• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    鈦摻雜鈣鈦礦制備高效率鈣鈦礦太陽能電池

    2018-09-03 03:25:30張宇豪鄭永進吳立爽諸躍進
    無機化學學報 2018年9期
    關(guān)鍵詞:寧波大學理學院工程系

    田 輝 熊 啟 劉 鵬 張 京 韓 磊 張宇豪 鄭永進 吳立爽 諸躍進

    (寧波大學理學院,微電子科學與工程系,寧波 315211)

    In the pastseveralyears,organic-inorganic perovskite solar cells have become one of the most studied cells for their high efficiency,low fabrication cost and easy solution process[1-5].The core component is the perovskite layer in n-i-p type perovskite solar cells(PSCs),whose properties are quite important for efficient charge transport.As the light absorption layer,perovskite layer generates electron/hole carriers,which are separated and driven to corresponding n and p sides under the effect of built-in internal electrical field.Then,they pass through electron/hole transport layer(ETL/HTL)to converging in electrode[6-7].There are two types of defects in perovskite layer:(1)Deep level intrinsic defects which result in the recombination and trap states in perovskite lattice[8-9];(2)Owing to polycrystalline structure of perovskite,a large amount of defects appear in the poly crystal perovskite grain boundary during solution-based prep-aration processes[8].The large number of trap states nevertheless induce charge carrier recombination and limit the PCE in thin-film solar cells unless they can be further reduced[10].Moreover,the trap states cast awful impact on hysteresis properties,leading to stability concerns over the devices[11].Thus,lowering the charge recombination via reducing defects states in the perovskite polycrystalline thin film is crucial for continued progress in device performance.

    Up to now,three reported methods are certified to solve defect problem produced in the perovskite layer.Firstly,adding functional molecules to act on the grain boundary can effectively passivate the trap states.Insulating polymers,ionic liquid and the semiconducting molecule fullerene are reported to form chemical interactions with the surface atoms thus passivate the trap states[12-13].Secondly,adding an interface layerabove perovskite layereffectively illuminates the surface trap states and reduce the interface recombination[14-15].Thirdly,the extrinsic metal ions(alkali metal ions K+,Na+,Zn2+)are added in the perovskite films to effectively influence the crystallinity and passivate the trap states[16-18].

    In this work,we report a method to improve properties with Ti4+doping in perovskite precursor solution to passivate defect in perovskite.Once investigating the effect of Ti4+,it is found that most of Ti4+was distributed in the polycrystalline perovskite grain boundary.Further research shows size of perovskite grain changed subtly.The bandgap of doped perovskite unchanged after Ti4+doping.And the photoluminescence and carrier transport are obviously enhanced,indicating the trap states are effectively reduced.With optimum content of Ti4+concentration doped in perovskite precursor solution,the efficiency(17.4%)of PSCs demonstrated significant improvement contrast with conventional device(14.0%).Higher efficiency suggests it is an effective method via doping engineering with Ti4+.

    1 Experimental

    1.1 Fabrication of perovskite solar cell device

    The original PSCs are composed of FTO layer/TiO2blocking layer/CH3NH3PbI3(MAPbI3)layer/spiro-OMeTAD/Ag.The pure perovskite precursor solution was prepared by directly mixing CH3NH3I3and PbI2with nCH3NH3I3∶nPbI2=1∶1 in dimethylformamide(DMF).The pure CH3NH3PbI3is a conventional contrast sample.TiCl4ethyl alcohol solution (1 mol·L-1)is added to perovskite precursor solution.Different volume of TiCl4solution is add to make a series of doped perovskite precursor solution with different molar ratios(x%,x=0,0.05,0.1,0.2 and 0.5)of Ti to Pb.Ti4+-x%represents with different concentrations of Ti4+doped the samples.The 60 nm thick TiO2compact layer was synthesized in air via sol-gel method and deposited on the etched and cleaned FTO glass.Titaniumビisopropoxide was added to the mixed solution of isopropanol alcohol,diethanolamine and deionized water then the sol was left stirring for 1 h before using.The deposited TiO2film was annealed in oven for 30 min at 450℃[19].Next,the compact TiO2layer was treated with 0.04 mol·L-1TiCl4at 70 ℃ for 30 min and sintered in oven for 30 min at 500℃.

    Perovskite layerwasdeposited on the TiO2blocking layer by spinning coating the perovskite precursor solution at 2 800 r·min-1for 30 s and treated by anti-solvent chlorobenzene(CB).Then,the substrate was carefully baked on the hot plate to form uniform perovskite film by slow annealing.The hole transport layer was prepared by spinning coating hole transport material (HTM)solution at 3 000 r·min-1for 30 s.HTM solution consists of 60 mmol·L-12,2′,7,7′-tetrakis(N,N-di-p-methox-yphenylamine)-9,9′-spirobifluorene(spiro-MeOTAD)in chlorobenzene with added 80%(n/n)4-tert-butylpyridine(tBP)and 30%(n/n)of lithium bis(trifluoromethanesulfony)imide(Li-TFSI)[20].Then,substrate would be oxidized in dry air for 6 h.Lastly,approximately 100 nm of Ag electrode were evaporated on the HTM with ultrahigh vacuum.

    1.2 Characterization of the devices

    X-ray diffraction patterns(XRD)of the Ti4+doped perovskite films based on FTO glass were acquired by a Bruker instrument(D8 advance,made in Germany)using Cu radiation(λ=0.154 06 nm,applied voltage of 40 kV and current of 800 mA)at scan rate of 4°·min-1and range of 10°~50°for crystal structure and size.The surface morphologies and element analysis of the perovskite films (FTO glass/perovskite layer)were observed by a scanning electron microscope(SEM,Hitachi,SU-70,Japan)with energy dispersive X-ray spectroscopy (EDX).The optical absorption spectrum of the perovskite films based on glass was tested by UV-TR spectrophotometer(Agilent Cary 5000,USA).Steady-state photoluminescence(PL)of the perovskite films was measured by fluorescence spectrophotometer(Agilent,USA)with 532 nm light to excite the two groups of substrates that were respectively based on glass/perovskite and FTO glass/perovskite.Timeresolved PL spectra (excited at 450 nm;monitored at 750 nm)were recorded on Horiba fluorescence spectrometer.The binding energies of the perovskite elements were analyzed by X-ray photoelectron spectroscopy(XPS,Shimadzu,Japan)using Al Kα radiation.Currentvoltage (J-V)characteristics were measured by the equipment consisting of a Keithley 4200 semiconductor analyzer and a sunlight simulator(Newport solar simulator 3A,AM1.5,100 mW·cm-2)requiring to be adjusted with a piece of standard silicon reference cell.The electrochemicalimpedance spectroscopy(EIS)of perovskite solar cells were measured with an electrochemical workstation(Zennium,Germany).

    2 Results and discussion

    2.1 Crystalline and surface morphology of CH3NH3PbI3

    The crystallinity and continuity of the perovskite film are key factors for charge dissociation and charge transmission in device.The XRD patterns of perovskite film with different concentration of Ti4+on FTO glass is shown in Fig.1a,which indicates the change of crystallinity and half-peak width.In Fig.1a,the peaks at 14.06°,28.40°and 43.30°are respectively assigned to the(110),(220)and(330)planes of CH3NH3PbI3[21].The doped Ti4+has ionic radius of 0.064 nm,far smaller than the Pb2+of 0.119 nm.Moreover,Ti has 4 valence electrons to coordinate while Pb has 2 valence electrons to coordinate in CH3NH3PbI3.Therefore,great discrepancy of ionic size and valence states indicates that Ti4+is hardly to substitute the Pb2+in CH3NH3PbI3.The XRD patterns show the perovskite peak position almost does not shift with doping concentration increasing,which illuminates Ti4+does not change the crystalline lattice and therefore Ti4+is not substitutional impurity in the perovskite crystalline.Furthermore,it is noticed that the peak intensity is higher with Ti4+-0.05%and Ti4+-0.1%doped perovskite,compared with the pure one.It means that the crystallinity of doped perovskite is better than that of the pure perovskite.Gradually increasing the Ti4+amount,the XRD peak intensity decreased further,which means the crystallinity of perovskite based on Ti4+with 0.2%~0.5%is worse than of the pure perovskite film.The average size of perovskite grain is circulated according to half-peak width of the perovskite (110)diffraction peaks site based on the Scherrer equation as following:

    Fig.1 (a)XRD patterns of Ti4+doped perovskite film,the inset is the enlarged(110)diffraction peaks;(b)UV-Vis absorption spectra of perovskite films on glass with and without Ti4+,the insert is the enlarged spectra of(b)

    Table 1 Peak position,half-peak width and the calculated grain size of(110)plane

    D=kλ/(βcosθ)where D is the crystalline size,λ is the wavelength of X-ray radiation(0.154 nm),k is the constant taken as 0.89,β is the half-peak width,θ is the peak site of the perovskite(110)diffraction peaks in XRD patterns.As shown In Table 1,the size of perovskite grain gradually decreases with the concentration of Ti4+increasing,which reveals Ti4+as dopant diminishes the size of perovskite grain.

    The optic band gap change was detected.In UVIR spectra of the perovskite films upon cleaned glass(Fig.1b),the absorption of Ti4+-0.1%doped perovskite is the highest of the films,which is ascribed to the high quality and the compactness of the film.The absorption onset and the band edge near 800 nm are enlarged to check the bandgap of the perovskite.It is obvious that the absorption onset has no obvious change with Ti4+doping,which reveals that Ti4+ions have no effect on bandgap,and further verifies Ti4+does not substitute Pb2+to form perovskite structure to modify the energy band gap.

    2.2 Exploration distribution of Ti4+in perovskite

    The top view morphologies of perovskite films were observed by SEM.As is shown in Fig.2(a~c),the size of perovskite grain becomes smaller and more uniform with Ti4+-0.1%and Ti4+-0.2%modification(Fig.2(b,c))than of the pure perovskite grain in Fig.2a,which may be helpful to form continuous film and produce better contact between perovskite layer and HTL[22].

    Fig.2 SEM images of Ti4+with(a)0,(b)0.1%and(c)0.2%perovskite film;(d)Surface morphology exposed under SEM-EDS;SEM-mapping of(e)Pb2+and(f)Ti4+

    The element distribution of perovskite films is further researched.In Fig.2d,polycrystal perovskite film structure and the pinholes between the grain boundaries can be observed under SEM-EDS mapping mode.The SEM-mapping of Ti4+-0.1%perovskite film shows the distribute condition of Pb and Ti in polycrystallineperovskite film (Fig.2(e,f)).In-situ mapping oflead indicatesthatPb isuniformly distributed inside the perovskite films (Fig.2e).By contrast,Ti is intensively distributed at the grain boundaries of polycrystalline perovskite as indicates by the yellow circles in Fig.2f.The above results demonstrate that Ti4+ions are mostly distributed at grain boundary of polycrystalline perovskite as additive.By this way,controlling proper Ti4+dopant might lead to the defect of grain boundary passivated,which alleviates the tendency of non-radiative recombination to carriers by trap states in the grain boundary of polycrystalline perovskite. Meanwhile, controlling proper Ti4+dopant not only diminishes the size of polycrystalline perovskite grain to homogenize the scale of perovskite grain,it also promotes high quality crystallinity of perovskite to be favorable for charge transport.

    When Ti4+is formed at the grain boundary of perovskite films,it does not change the perovskite crystalline lattice structure for not substituting the Pb position.However,Ti4+will interact with the atoms in the perovskite material.Fig.3(a,b)indicates the XPS core level spectra of Pb4f and I3d,respectively.It is clear that the peak positions of Pb4f and I3d moves to lower binding energy when Ti-0.1% is doped in.Because the Ti will also interact with I,the binding energy of Pb is reduced.On the other hand,Cl is introduced in the system which might also interact with Pb,thus the binding energy of I is also reduced.The scheme of the Ti doping position is indicated in Fig.3c,which also indicates the interaction of Ti with the atoms in MAPbI3.

    Fig.3 XPS core level spectra of(a)Pb4f;and(b)I3d;(c)Schema of Ti4+formed at the grain boundary(left),the enlarged grains and the Ti4+interaction with I-in the film

    2.3 Charge transport properties of CH3NH3PbI3

    To investigate the trap states and charge transport properties in Ti4+doped perovskite materials,the PL spectra of perovskite film on glass and on FTO are investigated.Fig.4a is the steady state PL spectra of perovskite films on glass substrates.Obviously,the peak site of emission light does not change which accounts for Ti4+doping did not influence the bandgap.Furthermore,it is found that the peak intensity of Ti4+-0.05%,Ti4+-0.1%doped perovskite significantly rises compared to the conventional sample.The phenomenon suggests few Ti4+-doped perovskite film effectively restrains the recombination from carriers and trap states,which is benefit for the charge transport.It is demonstrated that grain boundary modification weakens non-radiative recombination[23],which influences luminescence yields and power conversion efficiency[24-26].Knowing that Ti4+ions does not directly affect lattice,it just affects the grain size and grain boundary,therefore,it is the Ti4+passivates the trap states at the perovskite grain boundary.However,the PL peak intensity gradually declines with further increasing the dopantdensity which is due to the decreased crystalline property indicated by XRD in Fig.1a.Fig.4b is the PL of perovskite films deposited on FTO substrates.Clearly,peak intensity decreased with enhancing the dopantcontent,which powerfully explains traces of Ti4+ions intensify the ability of carrier extraction from the perovskite to the FTO.By analyzing the PL spectra,it is found that the best concentration is Ti4+-0.1%,with the lowest recombination and highest charge transport property.Therefore,when Ti4+-0.1%ions are doped in perovskite film,it effectively reduces trap states density,block nonradiative recombination and lead to effective charge transport between perovskite layer and ETL/HTL.

    To further investigate the charge transport process with and without Ti4+doped perovskite film,the time-resolved PL(TR-PL)measurements of perovskite films on TiO2substrate were carried out.The PL decay curves obey a bi-exponential decay function with a fast decay process and a slow decay process through curves fitting in Fig.4c.In general,the fast decay process derives from photo-excited carriers trapped by the defect or sharply transporting to electron/hole interlayer,however,the slow decay process displays the irradiative decay process[27-28].And the related parameters of TR-PL decay of the sample with and without Ti4+are shown in Table 2.Clearly,the Ti-0.1%doped perovskite curve is higher than the undoped one during the fast decay process,which means reduction of non-radiative recombination process;nevertheless,the Ti-0.1%doped perovskite curve decays more rapidly than original curve during the slow decay process,which means stronger ability of extraction carrier.The phenomenon explains passivated perovskite has less defect states and better charge extraction to the electrode[29].The average lifetime is 75.49 ns for pure sample,while the average lifetime is 38.43 ns for Ti4+-0.1%sample.This clearly indicates the faster PL quenching is obtained in sample with Ti4+-0.1%(Fig.4c).These TR-PL results also point out the 0.1%Ti4+dopant in perovskite is convenient for charge transport and weakening the recombination of carriers(Table 2).

    Fig.4 Steady state PL spectra of perovskite film on glass(a)and on FTO(b);(c)Time-resolved PL(TR-PL)spectra of perovskite film on TiO2layer

    Table 2 Fitting parameters of TR-PL decay curves to perovskite on TiO2layer

    2.4 Performance of the solar cell devices

    The performances with different Ti4+contents in perovskite were measured to seek for optimum Ti4+concentration,and the detailed photovoltaic parameters were displayed in Table 3 and Fig.5(a,b).Fig.5c is the J-V curves of different Ti4+contents doped devices.The pure PSCs shows JSC=21.4 mA·cm-2,VOC=1.09 V,FF=0.611,and Eff=14.0% (Effis the efficiency).Ti4+-0.1%acquires maximum JSCof 22.3 mA·cm-2.The FF gradually improves when the content in perovskite of Ti4+increase,and FF achieves the highest value of 72.4%with Ti4+-0.1%.Then,FF reduces once Ti4+is over 0.1%.Finally,the best perfor-mance is 17.4% with Ti4+-0.1% in PSCs.Theeffici-ency distribution is provided in supporting information(Fig.S1)and the average values are approximate 14.0%and 17.4%.

    To investigate the recombination process of the devices with grain boundary passivation,the Nyquistplots were obtained.In Fig.5d,the Nyquist plots of the devices were measured in the dark with bias voltage of-1.1 V.There are two semicircles in each Nyquist plot:the left one is related to the charge transport resistance(Rct),which is mainly ascribed to charge extraction and separation at the interface between HTL or ETL and the perovskite layer.The right one is related to the photo carrier recombination resistance(Rrec)in the PSCs system;the starting point′s real part represents the series resistance(Rs)of the solar cells.The relevant equivalent circuit is shown in the insert in Fig.5b[30-31].At applied reverse bias,it demonstrates the devices with Ti4+-0.1%has larger recombination resistance of 220 Ω,much higher than 180 Ω of the undoped device,which indicates the recombination is effectively reduced by Ti4+modification.Furthermore,the Rsis reduced to 18 Ω with Ti4+doped device compared with 29 Ω of the undoped one.It is ascribed to the better crystallinity and more compactness of Ti4+doped perovskite films reduce the contact resistance of the device.

    Table 3 Photovoltaic parameters of planar PSCs with different Ti4+contents

    Fig.5 Variation of VOC,FF(a)and Jsc,Eff(b)with Ti4+content;(c)J-V characteristics of device with different degree of Ti4+in the perovskite layer;(d)Nyquist pot of the device with and without Ti4+(measured at-1.1 V in the dark)

    The variation of photovoltaic parameters coincides with the analysis about device(Fig.5(c,d)).It is easy to know JSCdepends on the density of trap states,because they have a great compact on carrier recombination.With Ti4+-0.1%doped in perovskite,the grain boundary trap states are effectively removed by Ti4+and the device shows large recombination resistance and series resistance is effectively reduced.These merits increasing the rate of carrier transport from perovskite layerto electrodes.FF isalso correlated with the density of trap states and interface contact[32].Because of the fewer trap states,carriers are more apt to transfer to electrodes,which means the device has good FF (FF of Ti4+-0.1%has effectively improved from 61.1% to 72.4%).Duo to these parameters being enhanced,efficiencyofdevices exhibits better performances with Ti4+-0.1%.Experiments proof small dopants about Ti4+ions will contribute to higher photovoltaic parameters as a result of defect passivation.But devices with more dopants(Ti4+with 0.2%~0.5%)exhibit awful performance on account of more defects,which has bad effect on performances of devices.

    3 Conclusions

    In this work,photovoltaic properties get improved with small dopant content of Ti4+in MAPbI3perovskite films.At the same time,the XRD analysis and SEM-mapping indicates the Ti4+is most likely to accumulate at the grain boundary.The steady PL and TR-PL importantly support more powerful ability about carrier transport after Ti4+doping.The Nyquist plots indicate the Ti4+doping effectively reduce the interface recombination and improve the charge transport in the device.Therefore,the grain boundary defect states is effectively reduced by Ti4+modification.Therefore,the device with optimal Ti4+content shows excellent JSC,VOCand FF.Ti-0.1%shows the highest efficiency(17.4%)with doped device under 1sun(AM1.5).

    Acknowledgments:This work was supported by the National Natural Science Foundation of China(Grant No.11374168,11547033),Natural Science Foundation of Zhejiang Province(Grant No.LY18F040004),Scientific Research Foundation for the Returned Overseas Chinese Scholars and the K.C.Wong Magna Fund in Ningbo University,China.

    Supporting information is available at http://www.wjhxxb.cn

    猜你喜歡
    寧波大學理學院工程系
    昆明理工大學理學院學科簡介
    昆明理工大學理學院簡介
    《寧波大學學報(理工版)》征稿簡則
    《寧波大學學報(教育科學版)》稿約
    A Personal Tragedy The professionalism of Stevens
    長江叢刊(2018年13期)2018-05-16 06:42:58
    Research on College Education Based on VR Technology
    西安航空學院專業(yè)介紹
    ———理學院
    電子信息工程系
    機電工程系簡介
    穿行:服裝工程系畢業(yè)設(shè)計作品
    久久精品亚洲av国产电影网| 欧美黑人精品巨大| 9191精品国产免费久久| 两人在一起打扑克的视频| 男女下面插进去视频免费观看| 精品一品国产午夜福利视频| 亚洲精品一卡2卡三卡4卡5卡| 淫妇啪啪啪对白视频| 老司机午夜十八禁免费视频| 国产午夜精品久久久久久| 国产精品香港三级国产av潘金莲| 成人特级黄色片久久久久久久 | 精品乱码久久久久久99久播| 一区二区三区乱码不卡18| 一进一出抽搐动态| 久久国产精品大桥未久av| 欧美激情极品国产一区二区三区| 成人国产一区最新在线观看| av片东京热男人的天堂| 久久中文看片网| 婷婷成人精品国产| 欧美另类亚洲清纯唯美| 精品一区二区三区四区五区乱码| a级毛片在线看网站| 99精品欧美一区二区三区四区| 欧美 日韩 精品 国产| 欧美精品av麻豆av| 夜夜爽天天搞| 999久久久精品免费观看国产| 国产精品一区二区免费欧美| 十分钟在线观看高清视频www| 搡老岳熟女国产| 丰满饥渴人妻一区二区三| 少妇 在线观看| 国产精品一区二区在线不卡| 女警被强在线播放| 黄色片一级片一级黄色片| 国产91精品成人一区二区三区 | 精品一区二区三区视频在线观看免费 | 国产精品熟女久久久久浪| 黄片大片在线免费观看| 亚洲一码二码三码区别大吗| 国产精品自产拍在线观看55亚洲 | 王馨瑶露胸无遮挡在线观看| 黄色毛片三级朝国网站| av又黄又爽大尺度在线免费看| 亚洲第一欧美日韩一区二区三区 | 一区二区三区激情视频| 色老头精品视频在线观看| 不卡av一区二区三区| 国产精品一区二区免费欧美| 成人18禁在线播放| 欧美久久黑人一区二区| 大片电影免费在线观看免费| 在线观看免费午夜福利视频| 亚洲av日韩在线播放| 亚洲第一青青草原| 欧美日韩av久久| 亚洲综合色网址| 免费高清在线观看日韩| 精品人妻在线不人妻| 中文字幕制服av| 在线 av 中文字幕| 两人在一起打扑克的视频| 桃红色精品国产亚洲av| 精品人妻熟女毛片av久久网站| av免费在线观看网站| 国产伦人伦偷精品视频| 日本五十路高清| 欧美激情久久久久久爽电影 | 法律面前人人平等表现在哪些方面| 日韩有码中文字幕| 人妻 亚洲 视频| 亚洲情色 制服丝袜| 国产有黄有色有爽视频| 亚洲av片天天在线观看| 久久国产精品男人的天堂亚洲| 欧美 亚洲 国产 日韩一| 欧美日韩亚洲国产一区二区在线观看 | 久久免费观看电影| 中文字幕另类日韩欧美亚洲嫩草| 国产免费现黄频在线看| 亚洲中文av在线| 波多野结衣av一区二区av| 色在线成人网| 999久久久国产精品视频| 国产亚洲av高清不卡| 制服人妻中文乱码| 国产精品自产拍在线观看55亚洲 | 精品福利观看| 久9热在线精品视频| 捣出白浆h1v1| 搡老熟女国产l中国老女人| 麻豆av在线久日| 日韩大片免费观看网站| 亚洲视频免费观看视频| 国产欧美日韩一区二区三区在线| 国产精品久久久久久精品电影小说| 高清在线国产一区| 婷婷丁香在线五月| 18禁黄网站禁片午夜丰满| 欧美精品一区二区大全| 国产精品一区二区在线观看99| a级毛片黄视频| 中文字幕av电影在线播放| 中文欧美无线码| 成在线人永久免费视频| 亚洲精品久久成人aⅴ小说| 黄色怎么调成土黄色| 黄色视频,在线免费观看| 男女午夜视频在线观看| 建设人人有责人人尽责人人享有的| 在线十欧美十亚洲十日本专区| 久久久久精品国产欧美久久久| 最黄视频免费看| 天天添夜夜摸| 国产av一区二区精品久久| 建设人人有责人人尽责人人享有的| 日日夜夜操网爽| 日本一区二区免费在线视频| 12—13女人毛片做爰片一| 精品福利观看| 亚洲av片天天在线观看| 黄片大片在线免费观看| 男女下面插进去视频免费观看| 国产91精品成人一区二区三区 | 高清欧美精品videossex| 在线av久久热| 国产成人精品无人区| av欧美777| videos熟女内射| 黄网站色视频无遮挡免费观看| 黄色毛片三级朝国网站| 欧美人与性动交α欧美精品济南到| 国产福利在线免费观看视频| 国产精品av久久久久免费| 天堂动漫精品| 天堂动漫精品| 99re在线观看精品视频| 老熟妇仑乱视频hdxx| 欧美人与性动交α欧美软件| 免费av中文字幕在线| 欧美人与性动交α欧美精品济南到| 亚洲一区二区三区欧美精品| 免费观看av网站的网址| 午夜福利视频在线观看免费| 亚洲欧美日韩高清在线视频 | 免费看a级黄色片| 日本av手机在线免费观看| 国产av又大| 欧美在线黄色| 老司机在亚洲福利影院| 精品国产乱码久久久久久小说| 国产一区二区三区在线臀色熟女 | 精品福利永久在线观看| 国产伦理片在线播放av一区| 精品一区二区三区视频在线观看免费 | 精品人妻熟女毛片av久久网站| 成年人免费黄色播放视频| 亚洲三区欧美一区| 久久国产精品人妻蜜桃| 一边摸一边抽搐一进一小说 | 亚洲精品国产色婷婷电影| 中国美女看黄片| 久久中文看片网| 建设人人有责人人尽责人人享有的| 亚洲午夜理论影院| 高清毛片免费观看视频网站 | 精品福利永久在线观看| 亚洲熟妇熟女久久| 精品人妻熟女毛片av久久网站| 在线av久久热| 又大又爽又粗| 满18在线观看网站| 精品久久久久久久毛片微露脸| 日韩欧美一区二区三区在线观看 | 考比视频在线观看| 激情视频va一区二区三区| 香蕉久久夜色| 我要看黄色一级片免费的| 精品国内亚洲2022精品成人 | av天堂久久9| 人妻一区二区av| 欧美av亚洲av综合av国产av| 亚洲成人免费av在线播放| 精品人妻1区二区| 伊人久久大香线蕉亚洲五| 亚洲精品国产区一区二| 国产精品1区2区在线观看. | 成人国产一区最新在线观看| 精品国内亚洲2022精品成人 | 久久精品人人爽人人爽视色| 欧美日韩亚洲高清精品| 午夜日韩欧美国产| 国产高清国产精品国产三级| 女人久久www免费人成看片| 精品一区二区三卡| 国产精品亚洲一级av第二区| 多毛熟女@视频| 久久精品国产亚洲av香蕉五月 | 日日爽夜夜爽网站| 国产精品1区2区在线观看. | 老司机深夜福利视频在线观看| 久久久久久免费高清国产稀缺| 成年女人毛片免费观看观看9 | 亚洲专区字幕在线| 亚洲精品国产一区二区精华液| 大香蕉久久成人网| 久久精品国产a三级三级三级| 飞空精品影院首页| 少妇 在线观看| 亚洲精品成人av观看孕妇| 亚洲专区国产一区二区| 欧美日韩国产mv在线观看视频| 亚洲va日本ⅴa欧美va伊人久久| xxxhd国产人妻xxx| 9191精品国产免费久久| av电影中文网址| 天天躁日日躁夜夜躁夜夜| 免费日韩欧美在线观看| 国产99久久九九免费精品| 精品一区二区三区av网在线观看 | 免费看十八禁软件| 久久性视频一级片| 亚洲国产av影院在线观看| 麻豆乱淫一区二区| h视频一区二区三区| 免费观看av网站的网址| 老司机午夜十八禁免费视频| 高清av免费在线| 国产亚洲午夜精品一区二区久久| 人人澡人人妻人| 美女福利国产在线| 看免费av毛片| 国产免费视频播放在线视频| 亚洲av片天天在线观看| 国产亚洲午夜精品一区二区久久| 亚洲欧洲精品一区二区精品久久久| 丰满人妻熟妇乱又伦精品不卡| 十分钟在线观看高清视频www| 老司机午夜福利在线观看视频 | 国产色视频综合| 国产精品偷伦视频观看了| 女人久久www免费人成看片| 亚洲黑人精品在线| 欧美亚洲 丝袜 人妻 在线| 岛国毛片在线播放| 精品国产超薄肉色丝袜足j| 午夜激情av网站| 欧美成人午夜精品| 日本五十路高清| avwww免费| 色94色欧美一区二区| 免费少妇av软件| 久久天堂一区二区三区四区| 久久av网站| 久久久国产精品麻豆| 天堂中文最新版在线下载| 青草久久国产| 欧美日韩一级在线毛片| 亚洲国产av新网站| 在线播放国产精品三级| 99国产精品99久久久久| av免费在线观看网站| 巨乳人妻的诱惑在线观看| 国产不卡av网站在线观看| 久久99热这里只频精品6学生| 十八禁网站网址无遮挡| 日韩 欧美 亚洲 中文字幕| 国产精品免费一区二区三区在线 | 蜜桃在线观看..| 国产一区二区激情短视频| 狠狠婷婷综合久久久久久88av| 亚洲国产精品一区二区三区在线| 久久人妻熟女aⅴ| 亚洲熟女精品中文字幕| 欧美黄色淫秽网站| 免费在线观看日本一区| 免费在线观看视频国产中文字幕亚洲| 国产精品久久久久久精品古装| 国产精品99久久99久久久不卡| 久久婷婷成人综合色麻豆| av电影中文网址| 麻豆乱淫一区二区| 亚洲精品成人av观看孕妇| 麻豆乱淫一区二区| 日韩一区二区三区影片| 亚洲熟女毛片儿| 欧美精品av麻豆av| 91九色精品人成在线观看| 天天躁夜夜躁狠狠躁躁| 超碰97精品在线观看| 日日摸夜夜添夜夜添小说| 精品少妇内射三级| 最近最新免费中文字幕在线| 欧美黑人精品巨大| 久久中文看片网| 国产xxxxx性猛交| 久久精品熟女亚洲av麻豆精品| 亚洲久久久国产精品| 成人免费观看视频高清| 欧美人与性动交α欧美精品济南到| 操美女的视频在线观看| 一进一出抽搐动态| 青青草视频在线视频观看| 一本久久精品| 欧美日韩精品网址| 伊人久久大香线蕉亚洲五| 大型黄色视频在线免费观看| 亚洲欧美色中文字幕在线| 老汉色av国产亚洲站长工具| 精品国产乱码久久久久久男人| 久久久久精品国产欧美久久久| 久久精品亚洲熟妇少妇任你| 亚洲男人天堂网一区| 一级,二级,三级黄色视频| 9色porny在线观看| av天堂在线播放| 18禁美女被吸乳视频| 最近最新中文字幕大全电影3 | 97在线人人人人妻| 满18在线观看网站| 国产99久久九九免费精品| 亚洲成人免费av在线播放| netflix在线观看网站| 天天影视国产精品| 久久午夜亚洲精品久久| 99九九在线精品视频| 一进一出好大好爽视频| 精品久久久久久电影网| 国产激情久久老熟女| 日本vs欧美在线观看视频| av一本久久久久| 国产一区二区三区在线臀色熟女 | 嫩草影视91久久| 欧美老熟妇乱子伦牲交| 成人手机av| 一级毛片电影观看| 9热在线视频观看99| 国产三级黄色录像| 人妻久久中文字幕网| 成人特级黄色片久久久久久久 | 成人永久免费在线观看视频 | 高清在线国产一区| 国产视频一区二区在线看| 国产精品免费一区二区三区在线 | 国产免费现黄频在线看| 亚洲avbb在线观看| 在线 av 中文字幕| 久久中文看片网| 在线av久久热| 手机成人av网站| h视频一区二区三区| 国产国语露脸激情在线看| 成人永久免费在线观看视频 | 高清av免费在线| 另类精品久久| 99精品欧美一区二区三区四区| 最新在线观看一区二区三区| 嫩草影视91久久| 18禁黄网站禁片午夜丰满| 老熟妇仑乱视频hdxx| 99香蕉大伊视频| 超碰97精品在线观看| 欧美成狂野欧美在线观看| 亚洲欧美激情在线| 成人手机av| 在线观看www视频免费| 丝袜人妻中文字幕| 精品国产超薄肉色丝袜足j| 桃红色精品国产亚洲av| 国产成人欧美| 国产成人av教育| 日韩欧美国产一区二区入口| 国产麻豆69| av天堂在线播放| 两人在一起打扑克的视频| videos熟女内射| 首页视频小说图片口味搜索| 日韩 欧美 亚洲 中文字幕| 2018国产大陆天天弄谢| h视频一区二区三区| 夫妻午夜视频| 亚洲视频免费观看视频| 黄色a级毛片大全视频| 精品人妻熟女毛片av久久网站| 国产99久久九九免费精品| 亚洲精品粉嫩美女一区| 丰满少妇做爰视频| 最近最新中文字幕大全免费视频| 亚洲专区国产一区二区| 欧美精品一区二区免费开放| 女人被躁到高潮嗷嗷叫费观| 亚洲人成伊人成综合网2020| 亚洲av成人不卡在线观看播放网| 99久久精品国产亚洲精品| 精品人妻1区二区| 国产97色在线日韩免费| 日本欧美视频一区| 国产片内射在线| 亚洲av美国av| 看免费av毛片| 日韩视频一区二区在线观看| 一本大道久久a久久精品| 亚洲精品中文字幕一二三四区 | 青草久久国产| 日韩免费av在线播放| 99香蕉大伊视频| 日韩中文字幕欧美一区二区| 欧美日韩亚洲综合一区二区三区_| av网站在线播放免费| 黑人巨大精品欧美一区二区蜜桃| 汤姆久久久久久久影院中文字幕| 老司机深夜福利视频在线观看| 久久久久精品人妻al黑| 午夜成年电影在线免费观看| 一个人免费看片子| 国产成人一区二区三区免费视频网站| 欧美激情久久久久久爽电影 | 香蕉丝袜av| 欧美精品av麻豆av| 在线观看一区二区三区激情| 欧美日韩视频精品一区| 搡老熟女国产l中国老女人| 亚洲熟妇熟女久久| av一本久久久久| 在线观看一区二区三区激情| 亚洲国产av影院在线观看| 国产成人欧美| 1024视频免费在线观看| 欧美精品啪啪一区二区三区| 99精国产麻豆久久婷婷| 国产av国产精品国产| 精品人妻熟女毛片av久久网站| 亚洲欧洲精品一区二区精品久久久| 每晚都被弄得嗷嗷叫到高潮| 美女视频免费永久观看网站| 中文字幕另类日韩欧美亚洲嫩草| 精品一区二区三区av网在线观看 | 日韩人妻精品一区2区三区| 国产在视频线精品| 亚洲,欧美精品.| 亚洲精品乱久久久久久| 91成人精品电影| 两性夫妻黄色片| 黑人巨大精品欧美一区二区mp4| 大型av网站在线播放| 日韩免费高清中文字幕av| 亚洲情色 制服丝袜| 亚洲第一av免费看| 国产极品粉嫩免费观看在线| 欧美 亚洲 国产 日韩一| 国产男女超爽视频在线观看| 真人做人爱边吃奶动态| 一本一本久久a久久精品综合妖精| 色尼玛亚洲综合影院| 亚洲精品久久成人aⅴ小说| 一级片'在线观看视频| 国产精品麻豆人妻色哟哟久久| 十分钟在线观看高清视频www| 免费黄频网站在线观看国产| 一区在线观看完整版| 亚洲国产欧美网| 日韩熟女老妇一区二区性免费视频| 国产黄频视频在线观看| 成在线人永久免费视频| 久久国产亚洲av麻豆专区| videosex国产| 色播在线永久视频| 叶爱在线成人免费视频播放| 亚洲av成人一区二区三| 久久毛片免费看一区二区三区| 亚洲avbb在线观看| 精品卡一卡二卡四卡免费| 手机成人av网站| 国产免费福利视频在线观看| 国产av国产精品国产| 欧美黑人精品巨大| 久久久久久亚洲精品国产蜜桃av| 老司机靠b影院| 久久中文字幕人妻熟女| 久久青草综合色| 国产在线视频一区二区| 9色porny在线观看| 欧美激情 高清一区二区三区| 久久久久精品国产欧美久久久| 亚洲国产毛片av蜜桃av| 久久精品国产99精品国产亚洲性色 | 男女下面插进去视频免费观看| 国产成人一区二区三区免费视频网站| 午夜精品国产一区二区电影| 亚洲人成电影免费在线| 午夜激情av网站| 日韩人妻精品一区2区三区| 精品一区二区三区av网在线观看 | 欧美人与性动交α欧美精品济南到| 欧美日韩黄片免| 18在线观看网站| 一边摸一边做爽爽视频免费| 汤姆久久久久久久影院中文字幕| 中文亚洲av片在线观看爽 | 国产熟女午夜一区二区三区| 老汉色∧v一级毛片| 免费看十八禁软件| 在线观看免费视频日本深夜| av超薄肉色丝袜交足视频| 午夜激情av网站| 少妇裸体淫交视频免费看高清 | av天堂在线播放| 中文字幕色久视频| 80岁老熟妇乱子伦牲交| 天堂8中文在线网| 欧美激情极品国产一区二区三区| 大片免费播放器 马上看| 免费观看人在逋| 757午夜福利合集在线观看| 90打野战视频偷拍视频| 又黄又粗又硬又大视频| 国产亚洲精品久久久久5区| 手机成人av网站| 一级,二级,三级黄色视频| 国产精品免费视频内射| 精品福利永久在线观看| 成人精品一区二区免费| 亚洲成人手机| 中文字幕人妻丝袜一区二区| 脱女人内裤的视频| 国产一区二区激情短视频| 成人精品一区二区免费| 国产男女超爽视频在线观看| 咕卡用的链子| 精品久久久久久久毛片微露脸| 久久精品国产综合久久久| 国产av精品麻豆| 两性午夜刺激爽爽歪歪视频在线观看 | 精品乱码久久久久久99久播| 久久影院123| 精品少妇黑人巨大在线播放| 黄色a级毛片大全视频| 亚洲精品粉嫩美女一区| 热re99久久国产66热| 欧美日韩亚洲综合一区二区三区_| 亚洲自偷自拍图片 自拍| 国产免费福利视频在线观看| 成年版毛片免费区| a级毛片在线看网站| 亚洲中文字幕日韩| 国产熟女午夜一区二区三区| 精品人妻1区二区| 777米奇影视久久| h视频一区二区三区| 久久人妻av系列| 国产欧美亚洲国产| 国产成人免费无遮挡视频| 露出奶头的视频| 免费在线观看视频国产中文字幕亚洲| 纵有疾风起免费观看全集完整版| 亚洲欧美精品综合一区二区三区| 在线观看免费日韩欧美大片| 成人av一区二区三区在线看| 一进一出抽搐动态| 国产精品麻豆人妻色哟哟久久| 亚洲国产中文字幕在线视频| 国产伦理片在线播放av一区| 91精品国产国语对白视频| kizo精华| 啦啦啦在线免费观看视频4| 亚洲av日韩精品久久久久久密| 女人爽到高潮嗷嗷叫在线视频| cao死你这个sao货| 亚洲五月色婷婷综合| 国产免费福利视频在线观看| 一级黄色大片毛片| 中文字幕人妻熟女乱码| 自线自在国产av| 日韩中文字幕视频在线看片| 另类亚洲欧美激情| 日日爽夜夜爽网站| 中文字幕人妻丝袜制服| av免费在线观看网站| 日本av免费视频播放| 国产精品亚洲一级av第二区| 亚洲色图 男人天堂 中文字幕| 亚洲精品在线观看二区| 熟女少妇亚洲综合色aaa.| www.999成人在线观看| 少妇猛男粗大的猛烈进出视频| 国产免费福利视频在线观看| 女同久久另类99精品国产91| 69精品国产乱码久久久| 精品人妻1区二区| 国产精品免费大片| 亚洲久久久国产精品| 在线观看舔阴道视频| 男女边摸边吃奶| 嫩草影视91久久| e午夜精品久久久久久久| 国产精品香港三级国产av潘金莲| 国产高清国产精品国产三级| 大香蕉久久网| 人人澡人人妻人| 日韩欧美免费精品| 天堂俺去俺来也www色官网| 亚洲成a人片在线一区二区| 他把我摸到了高潮在线观看 | 天天添夜夜摸| 久久国产精品影院| 99久久国产精品久久久| 一区福利在线观看| 国产av国产精品国产| 国产福利在线免费观看视频| 婷婷成人精品国产| 久久久久国产一级毛片高清牌| kizo精华| 亚洲欧美一区二区三区久久|