片免费观看网站| 日韩三级伦理在线观看| 精品一区在线观看国产| 久久久久视频综合| 青青草视频在线视频观看| 黑人欧美特级aaaaaa片| 黄片播放在线免费| 亚洲成色77777| 少妇 在线观看| 国产精品久久久av美女十八| 18禁国产床啪视频网站| 免费观看av网站的网址| 99热国产这里只有精品6| 国产极品粉嫩免费观看在线| 精品一区二区免费观看| 国产精品无大码| 一区在线观看完整版| 亚洲欧洲日产国产| 亚洲,一卡二卡三卡| 99热6这里只有精品| 在线观看人妻少妇| 久久久久久久久久成人| 亚洲一码二码三码区别大吗| 国产欧美日韩综合在线一区二区| 各种免费的搞黄视频| 中国三级夫妇交换| 成人国语在线视频| 九色成人免费人妻av| 免费久久久久久久精品成人欧美视频 | 日韩成人伦理影院| 两性夫妻黄色片 | 菩萨蛮人人尽说江南好唐韦庄| 伊人亚洲综合成人网| 成人手机av| 国产一区二区在线观看日韩| 精品一区二区免费观看| 日韩不卡一区二区三区视频在线| 欧美亚洲 丝袜 人妻 在线| 波多野结衣一区麻豆| √禁漫天堂资源中文www| 91精品伊人久久大香线蕉| 国产精品熟女久久久久浪| 国产精品熟女久久久久浪| 国产精品国产三级国产专区5o| 久久久久久久国产电影| 久久精品aⅴ一区二区三区四区 | 午夜福利影视在线免费观看| a 毛片基地| 亚洲精品456在线播放app| 国产色爽女视频免费观看| 赤兔流量卡办理| 免费av不卡在线播放| 国产精品一国产av| 久久精品久久精品一区二区三区| 黄色 视频免费看| 97超碰精品成人国产| 日产精品乱码卡一卡2卡三| 菩萨蛮人人尽说江南好唐韦庄| 国产精品免费大片| 欧美精品一区二区免费开放| 日韩中字成人| 欧美国产精品一级二级三级| 两性夫妻黄色片 | 黑人猛操日本美女一级片| 国精品久久久久久国模美| av女优亚洲男人天堂| 久久久久久久大尺度免费视频| 成人午夜精彩视频在线观看| 高清黄色对白视频在线免费看| 国产男女内射视频| 亚洲精品456在线播放app| 少妇高潮的动态图| 中文精品一卡2卡3卡4更新| 亚洲av免费高清在线观看| 精品一品国产午夜福利视频| 国产综合精华液| 成人二区视频| 成人亚洲欧美一区二区av| 精品一区二区免费观看| 国内精品宾馆在线| 男女无遮挡免费网站观看| 亚洲激情五月婷婷啪啪| 男女国产视频网站| 久久久久久久大尺度免费视频| 亚洲经典国产精华液单| 国产精品国产三级国产av玫瑰| 99久国产av精品国产电影| 男人添女人高潮全过程视频| 视频在线观看一区二区三区| 大片电影免费在线观看免费| 99久久综合免费| 韩国av在线不卡| 国产欧美日韩一区二区三区在线| 国产淫语在线视频| 亚洲经典国产精华液单| 蜜臀久久99精品久久宅男| 国产亚洲欧美精品永久| 国产免费视频播放在线视频| 亚洲国产色片| 中文字幕亚洲精品专区| 久久婷婷青草| 高清视频免费观看一区二区| 中文天堂在线官网| 亚洲av.av天堂| 啦啦啦中文免费视频观看日本| 亚洲精品456在线播放app| 亚洲成色77777| 国产一区亚洲一区在线观看| 国产69精品久久久久777片| 巨乳人妻的诱惑在线观看| 亚洲精品美女久久av网站| 成人毛片a级毛片在线播放| 国产精品 国内视频| 色婷婷av一区二区三区视频| 狂野欧美激情性bbbbbb| 国产免费又黄又爽又色| av有码第一页| 2018国产大陆天天弄谢| 激情视频va一区二区三区| 成年人免费黄色播放视频| 亚洲av成人精品一二三区| 午夜福利影视在线免费观看| 久热这里只有精品99| av在线观看视频网站免费| 久久精品久久精品一区二区三区| 亚洲三级黄色毛片| 在线观看免费日韩欧美大片| 一区二区三区乱码不卡18| 日韩一区二区视频免费看| 国产黄色免费在线视频| 丝袜美足系列| 一级爰片在线观看| 超色免费av| 免费观看性生交大片5| 韩国精品一区二区三区 | 曰老女人黄片| 亚洲,欧美,日韩| 国产麻豆69| 亚洲国产色片| 黄色配什么色好看| 一级片'在线观看视频| 99热全是精品| 熟女电影av网| 狂野欧美激情性xxxx在线观看| 国产欧美日韩一区二区三区在线| 欧美精品人与动牲交sv欧美| 国产成人a∨麻豆精品| 欧美97在线视频| 一区二区三区精品91| 亚洲色图综合在线观看| 久久狼人影院| 久久精品久久久久久噜噜老黄| 国产精品熟女久久久久浪| 另类亚洲欧美激情| 69精品国产乱码久久久| 欧美 亚洲 国产 日韩一| 成年动漫av网址| 国产精品久久久久久久电影| 久久精品久久久久久噜噜老黄| 国产精品三级大全| 好男人视频免费观看在线| 侵犯人妻中文字幕一二三四区| 亚洲国产毛片av蜜桃av| 国产免费福利视频在线观看| 国产成人精品婷婷| 啦啦啦视频在线资源免费观看| 狂野欧美激情性xxxx在线观看| 九色亚洲精品在线播放| 国产淫语在线视频| 午夜日本视频在线| 亚洲综合精品二区| 精品酒店卫生间| 五月玫瑰六月丁香| 亚洲精品国产av蜜桃| 欧美激情国产日韩精品一区| 欧美日本中文国产一区发布| 伦精品一区二区三区| 国产黄色免费在线视频| 亚洲国产最新在线播放| 国产午夜精品一二区理论片| 99热国产这里只有精品6| 五月天丁香电影| 亚洲国产精品999| 亚洲av.av天堂| 一边摸一边做爽爽视频免费| 黄色一级大片看看| 国产精品秋霞免费鲁丝片| 国产精品人妻久久久影院| 色网站视频免费| 丝袜人妻中文字幕| 欧美另类一区| 99热全是精品| 欧美日本中文国产一区发布| 七月丁香在线播放| 曰老女人黄片| 精品国产一区二区三区四区第35| 边亲边吃奶的免费视频| av又黄又爽大尺度在线免费看| 毛片一级片免费看久久久久| 天天影视国产精品| 欧美亚洲 丝袜 人妻 在线| 亚洲情色 制服丝袜| 乱人伦中国视频| av有码第一页| 成人黄色视频免费在线看| a级片在线免费高清观看视频| 18禁观看日本| 国产淫语在线视频| 精品福利永久在线观看| 国产精品久久久久久av不卡| 美女视频免费永久观看网站| 日韩精品免费视频一区二区三区 | 亚洲,欧美,日韩| 精品熟女少妇av免费看| 久久久精品94久久精品| 熟女人妻精品中文字幕| 久久这里有精品视频免费| 亚洲精品自拍成人| 久久精品久久精品一区二区三区| 自线自在国产av| 天堂中文最新版在线下载| 五月玫瑰六月丁香| 中文字幕精品免费在线观看视频 | 巨乳人妻的诱惑在线观看| 久久久久久久久久人人人人人人| 男女啪啪激烈高潮av片| 在线观看美女被高潮喷水网站| 亚洲成人一二三区av| 亚洲久久久国产精品| 国产精品无大码| 中文字幕最新亚洲高清| 亚洲精品第二区| 免费在线观看完整版高清| 国产欧美另类精品又又久久亚洲欧美| 九九爱精品视频在线观看| freevideosex欧美| 97人妻天天添夜夜摸| 五月开心婷婷网| 亚洲综合色惰| 日韩欧美精品免费久久| 久久久a久久爽久久v久久| 国产黄频视频在线观看| av女优亚洲男人天堂| 久久国产精品大桥未久av| 免费大片18禁| 成人综合一区亚洲| 精品一区二区三区四区五区乱码 | 日韩免费高清中文字幕av| 国产成人欧美| 最近中文字幕2019免费版| 最黄视频免费看| av国产久精品久网站免费入址| 中文字幕制服av| 伦理电影大哥的女人| 亚洲国产精品专区欧美| 美女国产高潮福利片在线看| 免费看不卡的av| 国产精品秋霞免费鲁丝片| 最近手机中文字幕大全| 欧美激情 高清一区二区三区| 日韩大片免费观看网站| 国产日韩欧美亚洲二区| 少妇人妻 视频| 青春草国产在线视频| 男女免费视频国产| 一区二区三区乱码不卡18| 国产欧美亚洲国产| 啦啦啦中文免费视频观看日本| 免费看不卡的av| 久久人人爽人人爽人人片va| 国产又爽黄色视频| 亚洲综合色惰| 亚洲国产成人一精品久久久| 午夜av观看不卡| 黄色视频在线播放观看不卡| 精品熟女少妇av免费看| 又黄又粗又硬又大视频| 中文字幕另类日韩欧美亚洲嫩草| 国产精品久久久久久av不卡| 成人免费观看视频高清| 校园人妻丝袜中文字幕| 中国美白少妇内射xxxbb| 中文精品一卡2卡3卡4更新| 97在线人人人人妻| 亚洲欧美成人综合另类久久久| 婷婷色av中文字幕| 亚洲精品久久久久久婷婷小说| 久久久久精品性色| 亚洲av日韩在线播放| 人妻人人澡人人爽人人| 熟女电影av网| 春色校园在线视频观看| 肉色欧美久久久久久久蜜桃| 午夜福利影视在线免费观看| 一级毛片黄色毛片免费观看视频| 一区二区三区乱码不卡18| 久久久久久久久久久免费av| 男男h啪啪无遮挡| 国产成人aa在线观看| 午夜免费男女啪啪视频观看| 精品熟女少妇av免费看| 欧美成人午夜精品| 国产毛片在线视频| 亚洲精品日韩在线中文字幕| 制服人妻中文乱码| 巨乳人妻的诱惑在线观看| 久久久久精品久久久久真实原创| 极品人妻少妇av视频| 国产精品一二三区在线看| 成人毛片60女人毛片免费| 一二三四中文在线观看免费高清| 秋霞伦理黄片| 国产精品偷伦视频观看了| 丰满少妇做爰视频| 久久精品国产亚洲av涩爱| 欧美另类一区| 一级爰片在线观看| 亚洲国产av新网站| 男人爽女人下面视频在线观看| 国产不卡av网站在线观看| 日本色播在线视频| 高清欧美精品videossex| 国产亚洲精品第一综合不卡 | 巨乳人妻的诱惑在线观看| 亚洲精品,欧美精品| 亚洲国产av影院在线观看| 亚洲天堂av无毛| 91精品国产国语对白视频| 欧美人与性动交α欧美软件 | 插逼视频在线观看| 亚洲精品国产av蜜桃| 久久精品aⅴ一区二区三区四区 | 午夜av观看不卡| 国产精品嫩草影院av在线观看| 不卡视频在线观看欧美| 精品国产一区二区三区久久久樱花| av免费在线看不卡| 王馨瑶露胸无遮挡在线观看| 少妇熟女欧美另类| 80岁老熟妇乱子伦牲交| 亚洲伊人久久精品综合| 在线 av 中文字幕| 国国产精品蜜臀av免费| 国产av一区二区精品久久| 久久久久久久久久久免费av| 一级毛片电影观看| tube8黄色片| 久久毛片免费看一区二区三区| 国产精品国产三级国产av玫瑰| 久久久精品区二区三区| 天天操日日干夜夜撸| 久久久久久久精品精品| 人妻 亚洲 视频| 日日撸夜夜添| 9191精品国产免费久久| 久久久精品免费免费高清| 大香蕉久久成人网| 最新的欧美精品一区二区| 午夜免费鲁丝| 国产精品国产三级国产av玫瑰| 国产黄色视频一区二区在线观看| 久久久国产精品麻豆| 丰满乱子伦码专区| 熟女人妻精品中文字幕| 婷婷色麻豆天堂久久| 性色avwww在线观看| 内地一区二区视频在线| 中文天堂在线官网| 水蜜桃什么品种好| 日韩欧美一区视频在线观看| 国产在线免费精品| 多毛熟女@视频| 九色亚洲精品在线播放| 黄色配什么色好看| 丝袜人妻中文字幕| 国产亚洲精品久久久com| 99国产精品免费福利视频| 亚洲天堂av无毛| 成年人午夜在线观看视频| 国产爽快片一区二区三区| 国产精品无大码| 日本av手机在线免费观看| av视频免费观看在线观看| 国产国语露脸激情在线看| 午夜福利视频精品| 日本91视频免费播放| 在线天堂最新版资源| 丝袜美足系列| 久久久久久久国产电影| 亚洲成色77777| 综合色丁香网| 亚洲国产欧美在线一区| 成人黄色视频免费在线看| 国产1区2区3区精品| 春色校园在线视频观看| 国产亚洲午夜精品一区二区久久| 熟妇人妻不卡中文字幕| 免费看不卡的av| 亚洲一级一片aⅴ在线观看| 久久久久久人妻| 国产不卡av网站在线观看| 亚洲精品自拍成人| 两个人看的免费小视频| 秋霞伦理黄片| 伦精品一区二区三区| 亚洲综合色网址| 亚洲情色 制服丝袜| 80岁老熟妇乱子伦牲交| 国产精品免费大片| 精品亚洲乱码少妇综合久久| 国产欧美日韩综合在线一区二区| 一级黄片播放器| av.在线天堂| 男人爽女人下面视频在线观看| 国产毛片在线视频| 欧美日韩视频高清一区二区三区二| 精品人妻熟女毛片av久久网站| √禁漫天堂资源中文www| 乱码一卡2卡4卡精品| 1024视频免费在线观看| 97精品久久久久久久久久精品| 欧美+日韩+精品| 国国产精品蜜臀av免费| 成人黄色视频免费在线看| 免费av中文字幕在线| 日韩精品免费视频一区二区三区 | 亚洲经典国产精华液单| 又大又黄又爽视频免费| 另类精品久久| 国产av一区二区精品久久| 亚洲av.av天堂| av天堂久久9| 午夜免费男女啪啪视频观看| 97在线视频观看| 精品久久久精品久久久| 日韩在线高清观看一区二区三区| 亚洲熟女精品中文字幕| a级毛片黄视频| 日本欧美视频一区| 国产精品无大码| 久久久久久久精品精品| 久久久久久久久久成人| 人妻人人澡人人爽人人| 国产精品 国内视频| 欧美精品亚洲一区二区| 黑丝袜美女国产一区| 久久久久精品性色| 满18在线观看网站| 亚洲精品第二区| 五月伊人婷婷丁香| 欧美亚洲日本最大视频资源| 久久久久久伊人网av| 久久久国产欧美日韩av| 欧美另类一区| 少妇被粗大的猛进出69影院 | 午夜福利网站1000一区二区三区| 国产乱来视频区| 亚洲av国产av综合av卡| 亚洲成人手机| 国产熟女欧美一区二区| 国产黄色视频一区二区在线观看| 亚洲熟女精品中文字幕| 中文字幕亚洲精品专区| 男人操女人黄网站| 国产精品蜜桃在线观看| 久久99蜜桃精品久久| 久久精品国产a三级三级三级| 99热国产这里只有精品6| 狠狠精品人妻久久久久久综合| 亚洲熟女精品中文字幕| 久久久久久久亚洲中文字幕| 日韩制服骚丝袜av| 精品人妻在线不人妻| 色视频在线一区二区三区| 久久久久久久久久久免费av| 91精品伊人久久大香线蕉| 一级毛片黄色毛片免费观看视频| 高清欧美精品videossex| 性高湖久久久久久久久免费观看| 在线观看美女被高潮喷水网站| 久久久久久人人人人人| 国产极品天堂在线| 婷婷色综合www| freevideosex欧美| 狂野欧美激情性bbbbbb| 亚洲激情五月婷婷啪啪| 自线自在国产av| 欧美日韩精品成人综合77777| 精品亚洲乱码少妇综合久久| 亚洲国产精品专区欧美| 日本91视频免费播放| 成人国语在线视频| 亚洲美女搞黄在线观看| 少妇人妻久久综合中文| 男女午夜视频在线观看 | 日本91视频免费播放| 国产精品成人在线| 乱人伦中国视频| 各种免费的搞黄视频| 久久久a久久爽久久v久久| 久久午夜综合久久蜜桃| 精品一品国产午夜福利视频| 国产免费视频播放在线视频| 久久久久久久久久人人人人人人| videossex国产| 亚洲av日韩在线播放| 欧美3d第一页| 国产精品成人在线| 国产成人精品一,二区| 日韩制服骚丝袜av| 宅男免费午夜| 一区二区三区乱码不卡18| 少妇高潮的动态图| 欧美xxxx性猛交bbbb| 欧美日韩视频精品一区| 国产精品蜜桃在线观看| 精品国产乱码久久久久久小说| 18禁动态无遮挡网站| 18禁裸乳无遮挡动漫免费视频| 秋霞伦理黄片| 9色porny在线观看| 欧美最新免费一区二区三区| 亚洲综合精品二区| 成人毛片60女人毛片免费| 午夜激情av网站| 十八禁网站网址无遮挡| 一边亲一边摸免费视频| 日韩欧美一区视频在线观看| av一本久久久久| 久久毛片免费看一区二区三区| 人人妻人人添人人爽欧美一区卜| 日本免费在线观看一区| 性色av一级| 丝袜人妻中文字幕| 涩涩av久久男人的天堂| 黑人欧美特级aaaaaa片| 黄色配什么色好看| 日韩 亚洲 欧美在线| 中文欧美无线码| 久热久热在线精品观看| 午夜激情久久久久久久| 天堂俺去俺来也www色官网| 日本与韩国留学比较| 咕卡用的链子| 丰满乱子伦码专区| 精品99又大又爽又粗少妇毛片| 一区二区三区精品91| 成年人午夜在线观看视频| 久久女婷五月综合色啪小说| 卡戴珊不雅视频在线播放| 国产不卡av网站在线观看| 精品午夜福利在线看| 久久精品国产鲁丝片午夜精品| 亚洲av男天堂| 蜜桃国产av成人99| 国产综合精华液| 国产午夜精品一二区理论片| 日本黄色日本黄色录像| 男女边吃奶边做爰视频| 熟妇人妻不卡中文字幕| 一区二区av电影网| 侵犯人妻中文字幕一二三四区| 久久久久久久久久久久大奶| 国产日韩一区二区三区精品不卡| 欧美成人精品欧美一级黄| 国产欧美日韩综合在线一区二区| 国产免费视频播放在线视频| 夫妻性生交免费视频一级片| 久久热在线av| 精品亚洲成a人片在线观看| 制服诱惑二区| 水蜜桃什么品种好| 亚洲欧美一区二区三区黑人 | 91午夜精品亚洲一区二区三区| 啦啦啦在线观看免费高清www| 久久午夜福利片| 国产欧美另类精品又又久久亚洲欧美| 三级国产精品片| 亚洲美女搞黄在线观看| 男的添女的下面高潮视频| 美国免费a级毛片| 久久久国产欧美日韩av| 亚洲激情五月婷婷啪啪| xxxhd国产人妻xxx|