• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Two Novel Coordination Polymers of Schiff Base Ligands: Synthesis, Crystal Structures and Antibacterial Properties Studies①

    2018-08-17 09:13:54GUOGuoZheZHENGXvDongZHANGYuQuanZHUJiHuaLIYanChunLIZhiJun
    結(jié)構(gòu)化學(xué) 2018年7期

    GUO Guo-Zhe ZHENG Xv-Dong ZHANG Yu-QuanZHU Ji-Hua LI Yan-Chun LI Zhi-Jun

    ?

    Two Novel Coordination Polymers of Schiff Base Ligands: Synthesis, Crystal Structures and Antibacterial Properties Studies①

    GUO Guo-Zhe②ZHENG Xv-Dong ZHANG Yu-QuanZHU Ji-Hua LI Yan-Chun LI Zhi-Jun

    (745000)

    Two novel complexes [AgL1(NO3)H2O]n(1) and [PbL2(NO3)2]n(2) were synthesized by the evaporation reaction with metal salts and Schiff base ligands. They were characterized by elemental analyses, IR spectra and X-ray single-crystal diffraction. 1 crystallizes in monoclinic, space group21/with= 18.358(3),= 10.0395(15),= 13.4643(16) ?,= 91.749(12)o,= 2480.4(6) ?3,D= 1.597 g/cm3,M= 596.35,(000) = 1208,= 4,= 0.0772 and=0.0927. 2 crystallizes in monoclinic space group2/with= 15.8549(10),= 21.1988(17),= 17.7198(12) ?,= 105.829(8)o,= 5729.9(7) ?3,D= 1.645 g/cm3,M= 709.63,(000) = 2736,= 8,= 0.0541 and= 0.1175. X-ray single-crystal diffraction experiments of 1 and 2 display that extensive×××stacking interactions and hydrogen bonds construct into a 2D rectangular network and a 3D supramolecular framework. The antibacterial properties of L1, L2, 1 and 2 were also studied.

    framework, antibacterial properties,crystal structure, synthesis;

    1 INTRODUCTION

    Double Schiff base ligands, due to their specific geometry, including the different relative orientation of N-donors and the zigzag conformation of the spacer moiety between the two terminal coordination groups, may result in coordination polymers with novel network patterns not achievable by other rigid linking ligands[1]. The finding that metal complexes based on Schiff base ligands can be widely applied in catalysis, magnetism and material chemistry[2], and that they are also ubiquitous in developing intriguing coordination models of main group and transition metals, is mainly due to their stability, easy pre- paration, structural variability and biological activity[3]. Especially, pyridine- and pyrazine-Schiff base ligands containing an additional nitrogen donor in the pyridine and pyrazine units can systematically be used to understand the features of the supramo- lecular architectures and to explore the fascinating properties of these supramolecular frameworks[4]. For example, Hannon et al.[5]have reported a series of metallo-supramolecular architectures based on pyridine- and pyrazine-Schiff base ligands containing rigid spacers. In these structures, additional donor groups were introduced into the pyridine- and pyrazine-based ligands system to link the distinct architectures into larger arrays.

    On the other hand, assemblies of Ag(I) and Pb(Ⅱ) coordination polymers have attracted attention for a long time due to their interesting structure and potential physical and chemical functions[6]. The variable coordination numbers of Ag(I) and Pb(Ⅱ) and various supramolecular forces in the Ag(I) and Pb(Ⅱ) compounds such as metal-ligand, metal-metal and metal-anion interactions, increase the possibility of compounds forming complicated geometries, which also stimulate the study of polythreaded coordination networks. Taking inspiration from previous work on Ag(I) and Pb(Ⅱ) coordination polymers, herein we report two novel silver and lead complexes from the reaction of ligand (L1and L2) with nitrate (silver and lead) (see Scheme 1). The crystal structures are determined by single-crystal X-ray diffraction analyses. Complex 1 shows coor- dination by five nitrogen atoms from three ligands and has a distorted square pyramidal geometry, and complex 2 shows coordination by eight atoms and the Pb(Ⅱ) center is in a distorted hemidirected geo- metry. The antioxidant activities of L1, L2, 1 and 2 were also reported.

    Scheme 1. Molecular structures of L1and L2

    2 EXPERIMENTAL

    2. 1 Materials and measurements

    The regents and solvents were used as commercial sources without further purification. The ligand was prepared according to the literature[7]. Elemental analyses were performed on a Perkin-Elmer 2400C elemental analyzer. The IR spectra were recorded on a Bruker Vector 22 FTIR spectrophotometer with KBr pellets. The crystal data of the compounds were collected on a SuperNova, Dual, Cu at zero, Eos diffractometer.

    2. 2 Synthesis of 1

    AgNO3(0.15 mmol, 25.5 mg) andL1(0.15 mmol, 61.3 mg)were dissolved inMeOH (15 mL), and the yellow slurry was stirred for 5 min at room temperature. A solution of strong ammonia (3 drops) was then added and the resulting orange solution was stirred for 1 h at room temperature. Brown and block crystal was obtained by evaporation after one week, and washed with menthol. Yield: 57 wt%. Anal. Calcd. for 1 (%): C, 48.44; H, 3.86; N, 16.22. Found (%): C, 48.34; H, 3.72; N, 16.44. IR(KBr):= 3382(m), 3361(s), 1630(m), 1385(m), 1217(w), 455(s) cm-1.

    2. 3 Synthesis of 2

    A yellow solution of L2(50.9 mg, 0.15 mmol) in CH3CN (5 mL) was slowly added to the solution of Pb(NO3)2(49.7 mg, 0.15 mmol) in MeOH (5 mL), and the light yellow slurry was stirred for 5 min at room temperature. A solution of strong ammonia (3 drops) was then added and the resulting yellow solution was stirred for 1 h at room temperature. Slow evaporation of the solvent at room temperature gave colourless and block crystal of compound 2 suitable for X-ray analysis. The crystals were collected by filtration, washed with cold acetonitrile, and dried under vacuum. Yield: 51 wt%. Anal. Calcd. for 2 (%): C, 40.53; H, 2.82; N, 11.62. Found (%): C, 40.62; H, 2.56; N, 11.84. IR(KBr):= 3452(w) 1589(s), 1491(s), 1386(s), 1238(m), 832(m), 774(m) cm-1.

    2. 4 Crystal structure determination and refinement

    Diffraction intensity data for single crystals of these two complexes were collected and mounted on a SuperNova, Dual, Cu at zero, Eos diffractometer. Data were collected at 295.42(10) K by using a graphite-monochromator with Moradiation (= 0.71073 ?) in the-scanning mode. Data collection, reduction and absorption correction were performed by Olex2[8]. The structure was solved by direct methods using the ShelXS[9]and refined by Least-Squares minimization techniques ShelXL[10]. The non-hydrogen atoms were refined anisotro- pically. The hydrogen atoms were determined with theoretical calculations and refined isotropically. The selected bond lengths and bond angles are given in Tables 1 and 2, respectively. The hydrogen bond lengths and bond angles are listed in Table 3.

    Table 1. Selected Bond Lengths (?) and Bond Angles (°) for 1

    Symmetry codes: i: 1–, 1–, 1–; ii: 1–, –0.5+, 0.5–; iii: 1–, 0.5+, 0.5–

    Table 2. Selected Bond Lengths (?) and Bond Angles (°) for 2

    Table 3. Hydrogen Bond Lengths (?) and Bond Angles (°) for Compounds 1 and 2

    Symmetry codes: i: 1–,, 0.5–; ii: 1–, –0.5+, 0.5–; iii: 1–, 0.5+, 0.5–

    3 RESULTS AND DISCUSSION

    3. 1 Structure description

    The silver(I) coordination polymer 1 was con- firmed by single-crystal X-ray diffraction analysis. The Ag–N(pyrazine) distances are in the range of 2.347~2.514 ? and the Ag–N(C=N) distances fall in the 2.267~2.441 ? range[11]. The bond angles N–Ag–N are 67.8°, 71.1°, 83.6°, 100.1° and 103.9°, respectively[11]. A perspective view of the title complex is depicted in Fig. 1. The title complex 1 reveals that the central silver ion is five-coordinated by five nitrogen atoms from three ligands, forming a distorted square pyramidal geometry. Two of the ligands bridge both the Ag(1) centres; one ligand molecule passes above the Ag(1)–Ag(1i) axis and the other beneath.

    It is interesting that there is one ether group in the spacer favoring a bent conformation of the ligand yielding an internal mirror plane and a mesocate structure, and forms a two-dimensional sheet (Fig. 2). As the molecular box occupies an inversion center, the opposite two phenyl rings are parallel to each other. The dihedral angles of A and B are ca. 6.3°, the center-to-plane separation ca. 3.79 ? and the shortest interplanar atom-atom separation ca. 3.45 ?. These distances are similar to the standard distance for a-stacking interaction between two aryl rings. The two Ag(I) are separated intramolecularly by 11.73 ?. 1 displays that extensive×××stacking interactions and hydrogen bonds construct into a 2D rectangular network (Fig. 3).

    Fig. 1. Ag coordination environment of complex 1 at 30% probability displacement ellipsoids. H atoms, water molecules and nitrate anions have been omitted for clarity (Symmetry codes: (i) 1–, 1–, 1–; (ii) 1–, –0.5+, 0.5–; (iii) 1–, 0.5+, 0.5–; (iv), 0.5–, 0.5+; (v), 1.5–, 0.5+)

    Fig. 2. 2D Crystal structure of complex 1. H atoms, water molecules and nitrateanions have been omitted for clarity

    Fig. 3. Crystal packing of complex 1

    As shown in Fig. 4, the crystal structure of 2 reveals that each Pb(II) is bonded to four nitrogen atoms from two L2and four oxygen atoms from three nitrates. In one asymmetric unit, the nitrates exhibit two different coordination modes; two nitrates are bidentate to Pb(II) and the other as tetra-dentate chelating and bridging links four L2to form a 1D infinite chain (Fig. 5). The Pb(1)-Pb(1i) separation is 5.5781(7) ?. Coordination number of Pb(II) of 2~5 shows hemidirected stereochemistry, high coordination number (9,10), holodirected geometry, and coordination number (6~8) either hemidirected or holodirected geometry. The coor- dination sphere of each Pb(II) is hemidirected. All the Pb–O and Pb–N bond distances are below 2.9 ?, such bond distances are reasonable and can find a nearly ideal value assumed for oxidation state II on the Pb(II) ions. The dihedral angle of C and D is ca. 20.4°, the center-to-plane separation ca. 4.74 ? and the shortest interplanar atom-atom separation ca. 3.60 ?. These distances are similar to the standard distance for a weak-stacking interaction between two aryl rings. Hydrogen bonds interactions (C–H×××O and C–H×××N) and offset×××stacking of the neighboring phenyl and pyridine rings with a sandwich conformation (Fig. 6) stabilize the crystal lattice in a 3D supramolecular framework in the solid state.

    Fig. 4. Pb coordination environment of complex 2. H atoms have been omitted for clarity. Symmetry code: (i) 1–,, 0.5–

    Fig. 5. 1D infinite chain structure of crystal 2. H atoms have been omitted for clarity

    Fig. 6. Crystal packing of complex 2. Hydrogen bonds are shown as dashed lines

    3. 2 Antibacterial property studies

    The activities of the complexes and ligands against several bacteria have been studied using the well diffusion method on beef extract-peptone medium. Paper disc diffusion method was employed on these compounds dissolved in CHCl3(~1 mM) against test organisms, where the paper discs were prepared by immersion to these different solutions, and the antimicrobial performance of the compounds towards two bacterial pathogens. Proteusbacillus vulgaris and bacillus subtilis were determined by measuring the size of inhibition zone diameters (IZDs). The zone of inhibition was measured after 24 h of incubation. The results are presented as inhibition zone diameters in Table 4.It is evident that 1 exhibits considerable higher activity against bacillus subtilis which is significantly better than L1. Complex 1 was found to be highly active against bacillus subtilis. The antibacterial activity of complex 2 is close to L2.

    Table 4. Antibacterial Activities (IZD Values) of the Complexes and Ligands

    4 CONCLUSION

    In the present work, two novel coordination com- pounds [AgL1(NO3)H2O]n(1) and [PbL2(NO3)2]n(2) were synthesized based on the N-containing group ligands and characterized. In this structure, complex 1 has a distorted square pyramidal geometry, and complex 2 has a distorted hemidirected geometry. Moreover, 1 and 2 display that extensive×××stacking interactions and hydrogen bonds construct into a 2D rectangular network and a 3D supramo- lecular framework. The antibacterial activities of L1, L2, 1 and 2 afford a guiding role for potential antibiotic resistance.

    (1) Cao, J.; Liu, J. C.; Deng, W. T.; Jin, N. Z. Structurally diverse copper(II) complexes with pyridazine-integrated with pyrazine-Schiff base ligand featuring an easily lost proton in the hydrazone backbone.2013, 15, 6359–6367.

    (2) (a) Balema, V. P.; Wiench, J. W.; Pruski, M.; Pecharsky, V. K. Solvent-free mechanochemical synthesis of phosphonium salts.2002, 24, 724–725; (b) Clemente-Juan, J. M.; Coronado, E.; Galán-Mascarós, J. R.; Gómez-García, C. J. Increasing the nuclearity of magnetic polyoxometalates. Syntheses, structures, and magnetic properties of salts of the heteropoly complexes [Ni3(H2O)3(PW10O39)H2O]7-, [Ni4(H2O)2(PW9O34)2]10-, and [Ni9(OH)3(H2O)6(HPO4)2(PW9O34)3]16-.1999, 38, 55–63; (c) Fika, M. A.; L?ffler, M.; Weselski, M.; Korabik, M. J.; Patroniak, M. New Fe(II) complexes with Schiff base ligand: synthesis, spectral characterization, magnetic studies and thermal stability.2015, 102, 609-614; (d) Aryanejad, S.; Bagherzade, G.; Farrokhi, A. A nanoscale Cu-metal organic framework with Schiff base ligand: synthesis, characterization and investigation catalytic activity in the oxidation of alcohols.2017, 81, 37–42; (e) Banerjee, A.; Guha, A.; Maiti, P.; Goswami, S. Dinuclear nickel(II) complexes with Schiff base ligands: syntheses, structures and bio-relevant catalytic activities.2011, 36, 829–839.

    (3) (a) Habib, F.; Long, J.; Lin, P. H.; Korobkov, I.; Ungur, L.; Wernsdorfer, W.; Chibotaruc, L. F.; Murugesu, M. Supramolecular architectures for controlling slow magnetic relaxation in field-induced single-molecule magnets.2012, 3, 2158–2164; (b) Ebralidze, I. I.; Leitus, G.; Shimon, L. J. W.; Wang, Y.; Shaik, S.; Neumann, R. Structural variability in manganese(II) complexes of N,N?-bis(2-pyridinylmethylene) ethane (and propane) diamine ligands.2011, 362, 4713–4720; (c) Tuna, F.; Hamblin, J.; Jackson, A.; Clarkson, G.; Alcock, N. W.; Hannon, M. J. Metallo-supramolecular libraries: triangles, polymers and double-helicates assembled by copper(I) coordination to directly linked bis-pyridylimine ligands.2003, 11, 2141–2148.

    (4) (a) Morin, T. J.; Bennett, B.; Lindeman, S. V.; Gardinier, J. R. First-row transition-metal complexes of a new pentadentate ligand,,,′,′-tetra(pyrazolyl)lutidine.2008, 47, 7468–7470; (b) Morin, T. J.; Merkel, A.; Lindeman, S. V.; Gardinier, J. R. Breaking the cycle: impact of sterically-tailored tetra(pyrazolyl)lutidines on the self-assembly of silver(I) complexes.2010, 49, 7992–8002; (c) Chen, Q.; Ma, F.; Meng, Y. S.; Sun, H. L.; Zhang, Y. Q.; Gao, S. Assembling dysprosium dimer units into a novel chain featuring slow magnetic relaxation via formate linker.2016, 55, 12904–12911; (d) Stichauer, R.; Helmers, A.; Bremer, J.; Rohdenburg, M.; Wark, A.; Lork, E.; Vogt, M. Rhenium(I) triscarbonyl complexes with redox-active amino- and iminopyridine ligands: metal-ligand cooperation as trigger for the reversible binding of CO2via a dearmomatization/rearomatization reaction sequence.2017, 36, 839–848.

    (5) Pascu, M.; Tuna, F.; Kolodziejczyk, E.; Pascu, G. I.; Clarkson, G.; Hannon, M. J. Binding sites on the outside of metallo-supramolecular architectures, engineering coordination polymers from discrete architectures.2004, 10, 1546–1555.

    (6) (a) Zhao, Y. H.; Su, Z. M.; Fu, Y. M.; Shao, K. Z.; Li, P.; Wang, Y.; Hao, X. R.; Zhu, D. X.; Liu, S. D. Syntheses and characterizations of four metal coordination polymers constructed by the pyridine-3,5-dicarboxylate ligand.2008, 27, 583–592; (b) Rosa, V.; Santos, C. I. M.; Welter, R.; Aullón, G.; Lodeiro, C.; Avilés, T. Comparison of the structure and stability of new-diimine complexes of copper(I) and silver(I): density functional theory versus experimental.2010, 49, 8699–8708; (c) Kalo?lu, M.; Kalo?lu, N.; ?zdemir, ?.; Günal, S.; ?zdemir, ?. Novel benzimidazol-2-ylidene carbene precursors and their silver(I) complexes: potential antimicrobial agents.2016, 24, 3649–3656; (d) Zhao, Y. H.; Su, Z. M.; Fu, Y. M.; Shao, K. Z.; Li, P.; Wang, Y.; Hao, X. R.; Zhu, D. X.; Liu, S. D. Syntheses and characterizations of four metal coordination polymers constructed by the pyridine-3,5-dicarboxylate ligand.2008, 27, 583–592; (e) Wang, K.; Gu, J. W.; Yin, N. Efficient removal of Pb(II) and Cd(II) using NH2-functionalized Zr-MOFs via rapid microwave-promoted synthesis.2017, 56, 1880–1887; (f) Zhang, H. F.; Dang, Q. F.; Liu, C. S.; Cha, D. S.; Yu, Z. Z.; Zhu, W. J.; Fan, B. Uptake of Pb(II) and Cd(II) on chitosan microsphere surface successively grafted by methyl acrylate and diethylenetriamine.2017, 9, 11144–11155.

    (7) Escuer, A.; Cordero, B.; Font-Bardia, M. T. Calvet, anionic tuning of the dimensionality in copper oximato chemistry.2010, 49, 9752–9754.

    (8) Dolomanov, A. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A. K.; Puschmann, H. OLEX2: a complete structure solution, refinement and analysis program.. 2009, 42, 339–341.

    (9) Palatinus, L.; Chapuis, G.-a computer program for the solution of crystal structures by charge flipping in arbitrary dimensions.2007, 40, 786–790.

    (10) Sheldrick, G. M. Crystal structure refinement with SHELXL.. 2015, 71, 3–8.

    (11) (a) He, C.; Duan, C. Y.; Fang, C. J.; Meng, Q. J. Self-assembled dinuclear molecular box [Ag2L2]2+and triple helicates [Co2L3]4+, [Ni2L3]4+{L = bis[4-(2-pyridylmethyleneamino)phenyl]ether}.2000, 2419–2424; (b) Harold, B.; Tanh, J.; Jens, M.; Thomas, D.; Kerstin, G.; Axel, H.; Gert, B.; Karsten, G. Coordination chemistry of bis(2-pyridylimine) ligands with Ag(I): formation of two structurally different coordination polymers and one metallocycle controlled by linker and the solvent system.. 2011, 71, 343–352.

    16 November 2017;

    19 March 2018 (CCDC 1443583 for 1 and 1561175 for 2)

    ① This work was supported by the University Project of Gansu Province (2017A-095) and the 13th Five-Year Period Education Plan of Gansu Province (GS[2017]GHB0360)

    . Born in 1988, majoring in functional coordination chemistry. E-mail: 2660859870@qq.com

    10.14102/j.cnki.0254-5861.2011-1892

    e午夜精品久久久久久久| 久久人人精品亚洲av| av免费在线观看网站| 色尼玛亚洲综合影院| 1024手机看黄色片| 国产成人精品久久二区二区91| 日韩欧美精品v在线| 成人三级黄色视频| 亚洲 欧美 日韩 在线 免费| 成年人黄色毛片网站| 人成视频在线观看免费观看| 丁香六月欧美| 国内少妇人妻偷人精品xxx网站 | 免费观看人在逋| aaaaa片日本免费| 亚洲美女黄片视频| 免费观看精品视频网站| 五月玫瑰六月丁香| 一本一本综合久久| 国产精品免费一区二区三区在线| 久久久久久久久久黄片| 亚洲国产欧美一区二区综合| 免费在线观看亚洲国产| 看黄色毛片网站| 亚洲一区二区三区色噜噜| 国产av在哪里看| 久久中文看片网| 国产成人精品久久二区二区91| 国产欧美日韩一区二区精品| 中文字幕最新亚洲高清| 人人妻人人看人人澡| 亚洲国产高清在线一区二区三| 亚洲自拍偷在线| 久久人人精品亚洲av| 日韩国内少妇激情av| 午夜亚洲福利在线播放| 十八禁网站免费在线| 天堂影院成人在线观看| 在线a可以看的网站| 欧洲精品卡2卡3卡4卡5卡区| 国产99白浆流出| 淫秽高清视频在线观看| 久9热在线精品视频| 亚洲午夜理论影院| 免费看a级黄色片| 欧美午夜高清在线| 国产精品电影一区二区三区| 国产成人影院久久av| 丰满人妻一区二区三区视频av | 色老头精品视频在线观看| 俺也久久电影网| 不卡一级毛片| 午夜日韩欧美国产| 亚洲人成77777在线视频| 亚洲自拍偷在线| 亚洲va日本ⅴa欧美va伊人久久| 欧洲精品卡2卡3卡4卡5卡区| 在线观看免费日韩欧美大片| 欧美性猛交黑人性爽| 村上凉子中文字幕在线| 99热这里只有精品一区 | 亚洲中文日韩欧美视频| 最近最新免费中文字幕在线| 久久婷婷人人爽人人干人人爱| 精品乱码久久久久久99久播| 后天国语完整版免费观看| 中文字幕最新亚洲高清| 熟女电影av网| 国产av不卡久久| 欧美成狂野欧美在线观看| 久久国产精品人妻蜜桃| 亚洲中文字幕一区二区三区有码在线看 | 亚洲国产精品久久男人天堂| 国产黄片美女视频| 18禁国产床啪视频网站| 最近最新免费中文字幕在线| 国产精品一区二区免费欧美| 老汉色∧v一级毛片| 久久精品夜夜夜夜夜久久蜜豆 | 亚洲色图 男人天堂 中文字幕| 国产精品免费视频内射| 国产一区二区三区视频了| 亚洲熟妇熟女久久| 好男人在线观看高清免费视频| 欧美一级a爱片免费观看看 | 精品欧美一区二区三区在线| 俺也久久电影网| 99在线视频只有这里精品首页| 成人国语在线视频| 欧美精品啪啪一区二区三区| 欧美午夜高清在线| 欧美日韩一级在线毛片| 亚洲av片天天在线观看| 亚洲成人精品中文字幕电影| 中亚洲国语对白在线视频| 成熟少妇高潮喷水视频| 特大巨黑吊av在线直播| 最近最新免费中文字幕在线| 麻豆国产97在线/欧美 | 五月玫瑰六月丁香| 国产精品免费一区二区三区在线| 久久婷婷人人爽人人干人人爱| av有码第一页| 国产单亲对白刺激| 精品少妇一区二区三区视频日本电影| 五月玫瑰六月丁香| 国产97色在线日韩免费| 中文资源天堂在线| 国产精品久久久人人做人人爽| 免费人成视频x8x8入口观看| 日本一本二区三区精品| 曰老女人黄片| 中文字幕最新亚洲高清| 一二三四在线观看免费中文在| 国产人伦9x9x在线观看| 久久亚洲真实| 日本一二三区视频观看| 亚洲精品美女久久av网站| 成人三级黄色视频| 国产精品影院久久| 国产真人三级小视频在线观看| 久久香蕉精品热| 男女午夜视频在线观看| 国产真人三级小视频在线观看| 亚洲熟妇中文字幕五十中出| 欧美日韩亚洲综合一区二区三区_| 亚洲人成77777在线视频| 19禁男女啪啪无遮挡网站| 男人舔奶头视频| 91在线观看av| 一区二区三区激情视频| 国产av不卡久久| 日韩有码中文字幕| 欧美精品啪啪一区二区三区| 国产私拍福利视频在线观看| 亚洲人与动物交配视频| 亚洲国产精品合色在线| 岛国视频午夜一区免费看| 18禁裸乳无遮挡免费网站照片| 亚洲欧美激情综合另类| 国产人伦9x9x在线观看| 国产1区2区3区精品| 欧美 亚洲 国产 日韩一| 久久久久国产精品人妻aⅴ院| 激情在线观看视频在线高清| 午夜影院日韩av| 亚洲av成人av| 久久精品国产99精品国产亚洲性色| 韩国av一区二区三区四区| 国产精品久久久av美女十八| 久久亚洲真实| 真人做人爱边吃奶动态| 午夜a级毛片| 老司机靠b影院| 黄片小视频在线播放| 给我免费播放毛片高清在线观看| 啦啦啦韩国在线观看视频| 在线a可以看的网站| 啦啦啦免费观看视频1| 九色成人免费人妻av| 人人妻人人看人人澡| 成人永久免费在线观看视频| av中文乱码字幕在线| 国产99白浆流出| 日本 av在线| 欧美三级亚洲精品| 丁香欧美五月| 中文字幕熟女人妻在线| 99热6这里只有精品| 欧美成人免费av一区二区三区| 久久伊人香网站| 黑人欧美特级aaaaaa片| 午夜久久久久精精品| 亚洲欧美精品综合一区二区三区| 欧美最黄视频在线播放免费| 黄色日韩在线| 精品国内亚洲2022精品成人| 午夜免费男女啪啪视频观看| 亚洲人成网站在线观看播放| 你懂的网址亚洲精品在线观看 | 青春草视频在线免费观看| 国产精品1区2区在线观看.| 成人特级黄色片久久久久久久| 久久精品夜夜夜夜夜久久蜜豆| 成人漫画全彩无遮挡| 久久人人爽人人片av| 国产在视频线在精品| 亚洲欧美成人精品一区二区| 一区二区三区高清视频在线| 亚洲精品成人久久久久久| 淫秽高清视频在线观看| 成人无遮挡网站| 又爽又黄a免费视频| 在线观看免费视频日本深夜| 麻豆乱淫一区二区| 高清毛片免费看| 欧美不卡视频在线免费观看| 久久久久久九九精品二区国产| 国产午夜精品久久久久久一区二区三区| 99热网站在线观看| 校园人妻丝袜中文字幕| 老熟妇乱子伦视频在线观看| 成人午夜精彩视频在线观看| 国产探花极品一区二区| 日韩av不卡免费在线播放| 中文字幕熟女人妻在线| 亚洲在线观看片| 中文欧美无线码| 禁无遮挡网站| 麻豆成人av视频| 国产精品,欧美在线| 午夜爱爱视频在线播放| 小说图片视频综合网站| 日本爱情动作片www.在线观看| 国产久久久一区二区三区| 亚洲一区二区三区色噜噜| 深爱激情五月婷婷| 国产欧美日韩精品一区二区| 91麻豆精品激情在线观看国产| 国产精品美女特级片免费视频播放器| 久久久久免费精品人妻一区二区| 黑人高潮一二区| 秋霞在线观看毛片| 身体一侧抽搐| 深爱激情五月婷婷| 免费人成在线观看视频色| 91aial.com中文字幕在线观看| 在线观看午夜福利视频| 特级一级黄色大片| 亚洲内射少妇av| 欧美成人免费av一区二区三区| 免费av不卡在线播放| 中文字幕熟女人妻在线| 啦啦啦韩国在线观看视频| 日本色播在线视频| 99热这里只有是精品在线观看| av天堂中文字幕网| 亚洲欧美日韩卡通动漫| 国产成人一区二区在线| 亚洲熟妇中文字幕五十中出| 女人被狂操c到高潮| 熟女电影av网| 嫩草影院入口| 内射极品少妇av片p| 国产亚洲91精品色在线| 观看免费一级毛片| 精品一区二区免费观看| 精品99又大又爽又粗少妇毛片| 国产高潮美女av| 成人亚洲欧美一区二区av| 一边亲一边摸免费视频| 最近最新中文字幕大全电影3| 亚洲真实伦在线观看| 午夜老司机福利剧场| 国产午夜精品论理片| 免费不卡的大黄色大毛片视频在线观看 | 日本免费一区二区三区高清不卡| 美女内射精品一级片tv| 黄色一级大片看看| 在线观看美女被高潮喷水网站| 老师上课跳d突然被开到最大视频| 午夜福利高清视频| 一本久久精品| 国产精品.久久久| 男女边吃奶边做爰视频| 精品久久久久久久久久免费视频| 久久国产乱子免费精品| 国产日本99.免费观看| 国产极品精品免费视频能看的| 中国国产av一级| 国产日韩欧美在线精品| 美女国产视频在线观看| 老司机福利观看| 欧美又色又爽又黄视频| 51国产日韩欧美| 国产熟女欧美一区二区| 亚洲婷婷狠狠爱综合网| 国产伦一二天堂av在线观看| 亚洲精品色激情综合| 国产亚洲欧美98| 国产成人精品久久久久久| 91久久精品国产一区二区成人| 国产av麻豆久久久久久久| 高清日韩中文字幕在线| 日本三级黄在线观看| 22中文网久久字幕| 简卡轻食公司| 悠悠久久av| 一本久久精品| 插逼视频在线观看| 亚洲五月天丁香| kizo精华| 亚洲内射少妇av| 观看免费一级毛片| 丰满人妻一区二区三区视频av| 男人狂女人下面高潮的视频| 亚洲自拍偷在线| 国产淫片久久久久久久久| 九九在线视频观看精品| videossex国产| 亚洲国产精品合色在线| 在线观看美女被高潮喷水网站| 联通29元200g的流量卡| 亚洲熟妇中文字幕五十中出| 中文在线观看免费www的网站| 久久久久久九九精品二区国产| 九色成人免费人妻av| 免费搜索国产男女视频| 国产精品久久久久久精品电影| 成人特级av手机在线观看| 国产麻豆成人av免费视频| 又黄又爽又刺激的免费视频.| 成年女人看的毛片在线观看| 日韩制服骚丝袜av| 中国美女看黄片| 午夜福利成人在线免费观看| 欧美变态另类bdsm刘玥| 国产真实伦视频高清在线观看| 免费搜索国产男女视频| 久久久久久久久久久丰满| 国产 一区精品| 一级黄片播放器| 一区二区三区高清视频在线| 99久国产av精品国产电影| 人人妻人人澡人人爽人人夜夜 | 高清午夜精品一区二区三区 | 三级男女做爰猛烈吃奶摸视频| 亚洲av一区综合| 国产伦精品一区二区三区四那| 久久久久久伊人网av| 欧美高清性xxxxhd video| 亚洲乱码一区二区免费版| 日韩 亚洲 欧美在线| 99久久久亚洲精品蜜臀av| 九九热线精品视视频播放| 欧美另类亚洲清纯唯美| 亚洲色图av天堂| 亚洲真实伦在线观看| 男女视频在线观看网站免费| 久久99热6这里只有精品| 小蜜桃在线观看免费完整版高清| 91久久精品电影网| 国产精品免费一区二区三区在线| 观看美女的网站| 九九爱精品视频在线观看| 国产极品精品免费视频能看的| 97在线视频观看| 99久国产av精品| 搞女人的毛片| 精品久久久久久久久亚洲| 美女大奶头视频| 日韩欧美一区二区三区在线观看| 丝袜美腿在线中文| 国产探花在线观看一区二区| 一边摸一边抽搐一进一小说| 国产亚洲精品久久久com| 观看免费一级毛片| 中文字幕av成人在线电影| 我的女老师完整版在线观看| 亚洲精品久久国产高清桃花| 久久久国产成人精品二区| www.av在线官网国产| av天堂在线播放| 我的女老师完整版在线观看| 成年av动漫网址| 男人舔女人下体高潮全视频| 午夜福利成人在线免费观看| 黄片无遮挡物在线观看| 中出人妻视频一区二区| 91av网一区二区| 国产精品久久久久久久久免| 久久人人精品亚洲av| 在线免费观看不下载黄p国产| 99久久久亚洲精品蜜臀av| 午夜福利视频1000在线观看| 两个人的视频大全免费| 亚洲人与动物交配视频| 国产三级在线视频| 啦啦啦啦在线视频资源| 色噜噜av男人的天堂激情| 国产91av在线免费观看| 久久99热这里只有精品18| 亚洲图色成人| 日韩三级伦理在线观看| 久久这里有精品视频免费| 男女边吃奶边做爰视频| 久久亚洲国产成人精品v| 一级二级三级毛片免费看| 18+在线观看网站| 成人漫画全彩无遮挡| 伦精品一区二区三区| 美女xxoo啪啪120秒动态图| 久久久久久久久久成人| 亚洲aⅴ乱码一区二区在线播放| 内射极品少妇av片p| 一区二区三区四区激情视频 | 国产黄a三级三级三级人| 国产综合懂色| 床上黄色一级片| 国产探花在线观看一区二区| or卡值多少钱| 亚洲无线观看免费| 成人亚洲欧美一区二区av| 在线观看午夜福利视频| 国产老妇女一区| 欧美性猛交╳xxx乱大交人| 亚洲,欧美,日韩| 成人漫画全彩无遮挡| 搞女人的毛片| 综合色丁香网| 看十八女毛片水多多多| 亚洲精品国产av成人精品| 高清午夜精品一区二区三区 | 此物有八面人人有两片| 少妇人妻精品综合一区二区 | 毛片女人毛片| 国产乱人视频| 欧美色欧美亚洲另类二区| 人人妻人人澡欧美一区二区| 晚上一个人看的免费电影| 国内揄拍国产精品人妻在线| 男女那种视频在线观看| 一级毛片电影观看 | 欧美不卡视频在线免费观看| 一本久久精品| 精品人妻偷拍中文字幕| 麻豆av噜噜一区二区三区| 免费观看a级毛片全部| 国产精品久久电影中文字幕| 美女国产视频在线观看| 欧美最黄视频在线播放免费| 亚洲无线在线观看| 亚洲国产日韩欧美精品在线观看| 日本免费a在线| 成人永久免费在线观看视频| 亚洲av熟女| 少妇高潮的动态图| 免费观看的影片在线观看| 久久久久久九九精品二区国产| 国产成人aa在线观看| 亚洲精品日韩在线中文字幕 | 丰满的人妻完整版| 真实男女啪啪啪动态图| 久久久久久国产a免费观看| 小蜜桃在线观看免费完整版高清| 久久综合国产亚洲精品| av福利片在线观看| 国产精品一区www在线观看| 蜜臀久久99精品久久宅男| 国产精品蜜桃在线观看 | 国产中年淑女户外野战色| 自拍偷自拍亚洲精品老妇| 中文字幕制服av| 国产午夜精品久久久久久一区二区三区| 亚洲av成人av| 大香蕉久久网| 亚洲精品粉嫩美女一区| 亚洲人成网站高清观看| 在线观看一区二区三区| 国产真实乱freesex| av.在线天堂| 一级毛片我不卡| 久久久久久久久久久免费av| 搡老妇女老女人老熟妇| 免费人成在线观看视频色| 精品一区二区免费观看| 午夜福利成人在线免费观看| eeuss影院久久| 又爽又黄a免费视频| 国产av不卡久久| 国产午夜精品论理片| 六月丁香七月| 午夜福利高清视频| 成人鲁丝片一二三区免费| 久久99热这里只有精品18| 欧美最黄视频在线播放免费| 99九九线精品视频在线观看视频| 亚洲在久久综合| 亚洲婷婷狠狠爱综合网| 永久网站在线| 精品一区二区三区视频在线| 色哟哟哟哟哟哟| 男人和女人高潮做爰伦理| 国产av在哪里看| 精品日产1卡2卡| 美女国产视频在线观看| 人人妻人人看人人澡| 日韩av在线大香蕉| 精品熟女少妇av免费看| 色视频www国产| www.色视频.com| 国产激情偷乱视频一区二区| 欧美zozozo另类| 不卡一级毛片| 国产单亲对白刺激| 久久久久久久久大av| 精品久久久久久久人妻蜜臀av| 一级毛片久久久久久久久女| 国产熟女欧美一区二区| 青春草国产在线视频 | 午夜亚洲福利在线播放| 三级男女做爰猛烈吃奶摸视频| 在现免费观看毛片| 久久国产乱子免费精品| 国产日韩欧美在线精品| 天美传媒精品一区二区| 亚洲欧美精品自产自拍| 欧美丝袜亚洲另类| 3wmmmm亚洲av在线观看| 国产高清三级在线| 在线观看美女被高潮喷水网站| h日本视频在线播放| 麻豆成人午夜福利视频| 美女大奶头视频| 精品人妻一区二区三区麻豆| a级毛片a级免费在线| 国产精品乱码一区二三区的特点| 亚洲精品久久国产高清桃花| 日本免费一区二区三区高清不卡| 嘟嘟电影网在线观看| 国产精品国产三级国产av玫瑰| 免费一级毛片在线播放高清视频| 日本免费a在线| 国产高清不卡午夜福利| 久久精品国产亚洲网站| 男女下面进入的视频免费午夜| 精品日产1卡2卡| www日本黄色视频网| 狂野欧美激情性xxxx在线观看| 国产中年淑女户外野战色| 国产欧美日韩精品一区二区| a级毛片a级免费在线| 人人妻人人看人人澡| 听说在线观看完整版免费高清| 国产乱人偷精品视频| 99热网站在线观看| 丝袜喷水一区| 在线免费观看的www视频| 亚洲国产精品久久男人天堂| 日韩中字成人| 亚洲图色成人| 亚洲一级一片aⅴ在线观看| 午夜精品一区二区三区免费看| 欧美精品国产亚洲| 国产精品野战在线观看| 麻豆国产97在线/欧美| 日韩欧美在线乱码| 欧美一区二区亚洲| 日本黄色视频三级网站网址| 99热全是精品| 在线免费观看的www视频| 国产精品不卡视频一区二区| 久久午夜福利片| 久久热精品热| 尤物成人国产欧美一区二区三区| 天堂√8在线中文| 精品国内亚洲2022精品成人| 一边亲一边摸免费视频| 欧美另类亚洲清纯唯美| 中文资源天堂在线| 中文字幕熟女人妻在线| 熟妇人妻久久中文字幕3abv| 欧美一区二区国产精品久久精品| 精品国内亚洲2022精品成人| 噜噜噜噜噜久久久久久91| 大香蕉久久网| 精品欧美国产一区二区三| 1000部很黄的大片| 久久精品久久久久久久性| 精华霜和精华液先用哪个| 又黄又爽又刺激的免费视频.| 色噜噜av男人的天堂激情| 精品人妻一区二区三区麻豆| 菩萨蛮人人尽说江南好唐韦庄 | 久久综合国产亚洲精品| 久久鲁丝午夜福利片| 欧美成人一区二区免费高清观看| 小说图片视频综合网站| 99在线视频只有这里精品首页| 高清午夜精品一区二区三区 | 亚洲欧美精品自产自拍| 国产中年淑女户外野战色| www日本黄色视频网| 亚洲欧美精品综合久久99| 亚洲18禁久久av| 欧美不卡视频在线免费观看| 精品无人区乱码1区二区| 免费av毛片视频| 少妇丰满av| 精品99又大又爽又粗少妇毛片| АⅤ资源中文在线天堂| 国产精品野战在线观看| 欧美成人a在线观看| ponron亚洲| 蜜桃久久精品国产亚洲av| 国产精品精品国产色婷婷| 成人特级黄色片久久久久久久| 亚洲国产色片| 精品人妻视频免费看| 国产在视频线在精品| 三级国产精品欧美在线观看| 国产成人福利小说| 国产精品野战在线观看| 又粗又硬又长又爽又黄的视频 | av在线亚洲专区| 少妇猛男粗大的猛烈进出视频 | 一区福利在线观看| 99热这里只有是精品50| 久久久久久久久大av| 午夜免费男女啪啪视频观看| 毛片女人毛片| 草草在线视频免费看| 内射极品少妇av片p| 最近的中文字幕免费完整| 国产成年人精品一区二区|