• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    STABILITY OF STEADY MULTI-WAVE CONFIGURATIONS FOR THE FULL EULER EQUATIONS OF COMPRESSIBLE FLUID FLOW?

    2018-11-22 09:23:42GuiQiangCHEN陳貴強(qiáng)MatthewRIGBY

    Gui-Qiang G.CHEN(陳貴強(qiáng))Matthew RIGBY

    Mathematical Institute,University of Oxford,Oxford,OX2 6GG,UK

    E-mail:chengq@maths.ox.ac.uk;rigby@maths.ox.ac.uk

    Abstract We are concerned with the stability of steady multi-wave con figurations for the full Euler equations of compressible fluid flow.In this paper,we focus on the stability of steady four-wave con figurations that are the solutions of the Riemann problem in the flow direction,consisting of two shocks,one vortex sheet,and one entropy wave,which is one of the core multi-wave con figurations for the two-dimensional Euler equations.It is proved that such steady four-wave con figurations in supersonic flow are stable in structure globally,even under the BV perturbation of the incoming flow in the flow direction.In order to achieve this,we first formulate the problem as the Cauchy problem(initial value problem)in the flow direction,and then develop a modi fied Glimm di ff erence scheme and identify a Glimm-type functional to obtain the required BV estimates by tracing the interactions not only between the strong shocks and weak waves,but also between the strong vortex sheet/entropy wave and weak waves.The key feature of the Euler equations is that the re flection coefficient is always less than 1,when a weak wave of di ff erent family interacts with the strong vortex sheet/entropy wave or the shock wave,which is crucial to guarantee that the Glimm functional is decreasing.Then these estimates are employed to establish the convergence of the approximate solutions to a global entropy solution,close to the background solution of steady four-wave con figuration.

    Key words stability;multi-wave con figuration;vortex sheet;entropy wave;shock wave;BV perturbation;full Euler equations;steady;wave interactions;Glimm scheme

    1 Introduction

    We are concerned with the stability of steady multi-wave con figurationsfor the two-dimensional steady full Euler equations of compressible fluid flow governed by

    where(u,v)is the velocity,ρ the density,p the scalar pressure,andthe total energy,with internal energy e that is a given function of(p,ρ)de fined through thermodynamic relations.The other two thermodynamic variables are the temperature T and the entropy S.If(ρ,S)are chosen as two independent variables,then the constitutive relations become

    is de fined as the sonic speed.

    In this paper,we focus on the stability of steady four-wave con figurations in the two spacedimensional case,consisting of two shocks,one vortex sheet,and one entropy wave,which are the solutions of the Riemann problem in the flow direction;see Figure 1.In this con figuration,the vortex sheet and the entropy wave coincide in the Euler coordinates.This is one of the fundamental core multi-wave con figurations,as a solution of the standard steady Riemann problem for the two-dimensional Euler equations:

    (i)For supersonic flow,there are at most eight waves(shocks,vortex sheets,entropy waves,rarefaction waves)that emanate from one single point in the Euler coordinates,which consist of one solution(at most four of these waves)of the Riemann problem in the flow direction and the other solution(at most four of these waves)of the other Riemann problem in the opposite direction,while the later Riemann problem can also be reduced into the standard Riemann problem in the flow direction by the coordinate transformation(x,y) → (?x,?y)and the velocity transformation(u,v)→ (?u,?v),which are invariant for the Euler equations(1.1).

    (ii)Vortex sheets and entropy waves are new key fundamental waves in the multidimensional case,which are normally very sensitive in terms of perturbations as observed in numerical simulations and physical experiments(cf.[1,2,5,7,10]).

    (iii)Such solutions are fundamental con figurations for the local structure of general entropy solutions,which play an essential role in the mathematical theory of hyperbolic conservation laws(cf.[3,4,6,7,15–19,22,23]).

    Figure 1 An unperturbed four-wave con figuration,consisting of two shocks S1and S2,one vortex sheet C2,and one entropy wave C3

    The stability problem involving supersonic flows with a single shock past a Lipschitz wedge has been solved in Chen–Zhang–Zhu[11](also see Chen–Li[9]).The stability problem involving supersonic flows with vortex sheets and entropy waves over a Lipschitz wall has been solved in Chen–Zhang–Zhu[12].See also Chen–Kuang–Zhang[8]for the stability of two-dimensional steady supersonic exothermically reacting Euler flow past Lipschitz bending walls.

    The case of an initial con figuration involving two shocks is treated in[21],by using the method of front tracking,for more general equations,under the finiteness and stability conditions.We think that,with the estimates of Riemann solutions involving more than two strong waves,the estimates on the re flection coefficients of wave interactions should play a similar role so that the method of front tracking may be used.

    In this paper,it is proved that steady four-wave con figurations in supersonic flow are stable in structure globally,even under the BV perturbation of the incoming flow in the flow direction.In order to achieve this,we first formulate the problem as the Cauchy problem(initial value problem)in the flow direction,then develop a modi fied Glimm di ff erence scheme similar to those in[11,12]from the original Glimm scheme in[19]for one-dimensional hyperbolic conservation laws,and further identify a Glimm-type functional to obtain the required BV estimates by tracing the interactions not only between the strong shocks and weak waves,but also between the strong vortex sheet/entropy wave and weak waves carefully.The key feature of the Euler equations is that the re flection coefficient is always less than 1,when a weak wave of di ff erent family interacts with the vortex sheet/entropy wave or the shock wave,which is crucial to guarantee that the Glimm functional is decreasing.Then these estimates are employed to establish the convergence of the approximate solutions to a global entropy solution,close to the background solution of steady four-wave con figuration.

    This paper is organized as follows:In Section 2,we first formulate the stability of multiwave con figurations as the Cauchy problem(initial value problem)in the flow direction for the Euler equations(1.1)and then state the main theorem of this paper.In Section 3,some fundamental properties of system(1.1)and the analysis of the Riemann solutions are presented,which are used in the subsequent sections.In Section 4,we make estimates on the wave interactions,especially between strong and weak waves,and identify the key feature of the Euler equations that the re flection coefficient is always less than 1,when a weak wave of di ff erent family interacts with the vortex sheet/entropy wave or the shock wave.In Section 5,we develop a modi fied Glimm di ff erence scheme,based on the ones in[11,12],to construct a family of approximate solutions,and establish necessary estimates that will be used later to obtain its convergence to an entropy solution of the Cauchy problem(1.1)and(2.1).In Section 6,we show the convergence of the approximate solutions to an entropy solution,close to the background solution of steady four-wave con figuration.

    2 Formulation of the Problem and Main Theorem

    In this section,we formulate the stability problem for the steady four-wave con figurations as the Cauchy problem(initial value problem)in the flow direction for the Euler equations(1.1)and then state the main theorem of this paper.

    2.1 Stability Problem

    We focus on the stability problem of the four-wave con figurations consisting of two strong shocks,one strong vortex sheet,and one entropy wave for the supersonic Euler flows governed by system(1.1)for U=(u,v,p,ρ).More precisely,we consider a background solutionthat consists of four constant states:

    where uj>cjfor all j∈{a,m1,m2,b}with the sonic speed of state Uj:

    and state Um1connects to Ubby a strong 1-shock of speed σ10,Um1connects to Um2by a strong 2-vortex sheet and a strong 3-entropy wave of strengths(σ20,σ30),and Uaconnects to Um2by a strong 4-shock of speed σ40;see Figure 2.

    We are interested in the stability of the background solutionof steady four-wave con figuration,under small BV perturbations of the incoming flow as the initial data,to see whether it leads to entropy solutions containing similar strong four-wave con figurations,close to the background solution ofThat is,the stability problem can be formulated as the following Cauchy problem(initial value problem)for the Euler equations(1.1)with the Cauchy data:

    where U0∈ BV(R)is a small perturbation function close to U(·,0)in BV.

    Figure 2 The background solutionconsisting of four waves and four constant states

    The main theorem of this paper is the following:

    Theorem 2.1(existence and stability) There exist ?>0 and C>0 such that,if U0∈BV(R)satis fies

    then there are four functions:

    such that

    (i)U is a global entropy solution of system(1.1)in,satisfying the initial condition(2.1);

    (ii)Curves{y=χi(x)},i=1,2,3,4,are a strong 1-shock,a combined strong 2-vortex sheet and 3-entropy wave(χ2,3:= χ2= χ3),and a strong 4-shock,respectively,all emanating from the origin,with

    In Sections 2–6,we prove this main theorem and related properties of the global solution in BV.

    3 Riemann Problems and Solutions

    This section includes some fundamental properties of system(1.1)and some analysis of the Riemann solutions,which will be used in the subsequent sections;see also[11,12].

    3.1 Euler Equations

    With U=(u,v,p,ρ),the Euler system can be written in the following conservation form:

    where

    so that the eigenvalues of(3.2)are the roots of the fourth order polynomial:

    which are solutions of the equation:

    with four corresponding linearly independent eigenvectors:

    where κjare chosen to ensure that rj·?λj=1 for j=1,4,since the first and fourth characteristic fields are always genuinely nonlinear,and the second and third are linearly degenerate.

    In particular,at a state U=(u,0,p,ρ),

    De finition 3.1is called an entropy solution of(1.1)and(2.1)if

    (i)U satis fies the Euler equations(1.1)in the distributional sense and(2.1)in the trace sense;

    (ii)U satis fies the following entropy inequality:

    in the distributional sense in,including the boundary.

    3.2 Wave Curves in the Phase Space

    In this subsection,based on[11,pp.297–298]and[12,pp.1666–1667],we look at the basic properties of nonlinear waves.

    We focus on the region,{u>c},in the state space,especially in the neighborhoods of Ujin the background solution.

    We first consider self-similar solutions of(1.1):

    which connect to a state U0=(u0,v0,p0,v0).We find that

    which implies

    First,for the cases i=2,3,we obtain

    This yields the following curves Ci(U0)in the phase space through V0:

    which describe compressible vortex sheets(i=2)and entropy waves(i=3).More precisely,we have a vortex sheet governed by

    with strength σ2and slope,which is determined by

    and an entropy wave governed by

    with strength σ3and slope,which is determined by

    For j=1,4,we obtain the j-th rarefaction wave curve Rj(U0),j=1,4,in the phase space through U0:

    For shock wave solutions,the Rankine-Hugoniot conditions for(1.1)are

    where the jump symbol[·]stands for the value of the front state minus that of the back state.We find that

    His primary passion was clear thinking and comprehension. When I was in doubt about a concept that I was teaching him, he said, You must ask the teacher again. Must be clear.

    where u0>for small shocks.

    For si,i=2,3,in(3.15)–(3.18),we obtain the same Ci(U0),i=2,3,de fined in(3.12)–(3.13),since the corresponding fields are linearly degenerate.

    On the other hand,for sj,j=1,4,in(3.15)–(3.18),we obtain the j-th shock wave curve Sj(U0),j=1,4,through U0:

    where ρ0< ρ is equivalent to the entropy condition(3.8)on the shock wave.We also know that Sj(U0)agrees with Rj(U0)up to second order and that

    The entropy inequality(3.8)is equivalent to the following:

    see[11,pp.269–270,pp.297–298]for the details.

    3.3 Riemann Problems

    We consider the Riemann problem for(1.1):

    3.3.1 Riemann Problem only Involving Weak Waves

    Following Lax[20],we can parameterize any physically admissible wave curve in a neighborhood of a constant state U0.

    Lemma 3.2Given U0∈ R4,there exists a neighborhood O?(U0)such that,for all U1,U2∈O?(U0),the Riemann problem(3.24)admits a unique admissible solution consisting of four elementary waves.In addition,state U2can be represented by

    We also note that the renormalization factors κjin(3.7)have been used to ensure that=1 in a neighborhood of any unperturbed statewith u0>0,such as

    Lemma 3.3At any statewith u0>0,

    which also holds in a neighborhood of U0.

    This will be used later in Section 4.We exploit the symmetries between the shock polar and the reverse shock polar,and the symmetry between the 1-shock polar and the reverse 4-shock polar to allow for more concise arguments.

    3.3.2 Riemann Problem Involving a Strong 1-shock

    The results here are based on those in§6.1.4 of[11],with small changes for our requirements.

    For a fixed U1,when,we useto denote the 1-shock that connectswith speed σ1.

    Lemma 3.4For allwith

    ProofWe follow the same steps as[11,pp.273].First,by(3.20),

    Now,from the Rankine-Hugoniot conditions(3.15)–(3.18),

    so that,as um1>cm1,

    The result now follows by continuity.

    Lemma 3.5Let

    ProofWe omit the full calculations,which can be found at[11,pp.299–300].We use Lemma 3.4,along with the first and fourth Rankine-Hugoniot conditions(3.15)and(3.18),to deduce that P>0.We then use Lemma 3.4 and the entropy condition(3.23)to deduce

    Lemma 3.6There exists a neighborhoodsuch that,for each U0∈O?(Ub),the shock polar S1(Ub)can be parameterized locally for the state which connects to U0by a shock of speed σ10from above as

    ProofIt suffices to solve

    for U in terms of σ1and U0,with the knowledge thatis a solution.We see that

    Then the result follows by the implicit function theorem.

    3.3.3 Riemann Problem Involving a Strong 4-shock

    We now extend our results about 1-shocks to 4-shocks by symmetry.For a fixed U1,whento denote the 4-shock that connects U1to U2with speed σ4.The only di ff erence is the formula for σ4.

    Lemma 3.7For allwith

    ProofNote that,by(3.23),

    Since we have the same Rankine-Hugoniot conditions as in Lemma 3.4,with um2and uataking the roles of um1and ub,respectively,the proof follows identically.

    Lemma 3.8There exists a neighborhood O?(Ua) × O??(σ40)such that,for each U0∈O?(Ua),the reverse shock polar–the set of states that connect to U0by a strong 4-shock from blow–can be parameterized locally for the state which connects to U0by a shock of speed σ40as

    3.3.4 Riemann Problem Involving Strong Vortex Sheets and Entropy Waves

    We now look at the interaction between weak waves and the strong vortex sheet/entropy wave,based on those in §2.5 of[12].For any U1∈ O?(Um1)and U2∈ O?(Um2),we useto denote the strong vortex sheet and entropy wave that connect U1to U2with strength(σ2,σ3).That is,

    By a straightforward calculation,we have

    Lemma 3.9For

    The next property allows us to estimate the strength of re flected weak waves in the interactions between the strong vortex sheet/entropy wave and weak waves:

    Lemma 3.10The following holds

    4 Estimates on the Wave Interactions

    In this section,we make estimates on the wave interactions,especially between the strong and weak waves.This is based on those in§3 of[11,12],with new estimates for the strong 4-shock.

    Below,M>0 is a universal constant which is understood to be large,and O?(Ui)for i∈{a,m1,m2,b}is a universal small neighborhood of Uiwhich is understood to be small.Each of them depends only on the system,which may be di ff erent at each occurrence.

    Figure 3 Interaction estimates

    4.1 Preliminary Identities

    To make later arguments more concise,we now state some elementary identities here to be used later;these are simple consequences of the fundamental theorem of calculus.

    Lemma 4.1The following identities hold:

    4.2 Estimates on Weak Wave Interactions

    We have the following standard proposition;see,for example,[23,Chapter 19]for the proof.Note that,in our analysis of the Glimm functional,we only require the estimates for the cases where the waves are approaching.

    Proposition 4.2Suppose that U1,U2,and U3are three states in a small neighborhood of a given state U0with

    4.3 Estimates on the Interaction between the Strong Vortex Sheet/Entropy Wave and Weak Waves

    We now derive an interaction estimate between the strong vortex sheet/entropy wave and weak waves.The properties thatin(4.5)will be critical in the proof that the Glimm functional is decreasing.

    Proposition 4.3Let

    ProofThis proof is the same as[12,pp.1673],with additional terms.We need to solve foras a function ofin the following equation:

    We see that Kvbiand Kbvjare bounded from the formulae above.To deduce that|Kvb1|<1,we di ff erentiate(4.3)with respect to α4to obtain

    We can then deduce the following result by symmetry:

    Proposition 4.4If

    4.4 Estimates on the Interaction between the Strong Shocks and Weak Waves

    We now derive an interaction estimate between the strong shocks and weak waves.The properties thatin(4.14)will be critical in the proof that the Glimm functional is decreasing.

    4.4.1 Interaction between the Strong 1-shock and Weak Waves

    Proposition 4.5If

    ProofThis is similar to[11,pp.303],with extra terms.We need to show that there exists a solutionto

    Thus,we may reduce(4.7)to

    Now,using the expression of γ in terms of(α,β)and absorbing the residual part of the–term into the,we have the desired result.

    We now prove a result for the case where weak waves approach the strong 1-shock from below.

    Proposition 4.6Suppose that

    ProofWe need to find a solution to

    Now the required result follows by using Lemma 4.1,and noting thatα4=0 and thatis a solution.

    4.4.2 Interaction between the Strong 4-shock and Weak Waves

    Now,by symmetry with the 1-shock case,we deduce the following results:

    Proposition 4.7Suppose thatsuch that

    Proposition 4.8If

    5 Approximate Solutions and BV Estimates

    In this section,we develop a modi fied Glimm di ff erence scheme,based on the ones in[11,12],to construct a family of approximate solutions and establish necessary estimates that will be used later to obtain its convergence to an entropy solution to(1.1)and(2.1).

    5.1 A Modi fied Glimm Scheme

    For?x>0,we de fine

    We also need to make sure that the strong shocks do not interact:If we take the neighborhoods small enough,there exist a and b with?1

    Now de fine

    where θkis randomly chosen in(?1,1).We then choose

    to be the mesh points,and de fine the approximate solutionsfor any θ=(θ0,θ1,···)in the following inductive way:

    To avoid the issues of interaction of strong fronts,we separate out the initial data for k=0.De fineas follows:

    Then de fine U0(y)to be the state that connects to U0(?4?y)by a strong 1-shock of strength σ10on(?4?y,0)which lies in O?(Um1),and the state that connects to U0(0)by a combined strong vortex sheet/entropy wave of strengthon(0,4?y)which lies in.Thus,for ? small,

    Now,as long as we can provide a uniform bound on the solutions and show the Riemann problems involved always have solutions,this algorithm de fines a family of approximate solutions globally.

    Figure 4 Glimm’s scheme

    5.2 Glimm-type Functional and Its Bounds

    In this section,we prove the approximate solutions are well de fined in ??xby uniformly bounding them.We first introduce the following lemma,which is a combination of Lemma 6.7 in[11,pp.305]and Lemma 4.1 in[12,pp.1677],and follows from that Φ,G1,G2,3,and G4are C1functions.

    Lemma 5.1The following bounds of the approximate solutions of the Riemann problems hold:

    We now show that U?x,θcan be de fined globally.Assume that U?x,θhas been de fined in,by the steps in Section 5,and assume the following conditions are satis fied:

    C1(k ? 1) In each,there are a strong 1-shocka combined strong vortex sheet/entropy waveand a strong 4-shockwith strengthswhich divide ??x,jinto four parts:– the part below–the part between–the part betweenand–the part above

    To see that C2(k)holds if C2(k?1)holds,by the discussion earlier,forto emanate further down thanwe require θk>b,which implies thatemanate further down thanto emanate further up thanwe require θk

    We will establish a bound on the total variation of U?x,θon the k-mesh curves to establish C3(k)and C1(k).

    De finition 5.2A k-mesh curve is an unbounded piecewise linear curve consisting of line segments between the mesh points,lying in the strip:

    with each line segment of form

    Figure 5 Separation of the initial data

    Clearly,for any k>0,each k-mesh curve I divides plane R2into a part I+and a part I?,where I?is the one containing set{x<0}.As in[19],we partially order these mesh curves by saying J>I if every point of J is either on I or contained in I+,and we call J an immediate successor to I if J>I and every mesh point of J,except one,is on I.We now de fine a Glimm-type functional on these mesh curves.

    De finition 5.3De fine

    where|α4s1|and|α1s4|are the strengths of the weak 4-shock and 1-shock that emanate from the same point as the strong 1-shock and 4-shock,respectively,and these two weak waves are excluded from,respectively.

    Remark 5.4measures the total variation of U|J,owing to Lemma 5.1;each term Li(J)measures the total variation in region(i),and each termmeasures the magnitude of jumps of U between the regions separated by the large shocks.We also see that Q(J)≤L(J)for L(J)small enough,so that Q(J)is equivalent to

    Proposition 5.5Suppose that I and J are two k–mesh curves such that J is an immediate successor of I.Suppose that

    Let Λ be the diamond that is formed by I and J.We can assume thatsuch thatWe divide our proof into di ff erent cases,based on where diamond Λ is located.

    Case 1Weak-weak interaction

    Suppose that Λ lies in the interior of a region(i);see Figure 6.Then,by Proposition 4.2,

    Figure 6 Case 1:Weak wave interaction

    Case 2Weak waves interact with the strong vortex sheet/entropy wave from below

    Suppose that the approximate strong vortex sheet/entropy wave enters Λ from above;see Figure 7.

    Figure 7 Cases 2&3:Weak waves interact with the strong vortex sheet/entropy wave from below and above

    We have

    Case 3Weak waves interact with the strong vortex sheet/entropy wave from above

    Suppose that the approximate vortex sheet/entropy wave enters Λ from below;see Figure 7.This case follows by symmetry from the above case,owing to the symmetry between Propositions 4.3 and 4.4,and the symmetry between the coefficients.

    Case 4Weak waves interact with the strong 1-shock from above

    Suppose that the strong 1-shock enters Λ from below;see Figure 8.By Proposition 4.5,we have

    Figure 8 Cases 4&5:Weak waves interact with the strong 1-shock from above and below

    Case 5Weak waves interact with the strong 1-shock from below

    Suppose that the strong 1-shock enters Λ from above;see Figure 8.By Proposition 4.6,we have

    Case 6Weak waves interact with the strong 4-shock from below

    Suppose that the strong 4-shock enters Λ from above;see Figure 9.By symmetry from Case 4,we conclude thatdue to the symmetry between Propositions 4.5 and 4.8.

    Figure 9 Cases 6&7:Weak waves interact with the strong 4-shock from below and above.

    Case 7Weak waves interact with the strong 4-shock from above

    Suppose that the strong 4-shock enters Λ from below;see Figure 9.By symmetry from Case 5,we obtain that,owing to the symmetry between Propositions 4.6 and 4.7.

    Let Ikbe the k–mesh curve lying inFrom Proposition 5.5,we obtain the following theorem for any k≥1:

    Theorem 5.6LetK,and C?be the constants speci fied in Proposition 5.5.If the induction hypotheses

    Moreover,we obtain the following theorem by the construction of our approximate solutions:

    Theorem 5.7There exists ?>0 such that,if

    the modi fied Glimm scheme de fines a family of strong approximate frontsand(5.1).In addition,

    for any x≥0 and h>0.

    5.3 Estimates on the Approximate Strong Fronts

    Then,by the estimates in Proposition 5.5,we have

    Proposition 5.8There exists,independent of?x,θ,and U?x,θ,such that

    ProofWe follow the proof in[11,pp.290].For any k≥1,and the interaction diamondde fine

    Therefore,we also conclude the following:

    Proposition 5.9There existsindependent of?x,θ,and U?x,θ,such that,for j=1,2,3,4,

    ProofFor j=1,4,this follows immediately from Proposition 5.8.For j=2,3,observe that,if we makesmall enough so thatwe have

    6 Global Entropy Solutions

    In this section,we show the convergence of the approximate solutions to an entropy solution close to the four-wave con figuration solution.

    6.1 Convergence of the Approximate Solutions

    Lemma 6.1For any h>0 and x≥0,there exists a constantˇN,independent of?x,θ,and h,such that

    ProofBy Fubini’s theorem and Theorem 5.7,

    Then,summing over all k and n with k+n≡1(mod2)and re-arranging the terms,we have

    Following the same steps as in[23,Chapter 19],we have

    Lemma 6.2There exist a null setand a subsequencewhich tends to 0,such that

    To complete the proof of the main theorem,we need to estimate the slope of the approximate strong fronts.For k≥1,i=1,2,3,4,

    Lemma 6.3The following statements hold:

    ProofThe first part is a direct calculation.The second follows by the same proof as[11,pp.292];just take two sub-sub-sequences to obtain all three strong front slopes to converge.

    Theorem 6.4(existence and stability) There exist ?>0 and C>0 such that,if the hypotheses of the main theorem hold,then,for eachthere exists a sequenceof mesh sizes with?l→ 0 as l→ ∞,and functionssuch that

    (i)U?l,θconverges to Uθa.e.in R2+,and Uθis a global entropy solution of system(1.1)and satis fies the initial data(2.1)a.e.;

    (ii) χj,?l,θconverges to χj,θuniformly in any bounded x-interval;

    (iii)sj,?l,θconverges to sj,θ∈ BV([0,∞))a.e.andR

    ProofResult(i)follows by the same steps as[23,Chapter 19],(ii)follows by Theorem 5.7 and the Arzela-Ascoli theorem,while(iii)follows Proposition 5.9 and the basic properties of BV functions. ?

    女人精品久久久久毛片| 嫁个100分男人电影在线观看| 国产成人一区二区三区免费视频网站| 最新美女视频免费是黄的| av不卡在线播放| 99国产极品粉嫩在线观看| 欧美午夜高清在线| 色精品久久人妻99蜜桃| 黄色丝袜av网址大全| 亚洲欧美一区二区三区久久| 免费在线观看影片大全网站| 国产一区二区三区综合在线观看| 亚洲五月婷婷丁香| 色视频在线一区二区三区| 黑人巨大精品欧美一区二区mp4| 精品视频人人做人人爽| 老鸭窝网址在线观看| 777米奇影视久久| 女人爽到高潮嗷嗷叫在线视频| 男人舔女人的私密视频| 老司机影院毛片| 99香蕉大伊视频| 天堂8中文在线网| 国产日韩欧美视频二区| 99精品欧美一区二区三区四区| 视频在线观看一区二区三区| 久久人人爽av亚洲精品天堂| 精品一区二区三区视频在线观看免费 | 夜夜爽天天搞| 一本—道久久a久久精品蜜桃钙片| 男男h啪啪无遮挡| 久久久久久人人人人人| 一个人免费在线观看的高清视频| bbb黄色大片| 精品国内亚洲2022精品成人 | 每晚都被弄得嗷嗷叫到高潮| 美女高潮到喷水免费观看| 亚洲天堂av无毛| 国产成人av激情在线播放| 亚洲中文字幕日韩| 国产一卡二卡三卡精品| 久久香蕉激情| 黄色怎么调成土黄色| 建设人人有责人人尽责人人享有的| 国产主播在线观看一区二区| 欧美日韩成人在线一区二区| 久久热在线av| 亚洲全国av大片| 91麻豆精品激情在线观看国产 | 五月天丁香电影| 水蜜桃什么品种好| 国产精品久久久久久精品古装| 少妇精品久久久久久久| 久久精品熟女亚洲av麻豆精品| 日韩精品免费视频一区二区三区| 亚洲成av片中文字幕在线观看| 一本一本久久a久久精品综合妖精| 亚洲视频免费观看视频| 国产三级黄色录像| 91av网站免费观看| 久久亚洲真实| 18禁黄网站禁片午夜丰满| av网站在线播放免费| 超碰成人久久| 热99久久久久精品小说推荐| 麻豆国产av国片精品| 午夜免费鲁丝| 嫩草影视91久久| 成人免费观看视频高清| 18禁裸乳无遮挡动漫免费视频| 搡老熟女国产l中国老女人| 欧美+亚洲+日韩+国产| 成人免费观看视频高清| 自拍欧美九色日韩亚洲蝌蚪91| 免费在线观看视频国产中文字幕亚洲| 国产主播在线观看一区二区| 亚洲五月婷婷丁香| 精品高清国产在线一区| 日本欧美视频一区| 交换朋友夫妻互换小说| 搡老乐熟女国产| av免费在线观看网站| 亚洲美女黄片视频| kizo精华| 国产午夜精品久久久久久| 日韩熟女老妇一区二区性免费视频| 电影成人av| 日本vs欧美在线观看视频| 看免费av毛片| 在线观看66精品国产| 久久久久久久大尺度免费视频| 精品人妻在线不人妻| 露出奶头的视频| 日韩视频一区二区在线观看| 国产成人精品在线电影| 最近最新中文字幕大全免费视频| 69精品国产乱码久久久| 自拍欧美九色日韩亚洲蝌蚪91| 亚洲精品av麻豆狂野| 亚洲精品一卡2卡三卡4卡5卡| 老熟妇乱子伦视频在线观看| 51午夜福利影视在线观看| 在线观看免费午夜福利视频| 国产精品秋霞免费鲁丝片| 中文字幕最新亚洲高清| 黑人操中国人逼视频| 999久久久精品免费观看国产| 日韩成人在线观看一区二区三区| 人妻一区二区av| 久久人妻福利社区极品人妻图片| 视频在线观看一区二区三区| 老司机午夜十八禁免费视频| 亚洲国产中文字幕在线视频| 天天躁日日躁夜夜躁夜夜| 亚洲欧美日韩另类电影网站| 成人av一区二区三区在线看| 国产主播在线观看一区二区| 少妇裸体淫交视频免费看高清 | 正在播放国产对白刺激| 久久 成人 亚洲| 在线观看www视频免费| 久久久精品免费免费高清| 国内毛片毛片毛片毛片毛片| 久久久国产成人免费| 国产成人一区二区三区免费视频网站| 人妻久久中文字幕网| 制服人妻中文乱码| 老熟女久久久| 男女边摸边吃奶| 久久影院123| 动漫黄色视频在线观看| 免费观看人在逋| 亚洲国产中文字幕在线视频| 少妇粗大呻吟视频| 纵有疾风起免费观看全集完整版| 色视频在线一区二区三区| 丝瓜视频免费看黄片| 大陆偷拍与自拍| 午夜激情久久久久久久| 久久久久久免费高清国产稀缺| 成年动漫av网址| 亚洲av日韩精品久久久久久密| 国产福利在线免费观看视频| 狠狠狠狠99中文字幕| 国产区一区二久久| 日日爽夜夜爽网站| 亚洲中文字幕日韩| 不卡av一区二区三区| 超碰97精品在线观看| 免费黄频网站在线观看国产| a级片在线免费高清观看视频| 大香蕉久久成人网| 精品少妇久久久久久888优播| 日本黄色视频三级网站网址 | 欧美日韩av久久| 美女国产高潮福利片在线看| 新久久久久国产一级毛片| 成人免费观看视频高清| 亚洲一卡2卡3卡4卡5卡精品中文| 法律面前人人平等表现在哪些方面| 女性被躁到高潮视频| 天天影视国产精品| 纵有疾风起免费观看全集完整版| 最新美女视频免费是黄的| 午夜两性在线视频| 日韩成人在线观看一区二区三区| 国产在线免费精品| 国产精品偷伦视频观看了| 久久午夜亚洲精品久久| 飞空精品影院首页| 少妇粗大呻吟视频| 日韩 欧美 亚洲 中文字幕| 91麻豆精品激情在线观看国产 | 99久久精品国产亚洲精品| 高清在线国产一区| 在线观看舔阴道视频| av在线播放免费不卡| 久久九九热精品免费| 欧美日韩国产mv在线观看视频| 成年动漫av网址| 别揉我奶头~嗯~啊~动态视频| 日韩免费高清中文字幕av| 欧美在线黄色| 18禁黄网站禁片午夜丰满| 国产精品国产高清国产av | 成年人黄色毛片网站| 在线观看舔阴道视频| 国产真人三级小视频在线观看| 久久99一区二区三区| 亚洲天堂av无毛| 麻豆国产av国片精品| 成人三级做爰电影| 国产高清videossex| 国产1区2区3区精品| 国产日韩欧美视频二区| 久久人妻福利社区极品人妻图片| 一级毛片女人18水好多| 国产精品国产av在线观看| 99热国产这里只有精品6| 在线十欧美十亚洲十日本专区| 男女床上黄色一级片免费看| 2018国产大陆天天弄谢| 老熟女久久久| 亚洲五月婷婷丁香| 日韩免费高清中文字幕av| 黄片小视频在线播放| 色婷婷av一区二区三区视频| 日韩中文字幕欧美一区二区| 亚洲欧美一区二区三区黑人| 中文字幕av电影在线播放| 国产成人系列免费观看| 波多野结衣一区麻豆| 国产成+人综合+亚洲专区| 蜜桃在线观看..| 老司机午夜十八禁免费视频| 亚洲国产欧美日韩在线播放| 亚洲av第一区精品v没综合| 国产成人av激情在线播放| 搡老岳熟女国产| 久久性视频一级片| 香蕉久久夜色| 十八禁网站免费在线| 可以免费在线观看a视频的电影网站| 精品少妇一区二区三区视频日本电影| 满18在线观看网站| 王馨瑶露胸无遮挡在线观看| a级片在线免费高清观看视频| 最新在线观看一区二区三区| 国产欧美日韩一区二区三区在线| 国产精品成人在线| 九色亚洲精品在线播放| 成人免费观看视频高清| 久久久久精品国产欧美久久久| 99久久人妻综合| 日韩大码丰满熟妇| a级毛片黄视频| 欧美日韩中文字幕国产精品一区二区三区 | 精品少妇内射三级| 人妻一区二区av| 亚洲国产欧美在线一区| 久久精品国产a三级三级三级| 久久精品成人免费网站| 超碰成人久久| 国产精品av久久久久免费| 两个人看的免费小视频| 午夜福利欧美成人| 极品人妻少妇av视频| 动漫黄色视频在线观看| 天堂中文最新版在线下载| 亚洲 欧美一区二区三区| 国产精品香港三级国产av潘金莲| 一区二区av电影网| 欧美日韩黄片免| 在线看a的网站| 亚洲色图综合在线观看| 人人妻人人爽人人添夜夜欢视频| 久久久久精品国产欧美久久久| 免费黄频网站在线观看国产| 午夜老司机福利片| 丝袜在线中文字幕| 1024视频免费在线观看| 一边摸一边抽搐一进一出视频| 国产免费现黄频在线看| 看免费av毛片| 亚洲成av片中文字幕在线观看| 高清av免费在线| 人人妻,人人澡人人爽秒播| 大香蕉久久成人网| 欧美成人午夜精品| 中亚洲国语对白在线视频| 91九色精品人成在线观看| 老汉色av国产亚洲站长工具| 最近最新中文字幕大全电影3 | 亚洲av美国av| 777米奇影视久久| 日韩欧美国产一区二区入口| 90打野战视频偷拍视频| 国产亚洲午夜精品一区二区久久| 亚洲国产毛片av蜜桃av| av片东京热男人的天堂| 老熟女久久久| 久久久精品国产亚洲av高清涩受| 国产日韩欧美视频二区| 免费高清在线观看日韩| 精品久久蜜臀av无| 激情在线观看视频在线高清 | 少妇 在线观看| 巨乳人妻的诱惑在线观看| 亚洲欧美一区二区三区黑人| 国产精品久久电影中文字幕 | 啦啦啦中文免费视频观看日本| 狠狠精品人妻久久久久久综合| 国产成人精品在线电影| 可以免费在线观看a视频的电影网站| 老司机在亚洲福利影院| 国产成人精品无人区| 亚洲国产欧美网| 亚洲久久久国产精品| 国产精品免费大片| 精品国产一区二区三区四区第35| 777米奇影视久久| 免费看a级黄色片| 亚洲一卡2卡3卡4卡5卡精品中文| 美女视频免费永久观看网站| 青草久久国产| 欧美成人午夜精品| a在线观看视频网站| 成年人午夜在线观看视频| 国产精品自产拍在线观看55亚洲 | 久久久久久久大尺度免费视频| 免费看十八禁软件| 亚洲专区国产一区二区| 老鸭窝网址在线观看| 99国产精品一区二区三区| 国产一区二区三区在线臀色熟女 | 国产片内射在线| 天天影视国产精品| 精品午夜福利视频在线观看一区 | 国产色视频综合| 国产精品免费视频内射| 亚洲国产欧美一区二区综合| 国产精品熟女久久久久浪| 极品教师在线免费播放| 在线观看舔阴道视频| 欧美日韩中文字幕国产精品一区二区三区 | 亚洲色图综合在线观看| 国产欧美亚洲国产| 黄色a级毛片大全视频| 他把我摸到了高潮在线观看 | 久久精品aⅴ一区二区三区四区| 成年女人毛片免费观看观看9 | 日韩欧美国产一区二区入口| 视频区图区小说| 每晚都被弄得嗷嗷叫到高潮| 男人操女人黄网站| 午夜视频精品福利| 亚洲天堂av无毛| 亚洲精品在线美女| 久久午夜亚洲精品久久| 悠悠久久av| 久久精品亚洲av国产电影网| 国产亚洲一区二区精品| 91国产中文字幕| 黑人巨大精品欧美一区二区mp4| 欧美精品一区二区大全| 午夜激情av网站| 69av精品久久久久久 | 最近最新免费中文字幕在线| 老司机在亚洲福利影院| 一边摸一边抽搐一进一小说 | 国产精品久久久人人做人人爽| 亚洲精品国产一区二区精华液| 国产在线观看jvid| 一级片'在线观看视频| 天天躁狠狠躁夜夜躁狠狠躁| 777米奇影视久久| 国产一区有黄有色的免费视频| 国产区一区二久久| 免费少妇av软件| 一本色道久久久久久精品综合| 亚洲少妇的诱惑av| 日韩大片免费观看网站| 亚洲伊人色综图| 精品国产乱码久久久久久小说| 国产成人欧美| 精品国产乱码久久久久久小说| 丝袜在线中文字幕| 黄色片一级片一级黄色片| 12—13女人毛片做爰片一| tocl精华| 久久人人97超碰香蕉20202| 99精品久久久久人妻精品| 国产精品久久久久久精品古装| 亚洲五月婷婷丁香| 999精品在线视频| 如日韩欧美国产精品一区二区三区| 黑人巨大精品欧美一区二区mp4| 69av精品久久久久久 | 精品福利永久在线观看| 一级黄色大片毛片| 如日韩欧美国产精品一区二区三区| 国产无遮挡羞羞视频在线观看| 久久精品亚洲av国产电影网| 亚洲国产成人一精品久久久| 精品一区二区三区四区五区乱码| 日韩成人在线观看一区二区三区| 熟女少妇亚洲综合色aaa.| 精品一品国产午夜福利视频| av一本久久久久| 久热这里只有精品99| √禁漫天堂资源中文www| av视频免费观看在线观看| www.熟女人妻精品国产| 日本精品一区二区三区蜜桃| av国产精品久久久久影院| 国产在线免费精品| 香蕉久久夜色| 国产精品久久久久久人妻精品电影 | videosex国产| 搡老熟女国产l中国老女人| 国产av精品麻豆| 亚洲专区字幕在线| cao死你这个sao货| 日韩一区二区三区影片| 欧美人与性动交α欧美精品济南到| 在线亚洲精品国产二区图片欧美| aaaaa片日本免费| 色在线成人网| 夫妻午夜视频| www.999成人在线观看| 国产99久久九九免费精品| 美女高潮到喷水免费观看| 亚洲av成人一区二区三| 亚洲av电影在线进入| 国产在视频线精品| 电影成人av| 一二三四在线观看免费中文在| 国产黄色免费在线视频| 老司机靠b影院| 国产成人一区二区三区免费视频网站| 波多野结衣av一区二区av| 婷婷丁香在线五月| 国产精品久久久人人做人人爽| 丰满迷人的少妇在线观看| 91精品三级在线观看| 少妇猛男粗大的猛烈进出视频| 久久国产精品大桥未久av| 免费在线观看视频国产中文字幕亚洲| 啪啪无遮挡十八禁网站| 国产亚洲一区二区精品| 18禁黄网站禁片午夜丰满| 涩涩av久久男人的天堂| 久久久国产一区二区| 另类亚洲欧美激情| av网站在线播放免费| 久久这里只有精品19| 色在线成人网| 高清在线国产一区| 午夜福利,免费看| 人人妻人人添人人爽欧美一区卜| 亚洲av电影在线进入| 欧美 亚洲 国产 日韩一| 精品福利永久在线观看| 999久久久精品免费观看国产| 欧美人与性动交α欧美精品济南到| www.自偷自拍.com| 老司机福利观看| 考比视频在线观看| 黄片播放在线免费| 露出奶头的视频| 欧美人与性动交α欧美软件| 视频在线观看一区二区三区| 久久久久久人人人人人| 成年女人毛片免费观看观看9 | 亚洲av美国av| 亚洲国产欧美网| 满18在线观看网站| 亚洲精品在线美女| av片东京热男人的天堂| av在线播放免费不卡| 丰满迷人的少妇在线观看| 国产一区二区激情短视频| 夜夜骑夜夜射夜夜干| 交换朋友夫妻互换小说| 国产无遮挡羞羞视频在线观看| 日本wwww免费看| 国产又爽黄色视频| av一本久久久久| 精品乱码久久久久久99久播| 午夜日韩欧美国产| 天天操日日干夜夜撸| 黑人巨大精品欧美一区二区mp4| 欧美成狂野欧美在线观看| 丝瓜视频免费看黄片| 欧美成人免费av一区二区三区 | 一个人免费在线观看的高清视频| 激情在线观看视频在线高清 | 久久人妻av系列| 视频区欧美日本亚洲| 又黄又粗又硬又大视频| 久久精品成人免费网站| 91字幕亚洲| 亚洲国产欧美在线一区| 日韩欧美三级三区| 王馨瑶露胸无遮挡在线观看| 老鸭窝网址在线观看| 免费在线观看影片大全网站| 最新在线观看一区二区三区| 少妇被粗大的猛进出69影院| 午夜福利视频精品| 纵有疾风起免费观看全集完整版| 久久婷婷成人综合色麻豆| 十分钟在线观看高清视频www| 久久久精品免费免费高清| 亚洲 欧美一区二区三区| 国产伦人伦偷精品视频| 在线观看www视频免费| 日本撒尿小便嘘嘘汇集6| 久久精品aⅴ一区二区三区四区| 久久99热这里只频精品6学生| 日韩欧美免费精品| 日韩中文字幕欧美一区二区| e午夜精品久久久久久久| 另类亚洲欧美激情| 亚洲av片天天在线观看| 亚洲精品自拍成人| 嫩草影视91久久| 大片电影免费在线观看免费| 国产欧美日韩精品亚洲av| 无限看片的www在线观看| a在线观看视频网站| av天堂在线播放| www.熟女人妻精品国产| 亚洲av电影在线进入| 黄色成人免费大全| 国产麻豆69| 在线观看免费视频网站a站| av国产精品久久久久影院| 亚洲欧美一区二区三区黑人| 蜜桃国产av成人99| 婷婷丁香在线五月| 成年人免费黄色播放视频| 欧美性长视频在线观看| 男人操女人黄网站| 日韩 欧美 亚洲 中文字幕| 久久99热这里只频精品6学生| 51午夜福利影视在线观看| 不卡一级毛片| 国产精品亚洲av一区麻豆| 宅男免费午夜| 亚洲专区字幕在线| 日本av免费视频播放| tube8黄色片| 天堂8中文在线网| 露出奶头的视频| 在线观看66精品国产| 黄色片一级片一级黄色片| 人妻 亚洲 视频| 午夜福利视频精品| 亚洲精品自拍成人| 极品少妇高潮喷水抽搐| 9色porny在线观看| 黄频高清免费视频| 老汉色∧v一级毛片| 自拍欧美九色日韩亚洲蝌蚪91| 亚洲精品美女久久av网站| 五月天丁香电影| 如日韩欧美国产精品一区二区三区| 国产在线观看jvid| 脱女人内裤的视频| 久久久久久久精品吃奶| 午夜视频精品福利| 亚洲欧洲日产国产| videosex国产| 麻豆乱淫一区二区| 首页视频小说图片口味搜索| 一二三四社区在线视频社区8| 欧美性长视频在线观看| 中文字幕人妻熟女乱码| 久久亚洲精品不卡| 精品少妇内射三级| 超色免费av| 久久久国产欧美日韩av| 日本av手机在线免费观看| 久久99一区二区三区| 亚洲全国av大片| 丰满人妻熟妇乱又伦精品不卡| 午夜福利在线免费观看网站| 在线观看免费视频日本深夜| 国产97色在线日韩免费| 精品人妻熟女毛片av久久网站| 一边摸一边抽搐一进一出视频| 人人妻人人澡人人看| 80岁老熟妇乱子伦牲交| 搡老熟女国产l中国老女人| 久久午夜亚洲精品久久| 国产精品香港三级国产av潘金莲| 国产成人精品久久二区二区免费| 欧美亚洲 丝袜 人妻 在线| 色在线成人网| 日日夜夜操网爽| 麻豆av在线久日| 久久久国产欧美日韩av| 啦啦啦中文免费视频观看日本| av超薄肉色丝袜交足视频| 亚洲伊人色综图| 91老司机精品| 国产成人精品无人区| av线在线观看网站| 欧美久久黑人一区二区| 男女下面插进去视频免费观看| 久久久久久久国产电影| 国产精品一区二区在线不卡| 51午夜福利影视在线观看| 大型黄色视频在线免费观看| 最近最新中文字幕大全电影3 | 亚洲一区二区三区欧美精品| 一个人免费看片子| 啦啦啦在线免费观看视频4| 亚洲精品自拍成人| 日本五十路高清| 青青草视频在线视频观看| 最近最新中文字幕大全免费视频| 不卡一级毛片| 欧美成人免费av一区二区三区 | 久久人妻熟女aⅴ| 18禁观看日本| 最近最新中文字幕大全电影3 | 高清视频免费观看一区二区| www日本在线高清视频| 热99re8久久精品国产| 国产精品免费一区二区三区在线 | 黄色 视频免费看| 欧美国产精品一级二级三级| 少妇裸体淫交视频免费看高清 |