秦明陽(yáng),郭建華,何紅生,黃儼然, 3,焦鵬,劉辰生,鄭振華,郭軍,曹錚,王崇敬,薛圓
?
四川盆地外復(fù)雜構(gòu)造區(qū)頁(yè)巖氣地質(zhì)條件及含氣性特征:以湘西北五峰組—龍馬溪組為例
秦明陽(yáng)1, 2,郭建華1,何紅生2,黃儼然1, 3,焦鵬1,劉辰生1,鄭振華2,郭軍2,曹錚4,王崇敬5,薛圓6
(1. 中南大學(xué) 地球科學(xué)與信息物理學(xué)院,湖南 長(zhǎng)沙,410083; 2. 湖南省煤炭地質(zhì)勘查院,湖南 長(zhǎng)沙,410014;3. 湖南科技大學(xué) 頁(yè)巖氣資源利用湖南省重點(diǎn)實(shí)驗(yàn)室,湖南 湘潭,411201;4. 中國(guó)石油大學(xué) 地球科學(xué)與技術(shù)學(xué)院,山東 青島,266580;5. 遼寧科學(xué)技術(shù)大學(xué) 礦業(yè)學(xué)院,遼寧 阜新,123000;6. 中石化石油工程地球物理有限公司 勝利分公司,山東 東營(yíng),257086)
以永頁(yè)2井頁(yè)巖氣地質(zhì)條件分析為基礎(chǔ),結(jié)合其他鉆井及前人成果,對(duì)比國(guó)內(nèi)外頁(yè)巖氣田地質(zhì)特征,系統(tǒng)研究四川盆地外復(fù)雜構(gòu)造區(qū)湘西北五峰組—龍馬溪組頁(yè)巖氣地質(zhì)特征及含氣性,指出未來(lái)勘探方向。研究結(jié)果表明湘西北五峰組—龍馬溪組與四川盆地涪陵地區(qū)的頁(yè)巖氣聚集條件相近,具有4個(gè)顯著特征:1) 深水陸棚相發(fā)育富有機(jī)質(zhì)頁(yè)巖厚度超過(guò)20 m,富含有機(jī)質(zhì)、硅質(zhì)、黃鐵礦以及筆石化石;2) 有機(jī)質(zhì)屬于Ⅰ型干酪根,有機(jī)碳質(zhì)量分?jǐn)?shù)(TOC)普遍大于2.0%,自西向東逐漸減小,鏡體反射率o主要在2.0%~3.0%之間,熱演化達(dá)到過(guò)成熟階段;3) 礦物成分以石英為主,平均質(zhì)量分?jǐn)?shù)為47.9%,黏土礦物(主要是伊/蒙混層)次之,平均質(zhì)量分?jǐn)?shù)為26.9%,碳酸鹽巖礦物質(zhì)量分?jǐn)?shù)低于10%,頁(yè)巖普遍發(fā)育微孔隙(主要為有機(jī)質(zhì)孔、晶間孔、溶蝕孔)和微裂縫,儲(chǔ)層吸附能力強(qiáng);4) 五峰組—龍馬溪組頁(yè)巖含氣量為1.0~3.5 m3/t,以解吸氣為主,甲烷體積分?jǐn)?shù)超過(guò)90%。深水陸棚相發(fā)育豐富有機(jī)質(zhì),奠定了五峰組—龍馬溪組頁(yè)巖氣聚集基礎(chǔ),但含氣性受控于蓋層、埋深及斷裂等保存條件。未來(lái)勘探方向應(yīng)集中于桑植—石門復(fù)向斜內(nèi)龍山—永順一帶向斜核部。
湘西北;五峰組—龍馬溪組;頁(yè)巖氣;地質(zhì)條件;含氣性
頁(yè)巖氣是一種新型清潔、高效非常規(guī)天然氣資源,主要以游離態(tài)賦存于頁(yè)巖孔隙和裂隙中,或者以吸附態(tài)賦存于干酪根和黏土礦物表面,屬于典型的“自生自儲(chǔ)自蓋、原地成藏”模式[1?2]。在美國(guó)“頁(yè)巖氣革命”推動(dòng)下,我國(guó)南方油氣勘探迎來(lái)新的機(jī)遇和挑戰(zhàn),2016年四川盆地五峰組—龍馬溪組頁(yè)巖氣產(chǎn)量超50億m3,預(yù)計(jì)2020年,全國(guó)頁(yè)巖氣產(chǎn)量將達(dá)300億m3[3?4]。湖南是一個(gè)“缺煤、無(wú)油、少氣”的能源匱乏省份,能源短缺長(zhǎng)期制約社會(huì)經(jīng)濟(jì)發(fā)展。然而,相比四川盆地,湘西北永順、龍山、保靖等區(qū)塊五峰組—龍馬溪組多年來(lái)勘查缺乏實(shí)質(zhì)性成果,部分學(xué)者質(zhì)疑其聚集條件及含氣性。CHEN等[5]圍繞四川盆地、五峰組—龍馬溪組頁(yè)巖氣地質(zhì)特征進(jìn)行了研究。趙文智等[6]從沉積、熱演化、蓋層、構(gòu)造等角度進(jìn)行研究,認(rèn)為四川盆地五峰組—龍馬溪組頁(yè)巖氣聚集條件優(yōu)越。李博等[7]提出盆地外復(fù)雜構(gòu)造區(qū)五峰組—龍馬溪組頁(yè)巖的5大主要核心評(píng)價(jià)指標(biāo)體系,包括優(yōu)質(zhì)頁(yè)巖厚度、TOC質(zhì)量分?jǐn)?shù)(TOC)、脆性礦物質(zhì)量分?jǐn)?shù)、含氣性及保存條件等,并指出盆地外區(qū)塊仍具有勘探潛力。國(guó)內(nèi)學(xué)者根據(jù)四川盆地焦石壩五峰組—龍馬溪組勘探實(shí)踐,提出“中國(guó)式”復(fù)雜構(gòu)造區(qū)高演化海相頁(yè)巖氣“二元”富集規(guī)律:深水陸棚優(yōu)質(zhì)泥頁(yè)巖是物質(zhì)基礎(chǔ);良好保存條件是關(guān)鍵[8?12]。范二平等[13?17]認(rèn)為湘西北五峰組—龍馬溪組(TOC)高及熱演化程度高,發(fā)育多種類型的孔隙,埋深適中,具有形成頁(yè)巖氣藏的良好潛力。李海等[18]認(rèn)為湘鄂西地區(qū)經(jīng)歷了復(fù)雜多期構(gòu)造運(yùn)動(dòng),保存條件成為頁(yè)巖氣富集的關(guān)鍵。湘西北地區(qū)五峰—龍馬溪組頁(yè)巖雖然與四川盆地同屬上揚(yáng)子板塊,但其地質(zhì)條件有2個(gè)顯著特點(diǎn):1) 位于晚奧陶世—早志留世深海陸棚相東緣,富有機(jī)質(zhì)頁(yè)巖特征橫向及縱向變化較大;2) 燕山—喜山期構(gòu)造運(yùn)動(dòng)強(qiáng)度大,形成現(xiàn)今復(fù)向斜構(gòu)造格局,五峰組—龍馬溪組僅殘存于孤立向斜核部,影響頁(yè)巖氣的富集和保存。目前,專門針對(duì)湘西北五峰組—龍馬溪組頁(yè)巖氣地質(zhì)特點(diǎn)、保存條件以及含氣性特征等方面研究較少,導(dǎo)致對(duì)其聚集條件認(rèn)識(shí)不足,嚴(yán)重制約勘查進(jìn)展。為此,本文作者對(duì)其進(jìn)行 研究。
晚奧陶世—早志留世,上揚(yáng)子地區(qū)受華南板塊擠壓轉(zhuǎn)換為前陸撓曲盆地,加之受江南—雪峰、黔中及川中隆起等影響,湘西北整體處于封閉、安靜、缺氧、還原的深水陸棚環(huán)境(圖1),在上升洋流(五峰組)及滯流缺氧環(huán)境和缺乏陸源碎屑(龍馬溪組)等作用控制下沉積了一套黑色富含頁(yè)理的筆石頁(yè)巖,并富含硅質(zhì)、炭質(zhì)以及黃鐵礦,五峰組頂部觀音橋段發(fā)育泥灰?guī)r(圖2)[19?20]。深水陸棚相東緣抵達(dá)桑植東—永順東—保靖—花垣一線,但逐漸向西遷移,靠近江南—雪峰古陸地區(qū)變?yōu)闇\水陸棚相。隨著水體逐漸變淺,縱向上依次發(fā)育硅質(zhì)頁(yè)巖、粉砂質(zhì)頁(yè)巖以及泥質(zhì)頁(yè)巖,TOC質(zhì)量分?jǐn)?shù)(TOC)逐漸減小,筆石多樣性逐漸減少,烴源巖變差[21],見(jiàn)表1。硅質(zhì)頁(yè)巖厚度自西向東逐漸變小,盆地內(nèi)焦頁(yè)1井頁(yè)巖厚度約38 m,向東至來(lái)頁(yè)1井厚度約20 m,至研究區(qū)西部龍參2井、桑頁(yè)1井約13 m,永頁(yè)1井、永頁(yè)2井減少至5 m,而東部慈頁(yè)1井僅發(fā)育2 m。研究區(qū)粉砂質(zhì)頁(yè)巖厚度發(fā)育相對(duì)穩(wěn)定,約10 m;泥質(zhì)頁(yè)巖自西向東逐漸增厚,與硅質(zhì)頁(yè)巖呈相反趨勢(shì),見(jiàn)圖3。
圖1 研究區(qū)地質(zhì)背景圖
(a) 炭質(zhì)頁(yè)巖、富含筆石化石;(b) 灰質(zhì)頁(yè)巖;(c) 含炭含粉砂頁(yè)巖,×10單偏光;(d) 含炭含粉砂頁(yè)巖,×10正交光
表1 永頁(yè)2井五峰組—龍馬溪組縱向地質(zhì)特征
注:為質(zhì)量分?jǐn)?shù);為體積分?jǐn)?shù)。
圖3 五峰—龍馬溪組橫向?qū)Ρ葓D
研究區(qū)主體位于湘鄂西沖斷褶皺帶桑植石門復(fù)向斜內(nèi),受保靖—慈利大斷裂控制,燕山期—喜山期多期次壓扭性構(gòu)造運(yùn)動(dòng)產(chǎn)生了強(qiáng)烈的沖斷、褶皺及抬升剝蝕作用,形成如今NNE或NE走向?yàn)橹鞯摹盎拙砣胧健瘪薨櫤蛿嗔洋w系,背斜核部多出露于震旦—奧陶系,五峰組—龍馬溪組已經(jīng)剝蝕殆盡,而向斜核部主要為中—下三疊統(tǒng)。五峰組—龍馬溪組僅殘存于不連續(xù)、孤立的向斜等[22?24]。
不同類型有機(jī)質(zhì)的元素組成和分子結(jié)構(gòu)有明顯差異,演化特征及產(chǎn)物不同,并影響生烴能力[25]。永頁(yè)2×井五峰組—龍馬溪組巖心干酪根顯微組分鑒定結(jié)果表明:干酪根以腐泥組為主,質(zhì)量分?jǐn)?shù)達(dá)89%~92%,瀝青質(zhì)量分?jǐn)?shù)3%~9%,惰質(zhì)組質(zhì)量分?jǐn)?shù)僅為1%~3%,干酪根類型指數(shù)高達(dá)80.75~85.75,平均為82.65。此外,五峰組—龍馬溪組為海相沉積,當(dāng)時(shí)還未出現(xiàn)陸生高等植物,烴源巖主要來(lái)源于低等海生生物,如浮游生物和菌藻類,尤其以筆石最豐富。綜合判斷為有機(jī)質(zhì)類型較好的腐泥型(Ⅰ型),生烴潛力大。
北美Barrnet頁(yè)巖及四川盆地涪陵區(qū)塊五峰組—龍馬溪組勘探實(shí)踐表明,豐富有機(jī)質(zhì)是頁(yè)巖氣“成烴控儲(chǔ)”基礎(chǔ)[2]。對(duì)于南方高成熟—過(guò)成熟海相烴源巖,利用巖石熱解法得到的生烴潛量“1+2”值普遍低于 0.1 mg/g(1為游離烴,2為熱解烴),失去評(píng)價(jià)意義。本次采用殘余有機(jī)碳質(zhì)量分?jǐn)?shù)(TOC)評(píng)價(jià)烴源巖有機(jī)質(zhì)豐度。通常(TOC)越高,生烴能力越強(qiáng),儲(chǔ)層吸附能力也越強(qiáng)。目前,商業(yè)性頁(yè)巖氣聚集開(kāi)發(fā)的(TOC)下限值一般為2.0%,但李賢慶等[26]認(rèn)為在高熱演化地區(qū)可以降至1.0%。
湘西北五峰組—龍馬溪組(TOC)普遍大于2.0%,自西向東有降低趨勢(shì);西部龍參2井(TOC)高達(dá)5.96%,東部永頁(yè)2井一帶(TOC)為2.0%~4.0%。五峰組—龍馬溪組(TOC)縱向變化特征明顯,硅質(zhì)頁(yè)巖、粉砂質(zhì)頁(yè)巖、泥質(zhì)頁(yè)巖逐漸由2.0%以上降低至0.5%(見(jiàn)表1)。
勘探實(shí)踐結(jié)果表明,南方五峰—龍馬溪組頁(yè)巖氣屬于典型“熱成因、干氣型”。熱演化程度(或成熟度)是確定有機(jī)質(zhì)生成油氣的關(guān)鍵指標(biāo)。國(guó)際上普遍認(rèn)為研究干酪根熱演化程度的最佳參數(shù)是鏡質(zhì)體反射率(o)。北美商業(yè)性開(kāi)發(fā)的頁(yè)巖層系o=1.1%~3.0%,而四川盆地焦石壩地區(qū)五峰—龍馬溪組o普遍超過(guò)2.0%。針對(duì)南方下古生界海相具有地層時(shí)代老、熱演化程度高、缺乏鏡質(zhì)組等特點(diǎn)[26],目前普遍采用瀝青反射率換算得出鏡質(zhì)體反射率o(o=0.618 8b+0.40),評(píng)價(jià)有機(jī)質(zhì)成熟度。
湘西北4口井測(cè)試結(jié)果基本一致,鏡質(zhì)體反射率普遍在2.0%~3.0%之間,熱演化程度達(dá)到過(guò)成熟階段,與四川盆地涪陵地區(qū)相比略低。東部永順地區(qū)有機(jī)質(zhì)熱演化程度較低,而西部桑植、龍山一帶明顯增高(表2)。國(guó)內(nèi)外勘探結(jié)果表明:高成熟度不是熱成因頁(yè)巖氣聚集的主要制約因素,在南方古生界海相頁(yè)巖有機(jī)質(zhì)成熟度普遍較高的背景下,湘西北五峰組—龍馬溪組熱成熟度相對(duì)適中[27?28]。
礦物成分是頁(yè)巖儲(chǔ)層評(píng)價(jià)和研究的主要內(nèi)容之一。商業(yè)開(kāi)發(fā)的頁(yè)巖必須具備高脆性礦物(質(zhì)量分?jǐn)?shù)>40%)、低黏土礦物(質(zhì)量分?jǐn)?shù)<30%)的特征[25]。永頁(yè)2井五峰組—龍馬溪組頁(yè)巖19塊樣品XRD分析結(jié)果表明:礦物以石英、黏土礦物為主,含有少量碳酸鹽巖、長(zhǎng)石、黃鐵礦等;石英質(zhì)量分?jǐn)?shù)為34.6%~62.2%,平均為47.9%;黏土礦物質(zhì)量分?jǐn)?shù)為14%~54.2%,平均為26.9%;碳酸鹽巖礦物質(zhì)量分?jǐn)?shù)為0~22.7%,平均為6.8%;黃鐵礦質(zhì)量分?jǐn)?shù)為0.7%~14.3%,平均為4.5%。黏土礦物以伊/蒙混層為主,質(zhì)量分?jǐn)?shù)為36%~95%,平均為75.9%。伊利石、綠/蒙混層次之,其礦物成分與焦頁(yè)1井、威201井的成分類似,見(jiàn)表2。將石英+長(zhǎng)石+黃鐵礦、碳酸鹽巖以及黏土礦物質(zhì)量分?jǐn)?shù)作為三端元,制作三角圖,五峰組—龍馬溪組主要為硅質(zhì)頁(yè)巖[28](圖4)。與Barnett頁(yè)巖相比,五峰組—龍馬溪組具有更高硅質(zhì)質(zhì)量分?jǐn)?shù),易于在水力壓裂過(guò)程中形成復(fù)雜網(wǎng)狀縫隙,大幅度提高儲(chǔ)集空間及滲流能力。
表2 南方地區(qū)五峰組—龍馬溪組多井地質(zhì)特征對(duì)比
注:括號(hào)中的數(shù)為平均數(shù)。
圖4 五峰組—龍馬溪組頁(yè)巖礦物組成特征
通過(guò)氬離子拋光+掃描電鏡觀察,發(fā)現(xiàn)五峰組—龍馬溪組頁(yè)巖儲(chǔ)層具備超微觀復(fù)雜孔隙結(jié)構(gòu),孔隙多呈開(kāi)放型,包括有機(jī)質(zhì)孔、礦物溶蝕孔、黃鐵礦晶間孔等類型,孔隙為幾十至幾百納米,尤其是有機(jī)質(zhì)孔最發(fā)育(圖5)。此外,普遍觀察到微裂縫,寬幾十納米,長(zhǎng)度為幾微米[29?30]。
有機(jī)質(zhì)孔是有機(jī)質(zhì)熱演化過(guò)程中,干酪根生烴消耗有機(jī)組分或者水分而產(chǎn)生的孔隙[31],如氣孔、瀝青球粒孔等,有機(jī)質(zhì)體內(nèi)部含有上百個(gè)小孔隙,鏡下呈近球形、橢圓形、彎月形等,孔徑為5~550 nm,平均為100 nm左右(圖5(a))。南方高演化海相頁(yè)巖儲(chǔ)層中大量有機(jī)質(zhì)孔是控制頁(yè)巖氣儲(chǔ)集和滲流的最主要因 素[32?33]。
礦物溶蝕孔可能是石英、碳酸鹽巖礦物、黏土礦物等不穩(wěn)定礦物在埋藏過(guò)程中發(fā)生溶蝕現(xiàn)象形成的孔隙,孔徑為50~500 nm(圖5(b))。五峰組—龍馬溪組頁(yè)巖經(jīng)歷了較大埋深和生烴過(guò)程,故溶蝕孔較發(fā)育。
黃鐵礦集合體內(nèi)部可見(jiàn)大量晶間孔,孔徑為30~200 nm,內(nèi)部具有一定連通性(圖5(c))。
微裂隙可能與微沉積構(gòu)造或后期成巖等作用有關(guān),其一般為微米級(jí)(圖5(d))。在低基質(zhì)孔隙頁(yè)巖中開(kāi)放型微裂縫成為控制產(chǎn)量的主要因素[1]。
永頁(yè)2井五峰組—龍馬溪組頁(yè)巖核磁共振弛豫時(shí)間2譜普遍具有雙峰特征。頁(yè)巖弛豫時(shí)間2譜中左峰最大弛豫時(shí)間基本小于10 ms,離心前后始終存在,代表微孔隙(有機(jī)質(zhì)孔及無(wú)機(jī)質(zhì)孔);右峰弛豫時(shí)間為10~100 ms,離心后譜峰消失代表微裂縫。本次測(cè)試中9塊樣品具有雙峰特征,僅1塊樣品為單峰特征,說(shuō)明頁(yè)巖中普遍發(fā)育微孔隙和微裂縫[34?35](圖6)。李軍等[34]提出孔徑低于5 μm 時(shí)核磁共振弛豫時(shí)間2與孔徑d的關(guān)系為d≈502。利用該公式,可得頁(yè)巖飽和水狀態(tài)下核磁譜轉(zhuǎn)化為孔徑分布,左峰2集中分布在 0.1~2 ms,主峰值約為0.9 ms,少量為4 ~10 ms。與此相對(duì)應(yīng),孔隙直徑集中分布在5~100 nm,峰值為45 nm 左右,少量孔隙直徑為200~500 nm。右峰集中在20~200 ms,主峰集中在50 ms,與此對(duì)應(yīng)微裂縫集中在1~10 μm,峰值為2.5 μm,與掃描電鏡觀察結(jié)果一致。
(a) 1 508.5 m,有機(jī)質(zhì)孔 55~529 nm;(b) 1 508.5 m,黃鐵礦晶間孔 38~181 nm; (c) 1 522.2 m礦物溶蝕孔隙,69~448 nm,50~125 nm;(d) 1 510.6 m 微裂縫,寬47~105 nm,延伸2~3 μm
(a) 1 510 m;(b) 1 512 m
頁(yè)巖中復(fù)雜微觀孔隙—裂隙網(wǎng)絡(luò)系統(tǒng)為頁(yè)巖氣提供了有效儲(chǔ)集空間和主要滲流通道,對(duì)聚集和開(kāi)發(fā)有重要意義。
頁(yè)巖氣作為非常規(guī)天然氣,在原始儲(chǔ)層中,體積分?jǐn)?shù)為20%~80%以吸附態(tài)存在。在焦石壩地區(qū)異常高壓條件下,五峰組—龍馬溪組吸附氣占27.1%~47.8% (體積分?jǐn)?shù)),平均為34.3%[9]。頁(yè)巖吸附能力成為評(píng)價(jià)儲(chǔ)層和認(rèn)識(shí)頁(yè)巖氣產(chǎn)量的重要參數(shù)之一[36?37]。國(guó)內(nèi)外普遍開(kāi)展了頁(yè)巖甲烷等溫吸附實(shí)驗(yàn),測(cè)試頁(yè)巖在不同壓力下吸附甲烷的體積,并采用Langmuir模型進(jìn)行擬合,計(jì)算得到的Langmuir體積反映了頁(yè)巖儲(chǔ)層所具有的最大吸附容量。永頁(yè)2井5個(gè)樣品最大附氣量為1.27~5.95 m3/t,平均為3.62 m3/t;Langmuir壓力為1.40~3.97 MPa,平均為2.75 MPa,表明頁(yè)巖對(duì)甲烷具有良好吸附能力。隨(TOC)增大,最大附氣量增大,但Langmuir壓力降低。這是因?yàn)樵诟邿嵫莼?yè)巖中,有機(jī)質(zhì)發(fā)育的豐富孔隙具有巨大比表面積,有利于吸附大量甲烷[38?39](圖7)。
頁(yè)巖含氣性特征是決定是否具有工業(yè)價(jià)值的最直接指標(biāo)。永頁(yè)2井五峰組—龍馬溪組含氣性特征縱向變化明顯,硅質(zhì)頁(yè)巖總含氣量高,為2.0~3.5 m3/t;粉砂質(zhì)頁(yè)巖含氣量一般,為1.0~2.0 m3/t,總體上硅質(zhì)頁(yè)巖及粉砂質(zhì)頁(yè)巖中解吸氣體積分?jǐn)?shù)為33.8%~79.0%,平均為55.4%。泥質(zhì)頁(yè)巖段總含氣量低于1.0 m3/t,以殘余氣為主(見(jiàn)表3、圖7)。而頂板新灘組灰綠色頁(yè)巖總含氣量低,小于0.1 m3/ t,以殘余氣為主。
永頁(yè)2井五峰組—龍馬溪組頁(yè)巖氣中以甲烷為主(平均體積分?jǐn)?shù)超過(guò)90%),含有少量乙烷和丙烷,與已獲得工業(yè)開(kāi)發(fā)的四川盆地長(zhǎng)寧—威遠(yuǎn)、涪陵等區(qū)塊相近(表3),具有良好含氣性,且游離氣體積分?jǐn)?shù)高,有利于后期開(kāi)發(fā)[40?42]。
表3 南方五峰—龍馬溪組含氣性特征
圖7 永頁(yè)2井頁(yè)巖氣地質(zhì)特征柱狀圖
5.1.1 深水陸棚相奠定頁(yè)巖氣聚集基礎(chǔ)
在深水陸棚相下,發(fā)育了豐富有機(jī)質(zhì),在熱成熟過(guò)程中形成了大量頁(yè)巖氣,內(nèi)部發(fā)育的有機(jī)質(zhì)孔不僅為游離氣富集提供了空間,而且對(duì)吸附氣富集起了決定性作用。五峰組—龍馬溪組有機(jī)質(zhì)及其內(nèi)部孔隙構(gòu)成了最佳源-儲(chǔ)匹配關(guān)系,最有利于形成和富集頁(yè)巖氣[43]。王飛宇等[44?45]發(fā)現(xiàn)在過(guò)成熟階段,高(TOC)頁(yè)巖(<5%)具有較高的頁(yè)巖孔隙度和含氣飽和度,游離氣體積分?jǐn)?shù)高,更容易獲得高產(chǎn)。類似于四川盆 地[11, 32],永頁(yè)2井五峰組—龍馬溪組總含氣量隨(TOC)增大而增大,相關(guān)系數(shù)達(dá)0.715(圖8),而與石英、黏土礦物質(zhì)量分?jǐn)?shù)等相關(guān)性較低。
5.1.2 構(gòu)造保存條件是頁(yè)巖氣聚集的關(guān)鍵
國(guó)內(nèi)外成功開(kāi)發(fā)的頁(yè)巖氣層系地質(zhì)及地球化學(xué)參數(shù)差異很大,說(shuō)明其不是獲得工業(yè)產(chǎn)能的關(guān)鍵[1],而構(gòu)造保存才是關(guān)鍵[8?12]。
圖8 永頁(yè)2井含氣性與w(TOC)關(guān)系圖
GUO等[11]指出頁(yè)巖氣聚集首要焦點(diǎn)是蓋層。五峰組—龍馬溪組頂板為灰綠、灰、黃綠色頁(yè)巖(泥巖)和粉砂質(zhì)頁(yè)巖,累計(jì)厚度超過(guò)200 m,分布穩(wěn)定,可作為區(qū)域性蓋層,對(duì)頁(yè)巖氣形成良好遮擋。底板寶塔組為龜裂狀灰?guī)r,壓汞法測(cè)試結(jié)果為低孔低滲灰?guī)r,但龜裂紋直徑一般為5~15 cm,紋寬為0.5~15.0 mm,被泥、粉砂充填,不受沉積環(huán)境、巖相和層位嚴(yán)格控制,層面、側(cè)面和底面上均呈不規(guī)則多邊形,非均質(zhì)性強(qiáng),影響對(duì)油氣遮擋,導(dǎo)致頁(yè)巖氣逸散。焦頁(yè)1井、永頁(yè)2井鄰近底板五峰組含氣量低可能與此有關(guān)。
湘西北五峰組—龍馬溪組經(jīng)歷了志留紀(jì)、中泥盆世、石炭紀(jì)末—中侏羅世3個(gè)沉降期,中侏羅世之后進(jìn)入漫長(zhǎng)抬升期,遭受剝蝕[24]。區(qū)域埋藏史具有抬升剝蝕時(shí)間長(zhǎng)、隆升幅度大的特點(diǎn)。以永頁(yè)2井為例,五峰組—龍馬溪組烴源巖在侏羅世進(jìn)入生干氣階段,熱演化停滯,烴源巖演化程度適中(o為2.0%~3.0%)。
近年來(lái),勘探實(shí)踐結(jié)果證實(shí)良好保存條件是海相頁(yè)巖氣富集與高產(chǎn)的關(guān)鍵因素。燕山運(yùn)動(dòng)形成隆凹相間格局,背斜因區(qū)域性蓋層被剝蝕及斷裂發(fā)育而導(dǎo)致頁(yè)巖氣聚集被破壞。但向斜部位由于埋深大、變形相對(duì)較弱、斷裂不發(fā)育、蓋層條件好等形成有效空間配置屬于殘余型或完整型構(gòu)造樣式,有利于頁(yè)巖氣的聚集和保存。
湘西北地區(qū)五峰組—龍馬溪組頁(yè)巖氣具有與四川盆地相似的聚集條件,有機(jī)質(zhì)類型好,(TOC)普遍超過(guò)2.0%,熱演化進(jìn)入高成熟階段,生烴潛力已不是關(guān)鍵問(wèn)題,斷裂及埋深影響成為決定頁(yè)巖氣含氣性的關(guān)鍵。在四川盆地周緣同一構(gòu)造區(qū),深部比淺部具有更好保存條件[3]。龍參1井、永頁(yè)1井因埋深淺(<600 m)而含氣量低甚至不含氣[15],但在向斜核部適中埋深 (1 500~3 500 m)、遠(yuǎn)離斷層、保存條件較好條件下,永頁(yè)2井、龍參2井五峰組—龍馬溪組含氣性好,總含氣量達(dá)2~4 m3/t,以解吸氣為主,且甲烷體積分?jǐn)?shù)高于90%,具有良好勘探開(kāi)發(fā)條件。因此,未來(lái)勘探應(yīng)集中在龍山—永順一帶向斜核部,即脈龍界向斜、靛房向斜、龍家寨向斜及青安坪向斜等(圖9)。
(a) 2013YS-L15地震剖面圖;(b) 15號(hào)調(diào)查線地質(zhì)剖面圖
1) 湘西北地區(qū)五峰組—龍馬溪組發(fā)育于深水陸棚相,富有機(jī)質(zhì)頁(yè)巖厚度達(dá)20 m,富含有機(jī)質(zhì)、硅質(zhì)、黃鐵礦以及筆石化石。
2)五峰組—龍馬溪組頁(yè)巖有機(jī)質(zhì)為Ⅰ型干酪根,(TOC)普遍大于2.0%,自西向東逐漸減??;o主要為2.0%~3.0%,熱演化達(dá)到過(guò)成熟階段。
3)礦物成分以石英為主,黏土礦物(主要是伊/蒙混層)次之,碳酸鹽巖礦物質(zhì)量分?jǐn)?shù)低。頁(yè)巖普遍發(fā)育微孔隙(主要為有機(jī)質(zhì)孔、晶間孔、溶蝕孔)和微裂縫,儲(chǔ)層吸附能力強(qiáng)。
4)五峰—龍馬溪組含氣量為1.0~3.5 m3/t,以解吸氣為主,甲烷體積分?jǐn)?shù)超過(guò)90%。
5)對(duì)于湘西北五峰組—龍馬溪組,深水陸棚頁(yè)巖中豐富的有機(jī)質(zhì)奠定了聚集基礎(chǔ),構(gòu)造保存是頁(yè)巖氣聚集的關(guān)鍵,未來(lái)勘探方向位于龍山—永順一帶向斜核部。
[1] CURTIS J B. Fractured shale-gas systems[J]. AAPG Bulletin, 2002, 86(11): 1921?1938.
[2] JARVIE D M, HILL R J, RUBBLE T E, et al. Unconventional shale-gas systems: the Mississippian Barnett shale of north-central Texas as one model for thermogenic: shale-gas assessment[J]. AAPG Bulletin, 2007, 91(4): 475?499.
[3] 王志剛. 涪陵頁(yè)巖氣勘探開(kāi)發(fā)重大突破與啟示[J]. 石油與天然氣地質(zhì), 2015, 36(1): 1?6. WANG Zhigang. Breakthrough of Fuling shale gas exploration and development and its inspiration[J]. Oil & Gas Geology, 2015, 36(1): 1?6.
[4] 鄒才能, 董大忠, 王玉滿, 等. 中國(guó)頁(yè)巖氣特征、挑戰(zhàn)及前景(一)[J]. 石油勘探與開(kāi)發(fā), 2015, 42(2): 689?701. ZOU Caineng, DONG Dazhong, WANG Yuman, et al. Shale gas in China: characteristics, challenges and prospects(I)[J]. Petroleum Exploration and Development, 2015, 42(2): 689?701.
[5] CHEN Shangbin, ZHU Yanming, WANG Hongyan, et al. Shale gas reservoir characterization: a typical case in the southern Sichuan Basin of China[J]. Energy, 2011, 36: 6609?6616.
[6] 趙文智, 李建忠, 楊濤, 等. 中國(guó)南方海相頁(yè)巖氣成藏差異性比較與意義[J]. 石油勘探與開(kāi)發(fā), 2016, 43(4): 499?510. ZHAO Wenzhi, LI Jianzhong, YANG Tao, et al. Geological difference and its significance of marine shale gases in South China[J]. Petroleum Exploration and Development, 2016, 43(4): 499?510.
[7] 李博, 魏國(guó)慶, 洪克巖, 等. 中國(guó)南方盆外復(fù)雜構(gòu)造區(qū)頁(yè)巖氣井評(píng)價(jià)與認(rèn)識(shí): 以湖北來(lái)鳳咸豐區(qū)塊來(lái)頁(yè)1井為例[J]. 天然氣工業(yè), 2016, 36(8): 29?35. LI Bo, WEI Guoqing, HONG Keyan. Evaluation and understanding on the shale gas wells in complex tectonic provinces outside Sichuan Basin, South China:a case study from Well Laiye 1 in Laifeng—Xianfeng Block, Hubei[J]. Natural Gas Industry, 2016, 36(8): 29?35.
[8] 郭旭升. 南方海相頁(yè)巖氣“二元富集”規(guī)律——四川盆地及周緣龍馬溪組頁(yè)巖氣勘探實(shí)踐認(rèn)識(shí)[J]. 地質(zhì)學(xué)報(bào), 2014, 88(7): 1209?1218. GUO Xusheng. Rule of two-factor enrichment for marine shale gas in Southern China: understanding from the Longmaxi Formation shale gas in Sichuan Basin and surrounding area[J]. Acta Geologica Sinica, 2014, 88(7): 1209?1218.
[9] 騰格爾, 申寶劍, 俞凌杰, 等. 四川盆地五峰組—龍馬溪組頁(yè)巖氣形成與聚集機(jī)理[J]. 石油勘探與開(kāi)發(fā), 2017, 44(1): 69?78. BORJIGIN Tenger, SHEN Baojian, YU Lingjie, et al. Mechanisms of shale gas generation and accumulation in the Ordovician Wufeng—Longmaxi Formation, Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 2017, 44(1): 69?78.
[10] GUO Tonglou, ZHANG Hanrong. Formation and enrichment mode of Jiaoshiba shale gas field, Sichuan Basin[J]. Petroleum Exploration and Development, 2014, 41(1): 28?36.
[11] GUO Tonglou. Evaluation of highly thermally mature shale-gas reservoirs in complex structural parts of the Sichuan Basin[J]. Journal of Earth Science, 2013, 24(6): 863?873.
[12] 郭彤樓. 中國(guó)式頁(yè)巖氣關(guān)鍵地質(zhì)問(wèn)題與成藏富集主控因素[J]. 石油勘探與開(kāi)發(fā), 2016, 43(3): 317?326. GUO Tonglou. Key geological issues and main controls on accumulation and enrichment of Chinese shale gas[J]. Petroleum Exploration and Development, 2016, 43(3): 317?326.
[13] 范二平, 唐書(shū)恒, 姜文, 等. 湘西北下志留統(tǒng)龍馬溪組頁(yè)巖氣成藏條件及勘探潛力分析[J]. 西安石油大學(xué)學(xué)報(bào)(自然科學(xué)版), 2014, 29(4): 18?25. FAN Erping, TANG Shuheng, JIANG Wen, et al. Accumulation conditions and exploration potential of shale gas in Lower Silurian Longmaxi Formation, Northwestern Hunan[J]. Journal of Xi’an Shiyou University(Natural Science Edition), 2014, 29(4): 18?25.
[14] 唐書(shū)恒, 范二平, 張松航, 等. 湘西北下古生界海相頁(yè)巖儲(chǔ)層特征與含氣性分析[J]. 地學(xué)前緣, 2016, 23(2): 135?146. TANG Shuheng, FAN Erping, ZHANG Songhang, et al. Reservoir characteristics and gas bearing capacity of the Lower Palaeozoic marine shales in Northwestern Hunan[J]. Earth Science Frontiers, 2016, 23(2): 135?146.
[15] 林拓, 張金川, 李博, 等. 湘西北地區(qū)龍馬溪組頁(yè)巖氣聚集條件與含氣性分析[J]. 新疆石油地質(zhì), 2014, 35(5): 507?510. LIN Tuo, ZHANG Jinchuan, LI Bo. Accumulation conditions and gas?bearing characteristic analysis of Longmaxi shale gas in Northwestern Hunan Province[J]. Xinjiang Petroleum Geology, 2014, 35(5): 507?510.
[16] 秦明陽(yáng), 蔡寧波, 鄭振華. 海相頁(yè)巖氣目標(biāo)區(qū)優(yōu)選研究—以湖南某中標(biāo)區(qū)塊為例[J]. 中國(guó)煤炭地質(zhì), 2015, 27(3): 24?29. QIN Mingyang, CAI Ningbo, ZHENG Zhenhua. Marine shale gas target area optimization:a case study of a bid winning block in Hunan[J]. Coal Geology of China, 2015, 27(3): 24?29.
[17] WAN Yi, TANG Shuheng, PAN Zhejun. Evaluation of the shale gas potential of the lower Silurian Longmaxi Formation in northwest Hunan Province, China[J]. Marine and Petroleum Geology, 2017, 79: 159?175.
[18] 李海, 白云山, 王保忠, 等. 湘鄂西地區(qū)下古生界頁(yè)巖氣保存條件[J]. 油氣地質(zhì)與采收率, 2014, 21(6): 22?26. LI Hai, BAI Yunshan, WANG Baozhong, et al. Preservation conditions research on shale gas in the lower Paleozoic of western Hunan and Hubei area[J]. Petroleum Geology and Recovery Efficiency, 2014, 21(6): 22?25.
[19] 邱小松, 楊波, 胡明毅. 中揚(yáng)子地區(qū)五峰組—龍馬溪組頁(yè)巖氣儲(chǔ)層及含氣性特征[J]. 天然氣地球科學(xué), 2013, 24(6): 1274?1283. QIU Xiaosong, YANG Bo, HU Mingyi. Characteristics of shale reservoirs and gas content of Wufeng—Longmaxi Formation in the middle Yangtze region[J]. Natural Gas Geoscience, 2013, 24(6): 1274?1283.
[20] 聶海寬, 金之鈞, 馬鑫, 等. 四川盆地及鄰區(qū)上奧陶統(tǒng)五峰組—下志留統(tǒng)龍馬溪組底部筆石帶及沉積特征[J]. 石油學(xué)報(bào), 2017, 38(2): 160?174. NIE Haikuan, JIN Zhiyun, MA Xin, et al. Graptolites zone and sedimentary characteristics of Upper Ordovician Wufeng Formation-Lower Silurian Longmaxi Formation in Sichuan Basin and its adjacent areas[J]. Acta Petrolei Sinica, 2017, 38(2): 160?174.
[21] 張士萬(wàn), 孟志勇, 郭戰(zhàn)峰, 等. 涪陵地區(qū)龍馬溪組頁(yè)巖儲(chǔ)層特征及其發(fā)育主控因素[J]. 天然氣工業(yè), 2014, 34(12): 16?24. ZHANG Shiwan, MENG Zhiyong, GUO Zhanfeng, et al. Characteristics and major controlling factors of shale reservoirs in the Longmaxi Formation, Fuling area, Sichuan Basin[J]. Natural Gas Industry, 2014, 34(12): 16?24.
[22] 張琳婷, 郭建華, 焦鵬, 等. 湘西北地區(qū)牛蹄塘組頁(yè)巖氣有利地質(zhì)條件及成藏區(qū)帶優(yōu)選[J]. 中南大學(xué)學(xué)報(bào)(自然科學(xué)版), 2015, 46(5): 1715?1722. ZHANG Linting, GUO Jianhua, JIAO Peng, et al. Geological conditions and favorable exploration zones of shale gas in Niutitang Formation at northwest Hunan[J]. Journal of Central South University (Science and Technology), 2015, 46(5): 1715?1722.
[23] 張琳婷, 郭建華, 焦鵬, 等. 湘西北下寒武統(tǒng)牛蹄塘組頁(yè)巖氣藏形成條件與資源潛力[J]. 中南大學(xué)學(xué)報(bào)(自然科學(xué)版), 2014, 45(4): 1163?1173. ZHANG Linting, GUO Jianhua, JIAO Peng, et al. Accumulation conditions and resource potential of shale gas in Lower Cambrian Niutitang formation, northwestern Hunan[J]. Journal of Central South University (Science and Technology), 2014, 45(4): 1163?1173.
[24] 董清源, 田建華, 冉琦. 湖南永順區(qū)塊牛蹄塘組頁(yè)巖氣勘探前景及選區(qū)評(píng)價(jià)[J]. 東北石油大學(xué)學(xué)報(bào), 2016, 40(3): 61?70. DONG Haiqing, TIAN Jianhua, RAN Qi. Exploration potential and favorable paly identification of Niutitang Formation shale gas of Yongshun block in Hunan Province[J]. Journal of Northeast Petroleum University, 2016, 40(3): 61?70.
[25] 郭世釗, 郭建華, 劉辰生, 等. 黔北地區(qū)志留系下統(tǒng)龍馬溪組頁(yè)巖氣成藏潛力[J]. 中南大學(xué)學(xué)報(bào)(自然科學(xué)版), 2016, 47(6): 1973?1980. GUO Shizhao, GUO Jianhua, LIU Chensheng, et al. Shale gas accumulation potential of Lower Silurian Longmaxi formation in northern Guizhou[J]. Journal of Central South University (Science and Technology), 2016, 47(6): 1973?1980.
[26] 李賢慶, 趙佩, 孫杰, 等. 川南地區(qū)下古生界頁(yè)巖氣成藏條件研究[J]. 煤炭學(xué)報(bào), 2013, 38(5): 864?869. LI Xianqing, ZHAO Pei, SUN Jie, et al. Study on the accumulation conditions of shale gas from the Lower Paleozoic in the south region of Sichuan Basin[J]. Journal of China Coal Society, 2013, 38(5): 864?869.
[27] 程鵬, 肖賢明. 很高成熟度富有機(jī)質(zhì)頁(yè)巖的含氣性問(wèn)題[J]. 煤炭學(xué)報(bào), 2013, 38(5): 737?741. CHENG Peng, XIAO Xianming. Gas content of organic-rich shales with very high maturities[J]. Journal of China Coal Society, 2013, 38(5): 737?741.
[28] 梁峰, 朱炎銘, 馬超, 等. 湘西北地區(qū)牛蹄塘組頁(yè)巖氣儲(chǔ)層沉積展布及儲(chǔ)集特征[J]. 煤炭學(xué)報(bào), 2015, 40(12): 2284?2292. LIANG Feng, ZHU Yanming, MA Chao, et al. Sedimentary distribution and reservoir characteristics of shale gas reservoir of Niutitang Formation in Northwestern Hunan[J]. Journal of China Coal Society, 2015, 40(12): 2884?2892.
[29] 薛冰, 張金川, 唐玄, 等. 黔西北龍馬溪組頁(yè)巖微觀孔隙結(jié)構(gòu)及儲(chǔ)氣特征[J]. 石油學(xué)報(bào), 2015, 36(2): 138?149, 173. XUE Bing, ZHANG Jinchuan, TANG Xuan, et al. Characteristics of microscopic pore and gas accumulation on shale in Longmaxi Formation, northwest Guizhou[J]. Acta Petrolei Sinica, 2015, 36(2): 138?149, 173.
[30] 王玉滿, 董大忠, 李建忠, 等. 川南下志留統(tǒng)龍馬溪組頁(yè)巖氣儲(chǔ)層特征[J]. 石油學(xué)報(bào), 2012, 33(4): 32?42. WANG Yuman, DONG Dazhong, LI Jianzhong, et al. Reservoir characteristics of shale gas in Longmaxi Formation of the Lower Silurian, southern Sichuan[J]. Acta Petrolei Sinica, 2012, 33(4): 32?42.
[31] BOWKER K A. Barnett shale gas production, Fort Worth Basin: issues and discussion[J]. AAPG Bulletin, 2007, 91(4): 523?533.
[32] YANG Feng, NING Zhengfu, WANG Qing, et al. Pore structure characteristics of lower Silurian shales in the southern Sichuan Basin, China: insights to pore development and gas storage mechanism[J]. International Journal of Coal Geology, 2016, 156: 12?24.
[33] 郭旭升, 李宇平, 劉若冰, 等. 四川盆地焦石壩地區(qū)龍馬溪組頁(yè)巖微觀孔隙結(jié)構(gòu)特征及其控制因素[J]. 天然氣工業(yè), 2014, 34(6): 9?16. GUO Xusheng, LI Yuping, LIU Ruobing, et al. Characteristics and controlling factors of micropore structures of Longmaxi Shale Play in the Jiaoshiba area, Sichuan Basin[J]. Natural Gas Industry, 2014, 34(6): 9?16.
[34] 李軍, 金武軍, 王亮, 等. 利用核磁共振技術(shù)確定有機(jī)孔與無(wú)機(jī)孔孔徑分布: 以四川盆地涪陵地區(qū)志留系龍馬溪組頁(yè)巖氣儲(chǔ)層為例[J]. 石油與天然氣地質(zhì), 2016, 37(1): 129?135. LI Jun, JIN Wujun, WANG Liang, et al. Quantitative evaluation of organic and inorganic pore size distribution by NMR: a case from the Silurian Longmaxi Formation gas shale in Fuling area,Sichuan Basin[J]. Oil & Gas Geology, 2016, 37(1): 129?135.
[35] 黃磊, 申維. 頁(yè)巖氣儲(chǔ)層孔隙發(fā)育特征及主控因素分析: 以上揚(yáng)子地區(qū)龍馬溪組為例[J]. 地學(xué)前緣, 2015, 27(1): 374?385. HUANG Lei, SHEN Wei. Characteristics and controlling factors of the formation of pores of a shale gas reservoir: a case study from Longmaxi Formation of the Upper Yangtze region, China, Earth Science Frontiers, 2015, 27(1): 374?385.
[36] 侯宇光, 何生, 易積正, 等. 頁(yè)巖孔隙結(jié)構(gòu)對(duì)甲烷吸附能力的影響[J]. 石油勘探與開(kāi)發(fā), 2014, 41(2): 248?256. HOU Yuguang, HE Sheng, YI Jizheng, et al. Effect of pore structure on methane sorption capacity of shales[J]. Petroleum Exploration and Development, 2014, 41(2): 248?256.
[37] 畢赫, 姜振學(xué), 李鵬, 等. 渝東南地區(qū)龍馬溪組頁(yè)巖吸附特征及其影響因素[J]. 天然氣地球科學(xué), 2014, 25(2): 302?310. BI He, JIANG Zhenxue, LI Peng, et al. Adsorption characteristic and influence factors of Longmaxi shale in southeastern Chongqing[J]. Natural Gas Geoscience, 2014, 25(2): 302?310.
[38] WANG Sibo, SONG Zhiguang, CAO Taotao, et al. The methane sorption capacity of palezoic shales from the Sichuan Basin, China[J]. Marine and Petroleum Geology, 2013, 44: 112?119.
[39] ROSS D J, MARC BUSTIN R. The importance of shale composition and pore structure upon gas storage potential of shale gas reservoirs[J]. Marine and Petroleum Geology, 2009, 26(6): 916?927.
[40] GUO Xusheng, HU Dongfeng, LI Yuping, et al. Geological features and reservoiring mode of shale gas reservoirs in Longmaxi Formation of the Jiaoshiba area[J]. Acta Geologica Sinica (English Edition), 2014, 88(6): 1811?1821.
[41] 張曉明, 石萬(wàn)忠, 徐清海, 等. 四川盆地焦石壩地區(qū)頁(yè)巖氣儲(chǔ)層特征及控制因素[J]. 石油學(xué)報(bào), 2015, 36(8): 926?939, 953. ZHANG Xiaoming, SHI Wanzhong, XU Qinghai, et al. Reservoir characteristics and controlling factors of shale gas in Jiaoshiba area,Sichuan Basin[J]. Acta Petrolei Sinica, 2015, 36(8): 926?939, 953.
[42] 高波. 四川盆地龍馬溪組頁(yè)巖氣地球化學(xué)特征及其地質(zhì)意義[J]. 天然氣地質(zhì)科學(xué), 2015, 36(6): 1173?1182. GAO Bo. Geochemical characteristics of shale gas from lower Silurian Longmaxi Formation in the Sichuan Basin and its geological significance[J]. Natural Gas Geoscience, 2015, 36(6): 1173?1182.
[43] 胡宗全, 杜偉, 彭勇民, 等. 頁(yè)巖微觀孔隙特征及源-儲(chǔ)關(guān)系:以川東南地區(qū)五峰組—龍馬溪組為例[J]. 石油與天然氣地質(zhì), 2015, 36(6): 1001?1008. HU Zongquan, DU Wei, PENG Yongmin, et al. Microscopic pore characteristics and the source-reservoir relationship of shale: a case study from the Wufeng and Longmaxi Formations in Southeast Sichuan Basin[J]. Oil & Gas Geology, 2015, 36(6): 1001?1008.
[44] 王飛宇, 關(guān)晶, 馮偉平, 等. 過(guò)成熟海相頁(yè)巖孔隙度演化特征和游離氣量[J]. 石油勘探與開(kāi)發(fā), 2013, 40(6): 764?768. WANG Feiyu, GUAN Jing, FENG Weiping, et al. Evolution of overmature marine shale porosity and implication to the free gas volume[J]. Petroleum Exploration and Development, 2013, 40(6): 764?768.
[45] LOUCKS R G, RUPPEL S C. Mississippian Barnett Shale: Lithofacies and depositional setting of a deep-water shale-gas succession in the Fort Worth Basin, Texas[J]. AAPG Bulletin, 2007, 91(4): 579?601.
(編輯 陳燦華)
Geological conditions and gas-bearing characteristics of shale gas in complex structure area out of Sichuan basin: a case of Wufeng—Longmaxi formation in Northwestern Hunan, China
QIN Mingyang1, 2, GUO Jianhua1, HE Hongsheng2, HUANG Yanran1, 3, JIAO Peng1, LIU Chensheng1, ZHENG Zhenhua2, GUO Jun2, CAO Zheng4, WANG Chongjing5, XUE Yuan6
(1. School of Geosciences and Info-Physics Engineering, Central South University, Changsha 410083, China; 2. The Survey Academy of Coal Geology of Hunan Province, Changsha 410014, China; 3. Key Laboratory of Shale Gas Resource Utilization of Hunan Province, Hunan University of Science and Technology, Xiangtan 411201, China; 4. School of Geosciences, China University of Petroleum, Qingdao 266580, China; 5. College of Mining Engineering, Liaoning Technical University, Fuxin 123000, China; 6. Shengli Branch of SINOPEC Geophysical Co. Ltd., Dongying 257086, China)
Based on the analysis of the geological conditions of shale gas in Yongye 2 Well, combined with other drilling wells and predecessors’ results, and compared with successfully developed shale gas fields at home and abroad, shale gas geological characteristics and gas-bearing of Wufeng—Longmaxi formation in complex structure area out of Sichuan basin were comprehensively researched, and future exploration direction was also pointed out. The results show that shale gas accumulation conditions of Wufeng—Longmaxi formation in the northwest Hunan are similar to those in Fuling block of Sichuan Basin, and there are four apparent features. 1) Under deep-water shelf facies, the thickness of shale is more than 20 m, which is rich in organic matter, siliceous, pyrite and graptolite. 2) Organic matter belongs to Ⅰ type kerogens. The mass fraction of TOC is generally greater than 2.0%, and decreases from west to east gradually.ois mainly between 2.0% and 3.0%, and thermal evolution reaches over-mature stage. 3) Mineral composition is mainly quartz, with the average mass fraction of 47.9%. Clay minerals (mainly I/S mixed layer) are secondary with average mass fraction of 26.9%, but carbonate minerals content is less than 10%. Micropores(mainly organic pores, intercrystalline pores, dissolved pores) and micro-cracks develop generally and adsorbed capacity is strong. 4) Gas-bearing content of Wufeng—Longmaxi formation is 1.0?3.5 m3/t, adsorbed gas is dominant and methane volume fraction is more than 90%. Based on comprehensive study, deep-water shelf develops rich organic matter, which is the base of shale gas accumulation of Wufeng—Longmaxi formation. However, gas content depends on preservation conditions, such as capping layer, buried depth and fracture. The future exploration direction should be focused on the syncline core from Longshan to Yongshun of Sangzhi—Shimen Synclinorium.
Northwestern Hunan; Wufeng—Longmaxi formation; shale gas; geological condition; gas-bearing property
10.11817/j.issn.1672?7207.2018.08.019
TE122
A
1672?7207(2018)08?1979?12
2017?09?08;
2017?12?21
國(guó)家自然科學(xué)基金資助項(xiàng)目(41603046);湖南省自然科學(xué)基金資助項(xiàng)目(2017JJ1034);湖南省科學(xué)技術(shù)廳軟科學(xué)計(jì)劃項(xiàng)目(2014ZK3043);湖南省國(guó)土資源廳軟科學(xué)研究項(xiàng)目(2014-01)(Project(41603046) supported by the National Natural Science Foundation of China; Project(2017JJ1034) supported by the Natural Science Foundation of Hunan Province; Project(2014ZK3043) supported by the Department of Science and Soft Science Plan of Technology of Hunan Province; Project(2014-01) supported by the Soft Science Plan of Department of Land and Resources of Hunan Province)
郭建華,教授,博士生導(dǎo)師,從事沉積學(xué)與石油地質(zhì)研究;E-mail:gjh796@csu.edu.cn