• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Synthesis, Crystal Structure and Evaluations of Its Cytotoxicity, Anti-microbial and Anti-hydroxyl Radical Activities of a New Co-crystal Compound (C6H6Cl2N2O2S)·(Phen)·H2O①

    2018-08-17 08:00:34HUANGLnZhenWANGNnCAIZhuoQIUXiuYing
    結(jié)構(gòu)化學 2018年7期

    HUANG Ln-Zhen WANG Y-Nn CAI Zhuo QIU Xiu-Ying

    ?

    Synthesis, Crystal Structure and Evaluations of Its Cytotoxicity, Anti-microbial and Anti-hydroxyl Radical Activities of a New Co-crystal Compound (C6H6Cl2N2O2S)·(Phen)·H2O①

    HUANG Lan-Zhena, bWANG Ya-NanaCAI ZhuocQIU Xiu-Yinga②

    (ab541004)c(530004)

    Co-crystal is a very potential kind of drug solid forms, and has a far-reaching influence on designing and preparing drugs. A new 1:1:1 co-crystal compound consisting of 4-amino-3,5-dichloro-benzenesulfonamide, 1,10-phenanthroline and water was synthesized, and its crystal structure was characterized by X-ray diffraction method. The compositions of the co-crystal are self-assembled into a three-dimensional network structure via intermolecular interactions including hydrogen bonds,-stacking, Cl×××Cl interactions and van der Waals’ forces. According to the evaluations of cytotoxicity assays, anti-microbial and anti-hydroxyl radicals, this co-crystal is a potential drug.

    4-amino-3,5-dichloro-benzenesulfonamide, co-crystal, cytotoxicity, anti-microbial, anti-hydroxyl radical;

    1 INTRODUCTION

    Weak intermolecular interactions such as hydro- gen bonds play an important role in molecule-based structural and functional chemistry and biology[1,2]. A co-crystal is a structurally homogeneous crys- talline material that contains two or more neutral building blocks which are present in definite stoichiometric amounts[3]and assembledtogether by weak intermolecular interactions, such as hydrogen bonds,-or C–H×××stacking, van der Waals forces,. The physical and chemical propertiesofco-crystal compoundaresuper tothose ofsingle com- ponents[4], so it plays avery important roleinthesolidchemistryand pharmaceuticalchemistry[5-24].

    In the context of pharmaceuticals, crystal engi- neering is an important process and intellectual pro- perty implications related to the control and repro- ducibility of composition and polymorphism[7]. Pharmaceutical co-crystal has become clear that a wide array of multiple component pharmaceutical phases can be rationally designed using crystal engi-neering, and the strategy afforded new intellectual property and enhanced properties for pharma- ceutical substances[4,7, 22]. Some co-crystal com- pounds formed by rac-ibuprofen, rac-flurbiprofen or aspirin with 4,4-bipyridine[22], and some pharma- ceutical molecules by forming novel compositions of ibuprofen, flurbiprofen, and aspirin have been reported[7]. Mino R. Caira[25]reported molecular complexes of sulfonamides and its 1:1 complex with acetylsalicylic acid.

    However, the co-crystal compounds are very inadequate and about more than two thousands are recorded in Cambridge Structural Database (CSD), far less than the number of other solid forms. Using active pharmaceutical ingredient (API) and cocrystal former (CCF) to form co-crystal compounds through hydrogen bonds or other non covalent bonds will improve the physical and chemical properties of drugs. This is a good idea in new drug design. In the structure of 4-amino-3,5-dichloro-benzenesulfona- mide, there are sulfamide, amino groups, and chlo- ride substituent, which can form weak intermole- cular interactions with CCF. The polypyridines were often designed in the new chemistry and biology compounds[26-29], exhibiting better biological activi- ties. We herein report the synthesis, crystal structure and evaluations of anticancer, antimicrobial and anti-hydroxyl radical activities of the new 1:1:1 co- crystal compound consisting of 4-amino-3,5-dichlo- ro-benzenesulfonamide, 1,10-phenanthroline and water molecules.

    2 EXPERIMENTAL

    2. 1 Procurement of the materials

    Solvents and chemicals obtained from commercial sources were of reagent grade and used without further purification. 4-amino-3,5-dichloro-benzene- sulfonamide can be synthesized according to the references[30, 31]. IR spectra were taken on a Pekin- Elmer spectrum One FT-IR spectrometer with KBr pallets in the range of 4000~400 cm-1. The elemental analyses for C, H, N and S were per- formed on a Perkin-Elmer 2400II elemental analyzer. The crystal structure was determined by a Bruker FRAMBO CCD area detector[32]. Cytotoxicity analysis was performed using the MTT (3-(4,5-di- methyl-2-thiazolyl)-2,5-diphenyl tetrazolium bro- mide) method, antimicrobial activities were obtained by the serial dilution method, and anti-hydroxyl radical activities were determined on the flow injection chemiluminescence (FI-CL) analysis system according to the reference[33]. Strains and cell lines were obtained from commercial sources.

    2. 2 Synthesis of the title co-crystal compound (1)

    A mixed solution containing salicylaldehyde (0.02442 g, 0.2 mmol) and 4-amino-3,5-dichloro- benzenesulfonamide (0.04822 g, 0.2 mmol) was stirred and refluxed at 55 ℃ for 1 h in ethanol, and a small amount of formic acid was added to the mixed solution as a catalyst for the synthesis of Schiff base. After 6 h reaction, 1,10-phenanthroline (0.0400 g, 0.22 mmol) and ammonium cerium (IV) sulfate tetrahydrate (0.2007 g, 0.3 mmol) in ethanol (10 mL, 95%) were also added to the aforemen- tioned solution. The mixture was stirred and refluxed at 55 ℃ for 12 h, and then was cooled to room temperature to afford the bright yellow precipitate which was removed by filtration. The filtrate was left at room temperature. Some yellow crystals were obtained after some days, giving yellow needle- shaped single crystals suitable for X-ray diffraction. For C18H16Cl2N4O3S anal. calcd. (%): C, 49.21; H, 3.67; N, 12.75; S, 7.29. Found (%): C, 49.22; H, 3.69; N, 12.74; S, 7.32. IR (KBr,, cm-1): 3489(s), 3386(s), 3305(s), 3024(m), 1678(m), 1613(s), 1554(m), 1494(m), 1460(m), 1409(m), 1332(s), 1261(m), 1219(m), 1162(s), 1128(m), 1051(w), 963(m), 868(m), 842(m), 756(s), 729(s), 626(m), 592(s).For O–H of water: 3489 cm-1; and for -NH2: 3386, 3305 and 1678 cm-1; and for C–H of benzene ring: 3024 cm-1; and for C=C and C=N of Phen: 1613, 1554, and 1494 cm-1; and for -SO2-: 1162, 1128, and 1051 cm-1; and for two C–Cl: 756 and 729 cm-1. Crystal reproducibility is very good, and the production rate is 63.4% (based on 4-amino-3,5- dichloro-benzenesulfonamide).

    2. 3 Structure determination and refinement

    A yellow single crystal with dimensions of 0.36mm × 0.20mm × 0.18mm was selected for the measurement. The data were collected on a Bruker FRAMBO CCD detector equipped with a graphite- monochromatized Moradiation (= 0.71073 ?) at 153(2) K using an-scan mode, and reduced with the Bruker SAINT. Absolute structure was determined with a Flack parameter= 0.00(1) (Abso- lute structure: Flack H.D. (1983), Acta Cryst. A39, 876~881). In the range of 3.01≤≤25.13° (–8≤≤8, –16≤≤17, –21≤≤21), a total of 13849 reflections were collected, of which 3447 were unique (int= 0.079) and 2402 were observed (> 2()). The structure was solved by direct methods using SHELXS-97(Sheldrick, 2008) and refined by full-matrix least-squares on2using the SHELXL- 97(Sheldrick, 2008)[34]program. The non-hydrogen atoms were assigned by anisotropic displacement parameters in the refinement. Hydrogen atoms cal- culated geometrically were included in the refine- ment by the riding method, with C–H = 0.9300 ? for aryl and N–H = 0.8999~0.9001 ? (iso(H) = 1.2eq(C),iso(H) = 1.2eq(N)), and O–H = 0.8474~0.8541 ? for water (iso(H) = 1.5eq(O)). The crystal of the complex belongs to the orthor- hombicsystem, space group212121, with= 7.4187(18),= 14.602(4),= 17.849(4) ?, C18H16Cl2N4O3S,M= 439.32,= 1933.5(8) ?3,= 2,D= 1.509 g/cm3,= 0.472 mm?1,(000) = 904. 3447 reflections were used in the succeeding refinement.The final cycle of refinement including 253 variable parameters was converged to(2> 2(2)) = 0.0636,(2) = 0.1461 (= 1/[2(F2) + (0.0759)2], where= (F2+ 2F2)/3),= 1.00, (Δ/)max= 0.001, (Δ)max= 0.319, (Δ)min= –0.351 e·??3, completeness to theta = 0.995.

    Hydrogen bonds are listed in Table 1. The mole- cular structure of 1 with atomic numbering scheme is illustrated in Fig. 1, and a 2-D sheet structure of 1 in thebplane is illustrated in Fig. 2(A), a 2-D sheet structure of 1 in theplane in Fig. 2(C), and thestacking interaction of 1 in Fig. 2(B).

    Table 1. Hydrogen Bonds for 1 (? and °)

    Symmetry codes: (i) ?+1/2, ?,?1/2; (ii),?1,; (iii),?1,?1; (iv)+1,,?1

    Fig. 1. Crystal structure of co-crystal compound. Displacement ellipsoids are drawn at the 50% probability level

    Fig. 2. (A) Crystal packing diagram of co-crystal compoundin theplane, and the distance between Cl(1) and Cl (2) is 3.500 ? (symmetry code:+ 1,– 1/2, –+ 3/2). (B)stacking interaction of co-crystal compound, and some hydrogen atoms are omitted for clarity. (C) Crystal packing diagram of co-crystal compoundin theplane. The two dimension net structures are formed by intermolecular hydrogen bonds,-stacking, Cl×××Cl interactions and van der

    Waals’ forces. The dotted lines in the figure are weak intermolecular interactions

    2. 4 In vitro cytotoxicity

    Cell culture: Cells were cultured in RPMI 1640 medium supplemented with 10% heat inactivated fetal bovine serum, 100 μg·mL-1penicillin and 100 μg· mL-1streptomycin. Cells were maintained at 37 ℃ in a 5% CO2incubator, and the media were changed every three days. MTT assay: Cell viability was determined by measuring the ability of cells to transform MTT to a purple formazan dye. We desig- ned compound sample grows (co-crystal compound, 4-amino-3,5-dichloro-benzenesulfonamide and Phen) and negative control group (physiological saline). Tumor cell lines (DLD-1, HepG2, MGC803, HeLa, HCT116) and normal cell line (HL-7702) were grown in a RPMI 1640 medium supplemented with 10% fetal calf serum, 100 μg·mL-1penicillin and 100 μg·mL-1streptomycin. They were incubated at 37 ℃ in a humidified incubator with 5% CO2and 95% air. Cells at the exponential growth stage were diluted to 3 × 104cells·mL-1with RPMI 1640, and then seeded in 96-well culture clusters (Costar) at a volume of 180 μL per cell, and incubated for 24 h at 37 ℃ in 5% CO2. Then the cells were treated at a volume of 20 μL per cell with various concentrations of complexes. The negative control group was set at the same time, and 5-fluorouracil is a positive control. After incubation of cells for up to 48 h, 20 μL of MTT (5 mg·mL-1) solution was added in each cell. After a further period of incubation (4 h at 37 ℃ in 5% CO2), each cell was added in 100 μL cell lysate (including 10% SDS (sodium dodecyl sulfate) – 5% isobutanol – 0.012 mL·L-1HCl (w/v/v)). After 12 h at 37 ℃,the values of OD were analyzed by a Microplate Reader at a wavelength of 490 nm. The percentage growth inhibitory rate of the treated cells was calculated by (OD negative control – OD compound sample)/OD negative control × 100%. The IC50values were determined by plotting the percentage viability versus the concentration on a logarithmic graph and reading off the con- centration at which 50% cells were viable relative to the control.

    2. 5 Anti-microbial activity

    The co-crystal compound was prepared into a series of concentrations of 10, 5, 2.5, 1.25 and 0.625 μmol·mL-1using sterilized distilled water. 1 mL of the solution was taken out from various concentra- tions of co-crystal compound, then added into the solution of hydrolysation casein agar of 9 mL at 50~55 ℃, with the final concentration to be 1.0, 0.5, 0.25, 0.125 and 0.0625 μmol·mL-1, respectively. These solutions were quickly spilled into the sterile flat, and then were coagulated. The control sample was set at the same time. Various experimental bacteria were diluted appropriately, and then seeded in the flat plates containing co-crystal compound and control sample with about 105CFU/point (colony-forming unit, the colony forming units CFU), and incubated at 37 ℃for 24 h. Finally, the minimum inhibitory concentration (MIC) values were observed and write-downed. Minimum concentration of the macroscopic observation to inhibit the growth of experimental fungus for the drug is MIC.

    2. 6 Anti-hydroxyl radical activity

    According to the literature[33], hydroxyl radical scavenging rate was tested by the FI-CL method. The mixed solution containing Fe2+ion, methylene blue, H2O2and water was the input analysis system through the corresponding line, and the resulting light signal was tested by photomultiplier tube and recorded chemical luminescence intensity as the value I0which is the negative control. Using Vit C solution instead of water in the aforementioned mixed solution and the same operating way, the value of chemical luminescence intensity is recorded as Is(Vit C) which is the positive control value. Using a sample solution rather than water in the aforementioned mixed solution and the same operating way, the value of chemical luminescence intensity is recorded as Is(sample). The D-value (I0– Is) is used as clear ·OH quantitative measure, and the hydroxyl radical scavenging rate, namely S, is calculated by the formula S = ((I0– Is)/I0) × 100%.

    3 RESULTS AND DISCUSSION

    X-ray crystallography reveals that 1 is a co- crystal compound consisting of one 4-amino-3,5- dichloro-benzenesulfonamide, one 1,10-phenanthro- line, and one crystal water molecule, namely (C6H6Cl2N2O2S)·(C12H8N2)·H2O, where C6H6Cl2N2O2S = 4-amino-3,5-dichloro-benzenesul- fonamide and C12H8N2= 1,10-phenanthroline (Fig. 1). In the structure of 1, all the bond lengths and bond angles fall in the normal ranges, and the co-crystal components are assembled together by weak intermolecular interactions containing hydrogen bonds,-stacking, Cl···Cl interactions, and van der Waals’ forces (Fig. 2(A, C)). As shown in Fig. 2(A), a two-dimensional structure is formed by hydrogen bonds (N(3)–H(3B)···O(1), N(4)–H(4A)···N(2), O(1W)–H(1WB)···O(1), and O(1W)–H(1WA)···N(2) (See: Table 1)) and Cl(1)···Cl(2) interactions in theplane, and-stacking is observed along theaxis to further form a three-dimensional structure. The distance between Cl(1) and Cl(2) is 3.500 ? (symmetry code:+ 1 ,– 1/2, –+ 3/2). The short Cl···Cl interaction with the distance of 3.500 ? is weaker than that of 4-amino-3,5-dichloro-benzene-sulfonamide with the distance to be 3.318 ?[31], whichshows that the co-crystal compound is slightly different from the monomer one. As shown in Fig. 2(B), X(1A) is the centre of benzene ring C(1)~C(6) of component 4-amino-3,5-dichloro- benzenesulfonamide, and X(1B) is the centre of benzene ring C(10)C(11)C(12)C(13)C(17)C(18) of component 1,10-phenanthroline (symmetry code:–1,–1,), and X(1C) is the centre of heterocyclic ring C(13)C(14)C(15)C(16)N(2)C(17) of com- ponent 1,10-phenanthroline (symmetry code:,–1,). The distance between X(1A) and X(1B) is 3.639 ?, and that between X(1A) and X(1C) is 3.571 ?, indicating-stacking between the benzene ring of 4-amino-3,5-dichloro-benzenesulfonamide and the benzene and heterocyclic rings of 1,10-phenan- throline, respectively. Moreover, in the 4-amino-3,5- dichloro-benzenesulfonamide molecule fragment S(1)–C(1)–C(2)–C(3)–Cl(1)–C(4)–N(3)–C(5)–Cl(2)–C(6)is planar (maximal deviation from the plane is –0.0583 ?, and mean deviation from the plane is –0.0302 ?; 7.052+ 3.939– 2.741= 0.2782). The intersection anglesare 54.3°, 106.6° and 90.7° between planes S(1)C(1)C(2)C(3)Cl(1)C(4)N(3)-C(5)Cl(2)C(6) and O(1)S(1)O(2), between amino-group planesH(4A)N(4)H(4B) and S(1)C(1)C(2)C(3)Cl(1)C(4)N(3)C(5)Cl(2)C(6), and between amino-group plane H(4A)N(4)H(4B) and plane O(1)S(1)O(2), respectively. This shows that amino-group is perpendicular to the plane O(1)S(1)O(2)anddeviates from the plane S(1)C(1)C(2)C(3)Cl(1)C(4)N(3)C(5)Cl(2)C(6). In the Phen molecule the fragment C(7)–C(16)–N(1)–C(17)–C(18)–N(2) is planar (maximal deviation from the plane is –0.0595 ?, and mean deviation from the plane is –0.0206 ?; 6.991+ 4.600– 2.012= 8.9639).

    The cytotoxic potentialities ofI are analyzed in vitro by MTT assay on five different cancer cell lines and one normal live cell line.As shown in Fig. 3, the cell survival inhibition rate increases with the increase of concentration in the range of 8~200 μM, indicating that 1 exhibits significant cytotoxicity in a dose dependent manner. At the concentration of 1000 μM, the cytotoxicity for normal cell line was greater than those of the examined cancer cell lines, indicating that 1 was unsuitable for the anti-tumor drug at such a high concentration. The IC50values are shown in Table 2. The value of IC50for the HCT116 (13.55 ± 1.09) μM is the smallest among the cell lines, and the value forMGC803 is (16.30 ± 2.14) μM, which means that the abilities of inhibition proliferation of 1 for HCT116 and MGC803 cell lines are stronger than those of other examined cell lines. The ability of inhibition proliferation of 1 for HepG2 (41.98 ± 2.83) μM is weaker than that of the normal liver cell line HL-7702 (32.83 ± 7.80) μM, which means that1 exhibitssome harmfulness for the normal liver cells when 1inhibitsthe proliferation of HepG2. Moreover, the inhibition effects for DLD-1 and HeLa are poorer, and the IC50values are more than 200 μM, showing an unremarkable inhibitory effect. In addition, 1 exhibits more significant cytotoxicity than 5-fluorouracil against the examined cell lines. It's worth noting that theabilities of inhibition proliferation of1 are stronger than those of its eutral building block 3,5-dichlorosalfanilamide and 1,10-phenanthroline, which fully embodies the superiority of the co-crystal drug in pharmaceutical chemistry, because co-crystal is a new compound formed by the weak intermolecular interactions, and its physical and chemical properties do not result from the addition of the properties of each building block, but superior to each building block.

    Table 2. IC50Values of the Tested Compounds towards Different Cell Lines

    IC50values are given in μM. The values are expressed as the mean ± standard deviation (triplicates). DLD-1: human knot rectal cancer cell line; HepG2: human hepatocellular liver carcinoma cell line; MGC803: human gastric cancer cell line; HeLa: human cervical carcinoma cell line; HCT116: human colon cancer cell line; HL-7702: human normal liver cell line. 5-Fluorouracil is a positive control

    Fig. 3. Cell inhibition rates assays of HCT116, MCG803, HepG2, DLD-1, HeLa, and HL-7702cell lines treated with various concentrations of 1 for 48h using a MTT method, respectively

    Antimicrobial activity experimental results showed that1 can inhibit the bacterial colony grow, and the MIC valuesare 0.25, 0.25 and 1.0 μmol.mL-1for staphylococcus aureus (S. aureus),escherichia coli (E. coli) and pseudomonas aeruginosa (P. aeruginosa), respectively (Table 3). The antimicrobial activities for S. aureus and E. coli are better than that of P. aeruginosa, showing that 1 has certain reference value in the microbial immunology field.

    Table 3. Co-crystal Compound Antibacterial Activities for S. aureus, E. coli and P. aeruginosa

    Concentration (i): co-crystal compound concentration;Concentration (ii): eventual co-crystal compoundconcentrationin agar. (-): bacterial colony don’t grow; (+): bacterial colony grow.

    Free radicals are related with aging, tumor, radiation damage, cytophagy,. The toxicity of hydroxyl radicals (·OH) is the strongest in biology active oxygen. It is of very practical significance to look for ·OH clearing agent and its applications in medicine, food, cosmetics, and so on. The ratios of the elimination of hydroxyl radicals were determi- ned by FI-CL method. It is well known that vitamin C is quite significant in resisting oxidation. Fixed the concentration of 10 ug·mL-1or 10 μmol·L-1, the clear ratio of 1 for hydroxyl radicals is 22.10% and 23.09% bigger than that of vitamin C, respectively (Table 4). At the concentration of 10 μmol·L-1, the clear ratio of 1 for hydroxyl radicals is four times that of vitamin C. 1 is a potential agent on the clearing hydroxyl radicals.

    Table 4. Action of Antihydroxyl Radical Activities of 1

    4 CONCLUSION

    In conclusion, we successfully synthesized a new co-crystal compound (C6H6Cl2N2O2S)·(Phen)·(H2O). It’s structure was characterized, and cytotoxicity test, anti-bacterial activities and the abilities of resisting hydroxyl radicals were studied. It selectively inhibits the proliferation of tumor cells, and the inhibition effects for the HCT116 and MGC803 cell lines are superior to that of HepG2 cell lines. It exhibits obvious antibacterial activities for S. aureus, E. coli, and P. aeruginosa. Moreover, its anti-hydroxyl radical activity is superior to vitamin C. The results show the superiority of co-crystal compound in the design of drug molecules. In fact, pharmaceutical co-crystal used by crystal engineering has a far-reaching influence not only at the interface of chemistry and biology, but also on the advances in drug design and development, and it will be a good mainstream in the new compound drug design.

    (1) Desiraju, G. R.; Steiner, T. The weak hydrogen bond in structural chemistry and biology. Oxford 1999.

    (2) Hibbert, F.; Emsley, J. Hydrogen bonding and chemical reactivity.1990, 26, 255–379.

    (3) Aaker?y, C. B.; Salmon, D. J.; Smitha, M. M.; Despera, J. Cyanooximes as effective and selective co-crystallizing agents.2009, 11, 439–443.

    (4) Good, D. J.; Rodríguez-Hornedo, N. Solubility advantage of pharmaceutical cocrystals.2009, 9, 2252–2264.

    (5) Gunnam, A.; Suresh, K.; Nangia, A. Salts and salt cocrystals of the antibacterial drug pefloxacin.2018, DOI: 10.1021/acs.cgd.7b01600.

    (6) Li, Y. X.; Chen, S. S.; Ren, F. D.; Jin, S. H. Theoretical insight into the influence of molecular ratio on the stability, mechanical property, solvent effect and cooperativity effect of HMX/DMI cocrystal.2017, 36, 562–574.

    (7) Bailey Walsh, R. D.; Bradner, M. W.; Fleischman, S.; Morales, L. A.; Moulton, B.; Rodríguez-Hornedo, N.; Zaworotko, M. J. Crystal engineering of the composition of pharmaceutical phases.2003, 2, 186–187.

    (8) Guo, T.; Huang, X. C.; Tang, W.; Wang, Z. J.; Liu, M.; Qiu, S. J. Crystal structure and thermal behavior of a novel cocrystal consisting of 3,3?-dinitrimino-5,5?-bis(1H-1,2,4-triazole), H2O and (CH3)2SO.2016, 35, 537–544.

    (9) Yin, H. S.; Yang, G. S.; Liu, C. B.; He, A. W.; Zhou, Y. B.; Zhang, Z. P.; Li, H. M. Crystal structures and antibacterial activities of 1,3-phenylenebis(oxy)diacetic acid dihydrate and 4,4?-bipyridine cocrystal.2015, 34, 650–658.

    (10) Xiao, Y.; Huang, P.; Liu, Y. Q. Microwave assisted synthesis, and structure of a co-crystal Nickel complex with 2-ethoxy-6-methyliminomethyl-phenol.2015, 607, 242–249.

    (11) Xiao, Y.; Liu, Y. Q.; Li, G.; Huang, P. Microwave-assisted synthesis, structure and properties of a co-crystal compound with 2-ethoxy-6-methyliminomethyl-phenol.2015, 27, 161–166.

    (12) Wheeler, K. A.; Grove, R. C.; Davis, R. E.; Kassel, W. S. Quasiracemic materials-rediscovering Pasteur’s quasiracemates.2008, 47, 78–81.

    (13) Stoler, E.; Warner, J. C. Non-covalent derivatives: cocrystals and eutectics.2015, 20, 14833–14848.

    (14) Cherukuvada, S.; Nangia, A. Eutectics as improved pharmaceutical materials: design, properties and characterization.. 2014, 50, 906–923.

    (15) Jennifer, S. J.; Muthiah, P. T. Design of co-crystals/salts of some nitrogenous bases and some derivatives of thiophene carboxylic acids through a combination of hydrogen and halogen bonds.2014, 8, 20.

    (16) Aitipamula, S.; Chow, P. S.; Tan, R. B. H. Crystal engineering of tegafur cocrystals: structural analysis and physicochemical properties.2014, 14, 6557–6559.

    (17) Joshi, M.; Choudhury, A. R. Salts of amoxapine with improved solubility for enhanced pharmaceutical applicability.2018, 3, 2406–2416

    (18) Thakuria, R.; Delori, A.; Jones, W.; Lipert, M. P.; Roy, L.; Rodríguez-Hornedo, N. Pharmaceutical cocrystals and poorly soluble drugs.2013, 453, 101–125.

    (19) Ojha, N.; Prabhakar, B. Advances in solubility enhancement techniques.2013, 21, 351–358.

    (20) Cherukuvada, S.; Nangia, A. Fast dissolving eutectic compositions of two anti-tubercular drugs.2012, 14, 2579–2588.

    (21) Smith, A. J.; Kavuru, P.; Wojtas, L.; Zaworotko, M. J.; Shytle, R. D. Cocrystals of quercetin with improved solubility and oral bioavailability.2011, 8, 1867–1876.

    (22) Almarsson, O.; Zaworotko, M. Crystal engineering of the composition of pharmaceutical phases. Do pharmaceutical co-crystals represent a new path to improved medicines?.. 2004, 17, 1889–1892.

    (23) Rehder, S.; Klukkert, M.; L?bmann, K. A. M.; Strachan, C. J.; Sakmann, A.; Gordon, K.; Rades, T.; Leopold, C. S. Investigation of the formation process of two piracetam cocrystals during grinding.2011, 3, 706–722.

    (24) Aaker?y, C. B.; Grommet, A. B.; Desper, J. Co-crystal screening of diclofenac.2011, 3, 601–614.

    (25) Caira, M. R. Molecular complexes of sulfonamides. 3. Structure of 5-methoxysulfadiazine (form II) and its 1:1 complex with acetylsalicylic acid.1994, 24, 695–701.

    (26) Qin, X. Y.; Wang, Y. N.; Yang, X. P.; Liang, J. J.; Liu, J. L.; Luo, Z. H. Synthesis, characterization, and anticancer activity of two mixed ligand copper(Ⅱ) complexes by regulating VEGF/VEGFR2signaling pathway.2017, 46, 16446–16454.

    (27) Qin, X. Y.; Yang, L. C.; Le, F. L.; Yu, Q. Q.; Sun, D. D.; Liu, Y. N.; Liu, J. Structures and anti-cancer properties of two binuclear copper complexes.2013, 42, 14681–14684.

    (28) Qin, X. Y.; Liu, Y. N.; Yu, Q. Q.; Yang, L. C.; Liu, Y.; Zhou, Y. H.; Liu J. Mixed-ligand mononuclear copper(II) complex: crystal structure and anticancer activity.2014, 9, 1665–1671.

    (29) (a) Qin, X. Y.; Yao, H. N.; Ou, W.; Zhang, S. H. Water chains in a novel copper(II) compound [Cu(C9H6O4)(C12H8N2)]·4H2O.2014, 44, 242–246; (b) Qin, X. Y.; Zeng, J. L.; Zhang, S. H.; Jiang, Y. M. Synthesis and crystal structure of Schiff base compound [Zn(C10H9NO5S)(C12H8N2)(H2O)] ·4.25H2O.2012, 42, 915–919.

    (30) Qiu, M. Y.; Lv, D. Preparation of 3,5-dichlorosulfanilamide.. (Chinese) 2005, 34, 115–116.

    (31) Qin, X. Y.; Liu, H. F.; Lin, J. X. 4-Amino-3,5-dichlorobenzenesulfonamide.2010, E66, o2838.

    (32) (a) Higashi, T. ABSCOR. Rigaku Corporation, Tokyo, Japan 1995. (b) Rigaku RAPID-AUTO. Version 3.0. Rigaku Corporation, Tokyo, Japan 2004.

    (33) Cai, Z.; Jiang, C. Y.; Zhao, J.; Mo, L. J.; Zhang, X. Determination of eliminating ratio of fruits extracts for hydroxyl radicals using flow injection chemiluminescence.() 2010, 26, 219–222.

    (34) Sheldrick, G. M. A short history of SHELX.2008, 64, 112–122.

    26 February 2018;

    11 May 2018 (CCDC 884597)

    Guangxi Natural Science Foundation (No. 2016GXNSFAA380292), and National Natural Science Foundation of China (No. 21661011)

    . Dr, associate professor, female, 44 years old, majoring in coordination chemistry, biochemistry and molecular biology. E-mail: xyqin6688@163.com

    10.14102/j.cnki.0254-5861.2011-1985

    老司机靠b影院| 69av精品久久久久久| 麻豆国产av国片精品| 免费久久久久久久精品成人欧美视频| 亚洲自偷自拍图片 自拍| 纯流量卡能插随身wifi吗| 久热这里只有精品99| 免费高清在线观看日韩| 精品无人区乱码1区二区| 精品国产乱子伦一区二区三区| 久久久久国产精品人妻aⅴ院| 最好的美女福利视频网| 久久久国产精品麻豆| 久久久久国内视频| 中文字幕色久视频| 亚洲一区二区三区不卡视频| 国产精品久久久久久亚洲av鲁大| 91成年电影在线观看| 99香蕉大伊视频| 黑人欧美特级aaaaaa片| 黑人巨大精品欧美一区二区mp4| 国产一区在线观看成人免费| 大型av网站在线播放| 国产97色在线日韩免费| 欧美性长视频在线观看| 一a级毛片在线观看| 免费女性裸体啪啪无遮挡网站| 18禁黄网站禁片午夜丰满| 怎么达到女性高潮| 日本免费一区二区三区高清不卡 | 夜夜夜夜夜久久久久| 久久热在线av| 老汉色∧v一级毛片| 精品乱码久久久久久99久播| 一区在线观看完整版| 9色porny在线观看| 欧美一区二区精品小视频在线| 亚洲男人天堂网一区| 又大又爽又粗| 午夜免费鲁丝| 日韩欧美国产一区二区入口| 色综合站精品国产| 亚洲免费av在线视频| netflix在线观看网站| 韩国精品一区二区三区| 天天添夜夜摸| 成人三级做爰电影| 女同久久另类99精品国产91| 18禁国产床啪视频网站| 香蕉国产在线看| 国产日韩一区二区三区精品不卡| 国内精品久久久久久久电影| 国产精品亚洲美女久久久| 国产三级在线视频| av视频在线观看入口| 婷婷丁香在线五月| 久久国产精品影院| 美女免费视频网站| 麻豆av在线久日| 国产片内射在线| 亚洲专区国产一区二区| 人人妻人人爽人人添夜夜欢视频| 18禁黄网站禁片午夜丰满| 一级毛片高清免费大全| 日本五十路高清| 天天添夜夜摸| 国产激情久久老熟女| 午夜激情av网站| 国产蜜桃级精品一区二区三区| 国产伦人伦偷精品视频| 成人亚洲精品av一区二区| 亚洲av五月六月丁香网| 免费在线观看完整版高清| 禁无遮挡网站| 看片在线看免费视频| 亚洲 国产 在线| 久久久久久大精品| 可以免费在线观看a视频的电影网站| 欧美国产精品va在线观看不卡| 一级a爱片免费观看的视频| 久久精品国产亚洲av高清一级| 自拍欧美九色日韩亚洲蝌蚪91| 欧美精品啪啪一区二区三区| 国产精品,欧美在线| 一本久久中文字幕| 男男h啪啪无遮挡| 人人妻,人人澡人人爽秒播| 成在线人永久免费视频| 亚洲avbb在线观看| 亚洲中文字幕一区二区三区有码在线看 | 国产精品av久久久久免费| 成人国语在线视频| 欧美日韩精品网址| 天堂√8在线中文| 69精品国产乱码久久久| 真人做人爱边吃奶动态| 国产一区在线观看成人免费| 青草久久国产| 精品久久久精品久久久| 日韩欧美一区视频在线观看| 真人一进一出gif抽搐免费| 日韩大尺度精品在线看网址 | 国产精品亚洲av一区麻豆| 日韩国内少妇激情av| 久久狼人影院| 精品欧美国产一区二区三| 国产激情欧美一区二区| 久久国产精品男人的天堂亚洲| 一级片免费观看大全| 日韩欧美国产在线观看| 亚洲精品中文字幕在线视频| 日韩欧美免费精品| 亚洲欧洲精品一区二区精品久久久| 黄网站色视频无遮挡免费观看| 十八禁网站免费在线| 国产欧美日韩综合在线一区二区| 成人永久免费在线观看视频| 国产精品香港三级国产av潘金莲| 真人一进一出gif抽搐免费| 91精品国产国语对白视频| 欧美+亚洲+日韩+国产| 欧美日韩亚洲综合一区二区三区_| 国产单亲对白刺激| 精品一区二区三区视频在线观看免费| 国产精品自产拍在线观看55亚洲| 成人18禁在线播放| 神马国产精品三级电影在线观看 | 天堂√8在线中文| aaaaa片日本免费| 两性午夜刺激爽爽歪歪视频在线观看 | 无限看片的www在线观看| 亚洲国产看品久久| 欧美人与性动交α欧美精品济南到| 波多野结衣巨乳人妻| 日韩精品青青久久久久久| 国内毛片毛片毛片毛片毛片| av天堂久久9| 丝袜在线中文字幕| 高清黄色对白视频在线免费看| 高清在线国产一区| 97碰自拍视频| 最近最新中文字幕大全免费视频| 黄片播放在线免费| 国产精品久久久久久亚洲av鲁大| 亚洲精品久久国产高清桃花| 在线国产一区二区在线| 午夜福利一区二区在线看| 禁无遮挡网站| 9191精品国产免费久久| 亚洲精品久久成人aⅴ小说| 一区二区三区精品91| 久久国产亚洲av麻豆专区| av中文乱码字幕在线| 色播亚洲综合网| 精品一区二区三区av网在线观看| 在线视频色国产色| 欧美色视频一区免费| 亚洲国产日韩欧美精品在线观看 | 人成视频在线观看免费观看| 脱女人内裤的视频| 久久人人精品亚洲av| 亚洲国产欧美一区二区综合| 精品国内亚洲2022精品成人| 亚洲国产毛片av蜜桃av| 91国产中文字幕| 一级毛片高清免费大全| 午夜福利一区二区在线看| 国产熟女午夜一区二区三区| 成人国产综合亚洲| 国产亚洲欧美在线一区二区| 国产激情久久老熟女| 身体一侧抽搐| 久久精品国产亚洲av高清一级| 亚洲天堂国产精品一区在线| 久久久国产欧美日韩av| 波多野结衣一区麻豆| 美国免费a级毛片| 国产av一区二区精品久久| 欧美乱妇无乱码| 亚洲国产欧美网| 亚洲精品久久成人aⅴ小说| 欧美人与性动交α欧美精品济南到| 欧美乱色亚洲激情| www.999成人在线观看| 日本撒尿小便嘘嘘汇集6| 精品福利观看| 免费高清在线观看日韩| 欧美中文综合在线视频| 日本五十路高清| 欧美成人一区二区免费高清观看 | 97超级碰碰碰精品色视频在线观看| 国产精品亚洲美女久久久| 日韩欧美一区二区三区在线观看| 99久久国产精品久久久| 久久香蕉精品热| 国产三级黄色录像| 亚洲av电影不卡..在线观看| 精品电影一区二区在线| 日韩av在线大香蕉| 9191精品国产免费久久| 亚洲视频免费观看视频| 可以免费在线观看a视频的电影网站| 亚洲三区欧美一区| 满18在线观看网站| 精品高清国产在线一区| 国产免费av片在线观看野外av| av福利片在线| 又紧又爽又黄一区二区| 亚洲欧美一区二区三区黑人| 欧美一级a爱片免费观看看 | 午夜视频精品福利| 18禁裸乳无遮挡免费网站照片 | 亚洲色图av天堂| 久久香蕉国产精品| 在线播放国产精品三级| 国产在线观看jvid| 免费在线观看亚洲国产| 国产午夜福利久久久久久| 免费看美女性在线毛片视频| 中文字幕久久专区| 日韩欧美一区视频在线观看| 成人国语在线视频| 久久人人97超碰香蕉20202| 久久亚洲真实| 一本大道久久a久久精品| 久久天堂一区二区三区四区| 久久久久国产一级毛片高清牌| 亚洲中文字幕一区二区三区有码在线看 | 久久人人爽av亚洲精品天堂| 欧美在线黄色| 极品人妻少妇av视频| 亚洲欧美日韩另类电影网站| 丝袜美腿诱惑在线| 久久国产亚洲av麻豆专区| 午夜福利一区二区在线看| 亚洲人成伊人成综合网2020| 不卡一级毛片| 一边摸一边抽搐一进一小说| 欧美激情久久久久久爽电影 | 欧美激情久久久久久爽电影 | 国产精品国产高清国产av| 国产黄a三级三级三级人| √禁漫天堂资源中文www| 亚洲伊人色综图| 嫁个100分男人电影在线观看| 亚洲专区字幕在线| 视频区欧美日本亚洲| 亚洲欧洲精品一区二区精品久久久| 女人高潮潮喷娇喘18禁视频| 欧美日韩福利视频一区二区| 久久国产精品影院| 国产精品久久久久久人妻精品电影| 成人精品一区二区免费| 亚洲成av片中文字幕在线观看| 欧美色欧美亚洲另类二区 | 亚洲精品粉嫩美女一区| 别揉我奶头~嗯~啊~动态视频| 50天的宝宝边吃奶边哭怎么回事| 美女午夜性视频免费| 别揉我奶头~嗯~啊~动态视频| 国产精品一区二区精品视频观看| 狠狠狠狠99中文字幕| 99精品在免费线老司机午夜| 亚洲激情在线av| 久久久国产成人精品二区| 999精品在线视频| 免费人成视频x8x8入口观看| 9191精品国产免费久久| av有码第一页| 欧美一级a爱片免费观看看 | 午夜福利欧美成人| 亚洲欧美激情综合另类| 亚洲 国产 在线| 十八禁人妻一区二区| 搞女人的毛片| 香蕉丝袜av| 国产激情欧美一区二区| 亚洲精品美女久久久久99蜜臀| 国产成人啪精品午夜网站| 亚洲少妇的诱惑av| 亚洲色图 男人天堂 中文字幕| 9热在线视频观看99| 精品久久久久久久毛片微露脸| 亚洲在线自拍视频| 久热这里只有精品99| 久久久久久亚洲精品国产蜜桃av| 91字幕亚洲| 午夜福利视频1000在线观看 | 精品欧美国产一区二区三| 国产精品99久久99久久久不卡| 久久人妻福利社区极品人妻图片| 亚洲国产欧美网| 亚洲av成人av| 精品久久久久久久久久免费视频| 欧美老熟妇乱子伦牲交| 国内久久婷婷六月综合欲色啪| 亚洲欧美日韩无卡精品| 老司机午夜十八禁免费视频| 嫩草影视91久久| 如日韩欧美国产精品一区二区三区| 国语自产精品视频在线第100页| 日韩欧美免费精品| 午夜福利影视在线免费观看| 久久久国产精品麻豆| 怎么达到女性高潮| 国产精品一区二区三区四区久久 | 国产在线精品亚洲第一网站| 国产私拍福利视频在线观看| 级片在线观看| 日韩 欧美 亚洲 中文字幕| 亚洲免费av在线视频| 大型黄色视频在线免费观看| 国产色视频综合| 国产精品国产高清国产av| 久久中文字幕一级| 欧美乱色亚洲激情| 精品久久久久久久毛片微露脸| 日日夜夜操网爽| 精品乱码久久久久久99久播| xxx96com| 亚洲成人国产一区在线观看| 欧洲精品卡2卡3卡4卡5卡区| 久热这里只有精品99| 精品午夜福利视频在线观看一区| 啦啦啦免费观看视频1| x7x7x7水蜜桃| 亚洲少妇的诱惑av| x7x7x7水蜜桃| 女人高潮潮喷娇喘18禁视频| 无人区码免费观看不卡| 此物有八面人人有两片| 无人区码免费观看不卡| 大型黄色视频在线免费观看| 久久久精品国产亚洲av高清涩受| 999久久久国产精品视频| 国产欧美日韩一区二区精品| 一区二区三区高清视频在线| 久久香蕉激情| 18禁观看日本| 三级毛片av免费| 成人av一区二区三区在线看| 免费在线观看黄色视频的| 老汉色∧v一级毛片| 亚洲五月婷婷丁香| 国产一级毛片七仙女欲春2 | 看片在线看免费视频| 亚洲精品美女久久av网站| xxx96com| 国产欧美日韩精品亚洲av| 国产aⅴ精品一区二区三区波| 婷婷六月久久综合丁香| 国产av一区在线观看免费| 婷婷六月久久综合丁香| 一级毛片精品| 视频区欧美日本亚洲| 黄色毛片三级朝国网站| 欧美日本中文国产一区发布| 久久青草综合色| 国产精品二区激情视频| 国产99久久九九免费精品| 亚洲成av片中文字幕在线观看| 9色porny在线观看| 99在线人妻在线中文字幕| 中文字幕久久专区| 成人免费观看视频高清| 亚洲国产日韩欧美精品在线观看 | 老司机午夜十八禁免费视频| 嫩草影视91久久| 在线观看免费午夜福利视频| 纯流量卡能插随身wifi吗| av福利片在线| 亚洲精品在线观看二区| 久久久久久亚洲精品国产蜜桃av| 搡老岳熟女国产| 精品欧美一区二区三区在线| av在线播放免费不卡| 亚洲avbb在线观看| 欧美午夜高清在线| 91老司机精品| 黄色视频不卡| 黑人操中国人逼视频| 国产精品精品国产色婷婷| 韩国av一区二区三区四区| 99国产综合亚洲精品| 韩国av一区二区三区四区| 亚洲九九香蕉| 一边摸一边抽搐一进一出视频| 亚洲国产精品成人综合色| 精品福利观看| 大香蕉久久成人网| ponron亚洲| 久9热在线精品视频| 黄色 视频免费看| 亚洲一卡2卡3卡4卡5卡精品中文| 韩国精品一区二区三区| 久久久国产成人精品二区| 丁香欧美五月| 国内久久婷婷六月综合欲色啪| 国产欧美日韩一区二区三| 国产aⅴ精品一区二区三区波| 99热只有精品国产| 可以在线观看毛片的网站| 国产精品日韩av在线免费观看 | 免费人成视频x8x8入口观看| 精品不卡国产一区二区三区| 男人操女人黄网站| 黑人巨大精品欧美一区二区蜜桃| 夜夜夜夜夜久久久久| 成人三级黄色视频| √禁漫天堂资源中文www| 欧美午夜高清在线| 国产99久久九九免费精品| 久久久久久久午夜电影| 国产免费男女视频| 中亚洲国语对白在线视频| 午夜两性在线视频| 在线观看免费午夜福利视频| 国产亚洲精品第一综合不卡| 国产激情久久老熟女| 久久天堂一区二区三区四区| 欧美最黄视频在线播放免费| 大陆偷拍与自拍| 搞女人的毛片| 1024视频免费在线观看| 国产午夜福利久久久久久| 亚洲人成电影免费在线| 免费看a级黄色片| 大码成人一级视频| 国产蜜桃级精品一区二区三区| 两个人看的免费小视频| 深夜精品福利| 亚洲色图综合在线观看| 久久精品人人爽人人爽视色| 国产亚洲欧美精品永久| 一区二区日韩欧美中文字幕| 我的亚洲天堂| 亚洲狠狠婷婷综合久久图片| 亚洲va日本ⅴa欧美va伊人久久| 男女下面插进去视频免费观看| 国语自产精品视频在线第100页| 亚洲人成电影观看| 大型黄色视频在线免费观看| 亚洲第一欧美日韩一区二区三区| 国产欧美日韩一区二区三| 国内精品久久久久精免费| videosex国产| 欧美精品啪啪一区二区三区| 亚洲人成电影观看| 欧美+亚洲+日韩+国产| 欧美中文日本在线观看视频| 丰满的人妻完整版| 成人欧美大片| 午夜亚洲福利在线播放| 亚洲五月色婷婷综合| 男人操女人黄网站| 91成人精品电影| 欧美日韩亚洲国产一区二区在线观看| 亚洲av美国av| 亚洲国产日韩欧美精品在线观看 | 性欧美人与动物交配| 国产主播在线观看一区二区| 人妻丰满熟妇av一区二区三区| 女性生殖器流出的白浆| 国产免费男女视频| 久久久久九九精品影院| 国产精品久久久久久亚洲av鲁大| 亚洲精品国产一区二区精华液| 亚洲成人国产一区在线观看| 国产成人精品久久二区二区免费| 欧美在线一区亚洲| 欧美亚洲日本最大视频资源| 首页视频小说图片口味搜索| 男女做爰动态图高潮gif福利片 | 国产精品免费一区二区三区在线| 中文字幕av电影在线播放| 欧美激情高清一区二区三区| 黑人巨大精品欧美一区二区mp4| 中文字幕人妻熟女乱码| 美女免费视频网站| 精品久久久久久久久久免费视频| av在线天堂中文字幕| 美女国产高潮福利片在线看| 欧美乱妇无乱码| 午夜免费成人在线视频| 日本三级黄在线观看| 国产欧美日韩精品亚洲av| 香蕉久久夜色| 丝袜人妻中文字幕| 国产精品久久久久久亚洲av鲁大| 欧洲精品卡2卡3卡4卡5卡区| 国产一区二区在线av高清观看| 亚洲专区字幕在线| 在线观看免费日韩欧美大片| 国产精品影院久久| 高清在线国产一区| 国产成人精品在线电影| 精品福利观看| 国产极品粉嫩免费观看在线| avwww免费| 欧美一级a爱片免费观看看 | 久久久国产精品麻豆| 又黄又爽又免费观看的视频| 欧美色视频一区免费| 精品久久久久久,| 制服人妻中文乱码| 极品教师在线免费播放| 一边摸一边做爽爽视频免费| aaaaa片日本免费| 在线永久观看黄色视频| 色播在线永久视频| 欧美成人一区二区免费高清观看 | 成人亚洲精品av一区二区| 男女床上黄色一级片免费看| 搞女人的毛片| 香蕉国产在线看| 久久国产乱子伦精品免费另类| 免费久久久久久久精品成人欧美视频| 19禁男女啪啪无遮挡网站| 亚洲国产精品合色在线| tocl精华| 男人舔女人的私密视频| 人人妻人人澡人人看| 亚洲av成人不卡在线观看播放网| 日本一区二区免费在线视频| 免费少妇av软件| 亚洲欧美日韩高清在线视频| 51午夜福利影视在线观看| 精品国产超薄肉色丝袜足j| 欧美色欧美亚洲另类二区 | 夜夜躁狠狠躁天天躁| 99国产综合亚洲精品| 国产亚洲精品久久久久久毛片| 日韩一卡2卡3卡4卡2021年| 精品国产美女av久久久久小说| 中文字幕高清在线视频| 久久精品91无色码中文字幕| 此物有八面人人有两片| 中文字幕最新亚洲高清| 欧美日韩亚洲综合一区二区三区_| 国语自产精品视频在线第100页| 久久精品91无色码中文字幕| 亚洲成人免费电影在线观看| 日韩一卡2卡3卡4卡2021年| 国产欧美日韩一区二区三| 我的亚洲天堂| 国产成人精品在线电影| 超碰成人久久| 麻豆国产av国片精品| 亚洲国产看品久久| 真人做人爱边吃奶动态| a级毛片在线看网站| www.自偷自拍.com| 天堂影院成人在线观看| 国产精品av久久久久免费| 成人特级黄色片久久久久久久| 国产区一区二久久| 国产精品二区激情视频| 又黄又爽又免费观看的视频| 国产欧美日韩综合在线一区二区| 黄色女人牲交| 好看av亚洲va欧美ⅴa在| 一夜夜www| 一区二区三区高清视频在线| 午夜成年电影在线免费观看| or卡值多少钱| 亚洲三区欧美一区| 精品久久蜜臀av无| 亚洲久久久国产精品| 久久精品亚洲熟妇少妇任你| 操出白浆在线播放| 免费av毛片视频| 国产精品亚洲美女久久久| 波多野结衣一区麻豆| 午夜a级毛片| 午夜日韩欧美国产| 桃红色精品国产亚洲av| 美女大奶头视频| 成人欧美大片| 视频在线观看一区二区三区| 亚洲美女黄片视频| 免费在线观看日本一区| a级毛片在线看网站| 最好的美女福利视频网| 啦啦啦观看免费观看视频高清 | 悠悠久久av| 日本三级黄在线观看| av有码第一页| 99国产精品一区二区三区| 亚洲精华国产精华精| 色哟哟哟哟哟哟| 国内精品久久久久久久电影| 亚洲第一av免费看| 国产精品一区二区在线不卡| 欧美黑人欧美精品刺激| 一级毛片精品| 精品国产乱码久久久久久男人| 美女国产高潮福利片在线看| 午夜福利视频1000在线观看 | 黄色片一级片一级黄色片| 成人三级黄色视频| 国产人伦9x9x在线观看| av有码第一页| 99国产精品一区二区三区| 午夜免费激情av| 成人国产一区最新在线观看| 色av中文字幕| 88av欧美| 国产亚洲精品av在线| 一级片免费观看大全| 女人被躁到高潮嗷嗷叫费观| 性欧美人与动物交配| 亚洲视频免费观看视频| 看片在线看免费视频| 69av精品久久久久久| 国产一区二区三区视频了|