• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    The first complete organellar genomes of an Antarctic red alga,Pyropia endiviifolia: insights into its genome architecture and phylogenetic position within genus Pyropia (Bangiales,Rhodophyta)*

    2018-08-02 02:51:04XUKuipeng徐奎鵬TANGXianghai唐祥海BIGuiqi畢桂萁CAOMin曹敏WANGLu王璐MAOYunxiang茅云翔
    Journal of Oceanology and Limnology 2018年4期
    關(guān)鍵詞:王璐

    XU Kuipeng (徐奎鵬) , TANG Xianghai (唐祥海) , , BI Guiqi (畢桂萁) ,CAO Min (曹敏), WANG Lu (王璐) , MAO Yunxiang (茅云翔) ,

    1 Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education, Qingdao 266003, China 2 Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266003, China

    Abstract Pyropia species grow in the intertidal zone and are cold-water adapted. To date, most of the information about the whole plastid and mitochondrial genomes (ptDNA and mtDNA) of this genus is limited to Northern Hemisphere species. Here, we report the sequencing of the ptDNA and mtDNA of the Antarctic red alga Pyropia endiviifolia using the Illumina platform. The plastid genome (195 784 bp, 33.28%GC content) contains 210 protein-coding genes, 37 tRNA genes and 6 rRNA genes. The mitochondrial genome (34 603 bp, 30.5% GC content) contains 26 protein-coding genes, 25 tRNA genes and 2 rRNA genes. Our results suggest that the organellar genomes of Py. endiviifolia have a compact organization.Although the collinearity of these genomes is conserved compared with other Pyropia species, the genome sizes show signi ficant differences, mainly because of the different copy numbers of rDNA operons in the ptDNA and group II introns in the mtDNA. The other Pyropia species have 2–3 distinct intronic ORFs in their cox 1 genes, but Py. endiviifolia has no introns in its cox 1 gene. This has led to a smaller mtDNA than in other Pyropia species. The phylogenetic relationships within Pyropia were examined using concatenated gene sets from most of the available organellar genomes with both the maximum likelihood and Bayesian methods. The analysis revealed a sister taxa affiliation between the Antarctic species Py. endiviifolia and the North American species Py. kanakaensis.

    Keyword: Antarctic; Pyropia endiviifolia; plastid and mitochondrial genomes; genome structure; phylogenetic

    1 INTRODUCTION

    The evolution of plastids and mitochondria by endosymbiosis is a central dogma of modern eukaryotic cell biology. Both plastids and mitochondria possess their own genomes. Plastids are the lightgathering organelles of algae and plants responsible for photosynthesis, whose origin can be traced back to cyanobacteria (Reyes-Prieto et al., 2007). This photosynthetic organelle is commonly believed to have a single origin in the common ancestor of the Archaeplastida, which comprises glaucophytes, red algae (Rhodophyta), and Viridiplantae (Rodríguez-Ezpeleta et al., 2005). Red algae have the most generich and cyanobacteria-like plastid genomes, followed by glaucophytes and green algae. The mitochondrial genome is a remnant of a eubacterial genome, derived speci fically from within the α-Proteobacteria (Gray et al., 2001). Mitochondria play a crucial role in providing cellular energy (Ogihara et al., 2005). During the course of evolution, this endosymbiont has transferred many of its important genes to the nuclear genome(Taanman, 1999).

    The Bangiales order of red algae consists of more than 190 species (Guiry and Guiry, 2017), which are distributed worldwide from tropical seas to polar seas.It is divided into at least fifteen genus-level taxa( Bangia, ‘ Bangia’ 1, ‘ Bangia’ 2, ‘ Bangia’ 3,Boreophyllum, Clymene, Dione, Fuscifolium, Lysithea,Minerva, Miuraea, Porphyra, Pseudobangia, Pyropia,and Wildemania) (Sutherland et al., 2011). The coldwater seaweed genus Pyropia includes the most economically important marine crops grown in intertidal habitats, among which Py ropia haitanensis and Py. yezoensis are widely harvested and traded in East Asian countries, such as China, Korea and Japan(Mumford and Miura, 1988). Pyropia endiviifolia (A.Gepp & E. Gepp) H. G. Choi & M. S. Hwang grows on the Antarctic islands and has been recorded on the Antarctic Peninsula, the South Orkney Islands, the South Shetland Islands and South Georgia Island (Wiencke and Clayton, 1998). This species is olive-green in color, which led to its first speci fic name, Monostroma endiviifolium A & E Gepp (Chamberlain, 1963); this was later revised to Pyropia (Sutherland et al., 2011).

    Previous studies have revealed that a limited number of available DNA sequences results in relatively little genetic variation, which can present difficulties in phylogenetic resolution or species identi fication (Dutcher and Kapraun, 1994; Niwa et al., 2004; Xie et al., 2010; Sutherland et al., 2011). In recent decades, with the rapid development of nextgeneration DNA sequencing technologies, it has become convenient to assemble complete organelle genomes from total genomic DNA sequences at relatively low cost, especially for Pyropia species,which have a high proportion of organellar DNA relative to nuclear DNA (Wang et al., 2013). Complete organellar genome sequence information is not only important for genetic breeding but also for evolutionary studies. Phylogenomics is a useful tool for providing evolutionary information for species identi fication,taxonomy and phylogenetic analysis (Henry, 2005;Verbruggen et al., 2010; Janou?kovec et al., 2013;Yang et al., 2015; Lee et al., 2016). However, most of the available information about Pyropia ptDNAs and mtDNAs is limited to Northern Hemisphere species,and surprisingly little is known about the organellar genomes of Southern Hemisphere species.

    Here, we present the complete organellar genomes of the Antarctic species Py. endiviifolia, which were obtained using the Illumina sequencing technology,and examine its genomic features. Through comparative genomics and phylogenomic analyses,we sought to explore the genome structure and reconstruct the phylogenetic relationships among representative species.

    2 MATERIAL AND METHOD

    2.1 Collection of samples and morphological observations

    Fresh thalli of Py. endiviifolia were collected on February 22, 2014 from intertidal transects along a rocky coastline at Fildes Peninsula, King George Island, Antarctica (62°12′S, 58°57′W). Morphological characters including thallus shape, color, texture and reproductive tissues of the specimens were examined and photographed using an Olympus BX51 microscope (OLYMPUS, Tokyo, Japan).

    2.2 DNA extraction, sequencing and genome assembly

    Total DNA was extracted from 10 g of frozen thallus material according to the CTAB method(Porebski et al., 1997). Puri fied DNA (5 μg) was fragmented and used to construct short-insert PCR-free libraries following the instructions of the Illumina TruseqTMDNA Sample Preparation Kit (Illumina, San Diego, CA, USA) and was sequenced on an Illumina Genome Analyzer. Adapters and low-quality reads(with ambiguous bases, N; length < 100 bp) were removed using the NGS QC Toolkit (Patel and Jain,2012). The pre-processed sequences were first assembled into non-redundant contigs using Edena with default settings (Hernandez et al., 2008). Then,all contigs were mapped to the reference genomes of Py. haitanensis (NC_007932.1 and NC_017751)using the BLAST program (http://blast.ncbi.nlm.nih.gov/) with an e-value of 1e-5 and the order of the aligned contigs was veri fied. Finally, gaps between the contigs were filled by iterative contig extension using the PRICE software (Ruby et al., 2013). To evaluate the quality of the organelle genome sequences,especially the junctions, validation through intensive PCR-based sequencing was carried out on ABI 3730 instrument by randomly designing 20 pairs of primers(Table S1). The PCR sequences and assembled genomes were aligned using MEGA 6.0 to determine the accuracy of the assembly (Tamura et al., 2013).The complete Py. endiviifolia plastid and mitochondria genomes are available for download via GenBank with accession numbers KT716756 and KU356193.

    Fig.1 Pyropia endiviifolia

    2.3 Genome annotation and analysis

    The organellar genomes were annotated using ORF- finder (http://www.ncbi.nlm.nih.gov/projects/gorf/) and aligned via BLASTX and BLASTN searches at the NCBI website (http://blast.ncbi.nlm.nih.gov/). tRNAs were identi fied using the tRNAscan-SE 1.21 web server (http://lowelab.ucsc.edu/tRNAscan-SE/) and rRNAs were identi fied using the RNAmmer 1.2 server (http://www.cbs.dtu.dk/services/RNAmmer/). Genome maps were drawn with OGDraw (Lohse et al., 2007). Multiple genomes were aligned using MAFFT version 5 and visualized using the mVISTA tool (Mayor et al., 2000; Katoh et al.,2005). A structure comparison was generated by Mauve with the ‘Use seed families’ option (Darling et al., 2004).

    2.4 Phylogenetic analyses

    To elucidate the phylogenetic position of Py.endiviifolia, the concatenated protein-coding amino acid sequences from both the plastid and mitochondrial genomes were used to construct a phylogenetic tree(Table S2). The genome sequences were aligned using the program MAFFT version 5 and were adjusted manually (Katoh et al., 2005). The aligned sequences were trimmed using trimAl with the option‘a(chǎn)utomated1’ (Capella-Gutiérrez et al., 2009).Maximum likelihood (ML) analysis was conducted using RaxML-8.2.4 (Stamatakis, 2014). The best model and parameter settings were chosen according to the Akaike information criterion by ProtTest 3.0 for ML analysis (Abascal et al., 2005). The ML searches used the cpREV+G+I substitution model for plastid sequences and JTT+G+I substitution model for mitochondrial sequences (-f a, 1 000 bootstrap replicates). Bayesian analyses were carried out using MrBayes3.2 with the best ProtTest model noted above(Huelsenbeck and Ronquist, 2001). Four independent Markov Chain Monte Carlo chains were run simultaneously and sampled every 100 generations for a total of 1 000 000 generations. The first 10% of the trees were discarded as a “burn-in.”

    3 RESULT

    3.1 Morphological analysis

    On the basis of morphology and life history observations (Wang et al., 2008; Guiry, 2015), the specimen was identi fied as Py. endiviifolia(Chamberlain, 1963; Wiencke and Clayton, 1998).This species was very distinctive in the local region because of its position high in the inter-tidal zone, its rough texture compared with other Pyropia species and its dark greenish color, which became blackish on drying (Fig.1a). The gametophyte blades measured5–20 cm in length and 4–15 cm in width and were monostromatic (Fig.1b, c). They attached to the rocks via abundant rhizoidal cells at the base of the thallus(Fig.1d). The almost colorless spermatangia around the margins of the gametophytes were formed by repeated division of vegetative cells (Fig.1e). The red carposporangia were formed by direct transformation of the vegetative cells while the fertilized zygotosporangium divided mitotically (Fig.1f).

    Table 1 Plastid gene content for Pyropia endiviifolia

    3.2 Organellar genome features of Py. endiviifolia

    The plastid genome of Py. endiviifolia was 195 784 base pairs (bp) long and contained two direct nonidentical repeat (DR) regions encoding 16S, 23S, 5S rRNA and two tRNA genes (trnI, trnA). These two repeats divided the circular molecule into a 150.6-kb large single copy (LSC) region and a 35.6-kb small single copy (SSC) region (Fig.2a). The overall GC content was 33.28%. The plastid genome encoded a total of 253 genes, consisting of 210 protein-coding genes (including 23 hypothetical protein genes ( ycf s)and 22 function-unknown open reading frames( orf s)), 37 tRNA genes and 6 rRNA genes, which comprised 75.83%, 1.44% and 4.58% of the total sequence, respectively (Table 1). Similar to other Bangiales species ( Py. haitanensis, 254 genes; Py.yezoensis, 256 genes; Bangia fuscopurpurea, 250 genes), all the genes in the LSC and SSC regions were single copy without introns, and 14 genes overlapped( psb C–psb D, atp D–atp F, ycf 24–ycf 16, rps 19–rpl 2,rpl 23–rpl 4, car A–orf 238 and rpl 24–rpl 14).

    The mitochondrial genome of Py. endiviifolia contained 53 genes, was 34 603 bp in length and had 30.46% GC content (Fig.2b). The genome contained 2 ribosomal RNA genes (1 large subunit and 1 small subunit), 25 transfer RNAs, 3 orf s, 2 secY-independent transporter proteins ( ymf s), 4 ribosomal proteins, and 17 genes related to electron transport and oxidative phosphorylation (Table 2). The protein-coding, tRNA and rRNA genes comprised 58.41%, 5.44% and 18.65% of the whole sequence, respectively.

    3.3 Genome conservation and dissimilarities

    Multiple alignment of 10 plastid sequences of Bangiales was conducted to further understand the structure and sequence similarity of the Py. endiviifolia plastid genome. Using Py. yezoensis as a reference,the sequence identity alignment results were plotted(Fig.3a). The results revealed high similarity across the Pyropia ptDNAs. The majority of variationsresulted from small insertions or deletions in intergenic regions. As expected, the rDNA regions were more conserved than the single-copy regions,and the coding regions were more conserved than the intergenic regions. Pyropia showed some differences when compared with other genera of Bangiales. For example, the intergenic regions between the pet G-rps 14 genes were longer in the Pyropia ptDNAs.Notably, the similarity of orf 621 was very low between Pyropia and other groups. Collinearity analysis showed that the architecture of the ptDNAs was highly conserved without any large rearrangements, despite their evolutionary distance(Fig.4a). The only apparent distinction was a single

    copy rDNA region in the species Py. perforate and Wildemania schizophylla. By contrast, Py. endiviifolia,Py. yezoensis, Py. haitanensis, Porphyra and Bangia possessed two direct non-identical rDNA repeats ( Py.fucicola and Py. kanakaensis had partial genomes).

    Table 2 Mitochondrial gene content for Pyropia endiviifolia

    Fig.2 Genome maps of the Pyropia endiviifolia plastid (a) and mitochondrion (b)

    Fig.3 Visualization of the alignment of Bangiales organelle genomes sequences

    Fig.4 Local collinear block (LCB) analysis of 10 plastid genomes (a) and 12 mitochondrial genomes (b)

    Table 3 General characteristics of Bangiales plastid and mitochondrial genomes

    Collinearity analysis of 12 mtDNAs showed that most sequence blocks were conserved co-linearly, but the genome contents and lengths were signi ficantly different (Fig.3b; Fig.4b). The observed structural differences mainly arose from the number and organization of mitochondrial group II introns in the large subunit ribosomal RNA ( rnl) gene and the cox 1 gene (Table 3). The mitochondrial genomes of Bangiales possessed different numbers of introns and intronic ORFs ( orf 111, orf 543, orf 544, orf 546,orf 550) in the rnl gene. The mtDNA of Py. endiviifolia had only one intron, which contained one intronic ORF ( orf 546), in the rnl gene. The other genomes of Pyropia contained at least two introns with 0–3 different intronic ORFs. The Pyropia species had 2–3 distinct introns and intronic ORFs ( orf 693, orf 729,orf 789, orf 813) in the cox 1 gene, except Py.endiviifolia, whose cox 1 gene had no introns. An absence of introns in the cox 1 gene was also observed in the Porphyra and Wildemania mtDNAs. The low number of introns resulted in Py. endiviifolia having the smallest mtDNA within Pyropia. B. fuscopurpurea had the most intronic ORFs in the cox 1 gene ( orf 652,orf 693, orf 780 and orf 813).

    3.4 Phylogenetic analyses

    Fig.5 Phylogenetic relationships within the Bangiales clade

    Trees were constructed using a dataset of 160 amino acid sequences of ptDNAs and 22 amino acid sequences of mtDNAs selected from eight representative species to examine the evolutionary position of Py. endiviifolia, and all of the nodes were inferred with strong support by the ML and BI methods (Fig.5). Within Pyropia, the close relationship between the Antarctic species Py. endiviifolia and the North American species Py. kanakaensis was con firmed. The species Py. haitanensis and Py.perforate also formed a separate clade. These two clades clustered together with a sister relationship.The remaining species Py. yezoensis and Py. fucicola grouped together at the base of the Pyropia group.

    Fig.6 Maximumlikelihoodrootedtree for rbcLsequences of Pyropia

    To verify the phylogenetic relationships of this group, the rbc L genes from the Py. endiviifolia plastid genome and 81 species of Pyropia (Table S3)downloaded from GenBank were used for phylogenetic tree reconstruction (Fig.6). The overall topologies were consistent with the trees constructed using whole organellar genomes. The inconsistencies resulted from the low number of available organellar genomes of Pyropia. The phylogenetic tree topology demonstrated that Py. endiviifolia formed a wellsupported clade together with the unidenti fied Pyropia sp. Antar 68 from Admiralty Bay, King George Island,South Shetlands Archipelago, Antarctica. The sequence similarity between Py. endiviifolia and Pyropia sp. Antar 68 was 100%, which indicated that they might be the same species.

    4 DISCUSSION

    The first plastid and mitochondrial genomes of the Antarctic red algae Py. endiviifolia were determined in this study. The organellar genomes of Py.endiviifolia have large protein-coding gene repertoires and a compact genome organization. Comparative genomic analysis revealed highly conserved collinearity across the whole organellar genomes. The differences in size among mitochondrial genomes were related to the number and organization of mitochondrial group II introns of the large subunit of the ribosomal RNA gene and the cox 1 gene. Typically,eukaryotes possess inserted sequences termed group II introns, but these sequences are only observed in organellar genomes (Michel et al., 1982). A previous study indicated that horizontal transfers have taken place from the mitochondrial genomes of diatoms to the alga Chattonella (Kamikawa et al., 2009). Pyropia endiviifolia had no introns in its cox 1 gene, which was unique among Pyropia species. The number of introns in the rnl gene was also lower than in other Pyropia species. This lack of introns could lead to a convergent and stabilized mtDNA structure. It could also be used as a basis for designing molecular markers for species identi fication. The structure and number of rnl and cox 1 introns in Py. endiviifolia implies a speci fic evolutionary mechanism in this Antarctic species.

    We identi fied two direct non-identical repeats in the Py. endiviifolia plastid genomes. By comparison,there was only one copy in Py. perforate and W.schizophylla, a phenomenon that has also been found in some Florideophyte species ( Calliarthron tuberculosum and Chondrus crispus). Typically, most plastid genomes possess two large inverted repeats containing the rRNA genes. However, with the number of sequenced genomes increasing, more and more variations have been found (Hagopian et al.,2004). Analysis of the rDNA operons in Guillardia and Porphyra suggests that the directly repeated rDNA genes of the ancestral Rhodophyte were transformed into inverted repeats in Guillardia(Douglas, 1998). Lee et al. detected three minor structural types (R1-, R2-, and R3-type) in the Florideophyceae group, which were explained by recombination events of the duplicated rDNA operons(Lee et al., 2016). The two rDNA operons have been only partially retained or one copy has been completely lost in some red algae species. This process could lead to structural stabilization of the plastid genomes. The ancestral R1-type rDNA operon was retained in Py.endiviifolia, which implies slow evolution of the ptDNA structure.

    Studies have shown that multigene phylogenies can elucidate phylogenetic relationships more exactly when the different evolutionary rates of the genes are considered (Yoon et al., 2006; Verbruggen et al.,2010). We utilized a set of ptDNA and mtDNA genes to explore the phylogenetic relationships of Pyropia.In this study, the Antarctic species Py. endiviifolia and the North American species Py. kanakaensis grouped together with high support in the phylogenetic analysis, rather than all the of Northern Hemisphere species clustering together first. Despite their geographical isolation, all members of this group are cold-water adapted (Brodie and Irvine, 2003), which has led to almost identical environmental selection pressure. The fixation rate in genome evolution depends on the purifying selection of the environment(Buschiazzo et al., 2012). This result implies that the selection pressure the Antarctic species has experienced was more similar to that of Py.kanakaensis than other species. However,inconsistencies in phylogenetic analysis can occur when there is sparse taxon sampling (Zhao et al.,2016). The current evidence is insufficient to interpret the origin and evolution of Py. endiviifolia, because it is the only Southern Hemisphere species with complete organellar genomes available. Therefore,more taxon information needs to be obtained and further studies combining the nuclear, plastid and mitochondrial genomes need to be performed to better understand the relationship of this algal group.

    5 DATA AVAILABILITY STATEMENT

    The authors declare that all data supporting the findings of this study are available within the methods and appendix sections.

    猜你喜歡
    王璐
    Wave nature of Rosensweig instability
    Static-to-kinematic modeling and experimental validation of tendon-driven quasi continuum manipulators with nonconstant subsegment stiffness
    Atmospheric pressure pulsed modulated arc discharge plasma
    Bandgap evolution of Mg3N2 under pressure:Experimental and theoretical studies
    交互式教學(xué)在英語(yǔ)專業(yè)閱讀課改中的應(yīng)用研究
    Observation of the BEC-BCS crossover in a degenerate Fermi gas of lithium atoms
    公路橋梁設(shè)計(jì)中的隱患及解決措施
    Improved Fibroblast Adhesion and Proliferation by Controlling Multi-level Structure of Polycaprolactone Microfiber
    A m,p-Laplacian Parabolic Equation with Nonlinear Absorption and Boundary Flux
    Divergence time, historical biogeography and evolutionary rate estimation of the order Bangiales (Rhodophyta) inferred from multilocus data*
    欧美日韩在线观看h| 99久久精品一区二区三区| 国语自产精品视频在线第100页| 啦啦啦啦在线视频资源| 国产精品女同一区二区软件| 22中文网久久字幕| 国产精品一区二区免费欧美| 1024手机看黄色片| 精品久久久久久久久av| 久久久久久九九精品二区国产| 精品日产1卡2卡| 久久6这里有精品| 一a级毛片在线观看| 成年版毛片免费区| 午夜福利成人在线免费观看| 欧美性猛交╳xxx乱大交人| 亚洲成人久久性| 国产激情偷乱视频一区二区| 三级毛片av免费| 亚洲熟妇熟女久久| 日本免费一区二区三区高清不卡| 久久久a久久爽久久v久久| 亚洲精品影视一区二区三区av| 少妇丰满av| 国产精品一区二区性色av| 精品久久久久久久久久免费视频| 国产中年淑女户外野战色| 免费大片18禁| 搡女人真爽免费视频火全软件 | 婷婷色综合大香蕉| 午夜免费激情av| 中文亚洲av片在线观看爽| 夜夜爽天天搞| 一级黄色大片毛片| 一个人免费在线观看电影| 国产高潮美女av| 国产欧美日韩一区二区精品| 国产av一区在线观看免费| 日韩精品有码人妻一区| 亚洲欧美日韩高清在线视频| 听说在线观看完整版免费高清| 国产精品国产高清国产av| 精品欧美国产一区二区三| 国产精品久久久久久av不卡| 又黄又爽又免费观看的视频| 免费搜索国产男女视频| 国产精品精品国产色婷婷| 精品午夜福利在线看| 欧美精品国产亚洲| 国产高清视频在线观看网站| 免费高清视频大片| 久久久久久久久久黄片| 国产av不卡久久| 久久久久久久午夜电影| 激情 狠狠 欧美| 99国产精品一区二区蜜桃av| 99国产精品一区二区蜜桃av| 中国美女看黄片| 免费搜索国产男女视频| 久久午夜福利片| 久久韩国三级中文字幕| 六月丁香七月| 一级毛片我不卡| 国模一区二区三区四区视频| 久久久久国内视频| 一本久久中文字幕| videossex国产| 精品一区二区三区视频在线| 国产真实乱freesex| 18禁在线无遮挡免费观看视频 | 亚洲欧美精品综合久久99| 日本撒尿小便嘘嘘汇集6| 国产69精品久久久久777片| 国产单亲对白刺激| 特大巨黑吊av在线直播| 国产亚洲精品久久久com| 18禁黄网站禁片免费观看直播| 国产精品亚洲美女久久久| 免费看av在线观看网站| 最近中文字幕高清免费大全6| 美女免费视频网站| 日韩国内少妇激情av| 成年av动漫网址| 欧美在线一区亚洲| 国产精品av视频在线免费观看| 网址你懂的国产日韩在线| 蜜桃久久精品国产亚洲av| 狠狠狠狠99中文字幕| 色综合亚洲欧美另类图片| 三级经典国产精品| 免费看日本二区| 欧美性猛交╳xxx乱大交人| 日本免费一区二区三区高清不卡| 久久人妻av系列| 99久久精品国产国产毛片| 亚洲精品影视一区二区三区av| 日日干狠狠操夜夜爽| 深爱激情五月婷婷| 97在线视频观看| 男女做爰动态图高潮gif福利片| 日本色播在线视频| 日本五十路高清| 欧美+亚洲+日韩+国产| 91午夜精品亚洲一区二区三区| 天天躁夜夜躁狠狠久久av| 色哟哟哟哟哟哟| 国内少妇人妻偷人精品xxx网站| 三级国产精品欧美在线观看| 欧美区成人在线视频| 夜夜看夜夜爽夜夜摸| 亚洲第一区二区三区不卡| 亚洲精品一区av在线观看| 深夜a级毛片| 3wmmmm亚洲av在线观看| 一a级毛片在线观看| 九九久久精品国产亚洲av麻豆| 精品午夜福利在线看| 男女边吃奶边做爰视频| 亚洲av成人av| 亚洲18禁久久av| 97超视频在线观看视频| 在线免费观看的www视频| 少妇裸体淫交视频免费看高清| 少妇猛男粗大的猛烈进出视频 | 国产精品精品国产色婷婷| 国产一区二区三区在线臀色熟女| 香蕉av资源在线| 在线免费观看的www视频| 亚洲精品粉嫩美女一区| 99九九线精品视频在线观看视频| 超碰av人人做人人爽久久| 一夜夜www| 男女之事视频高清在线观看| 日韩成人av中文字幕在线观看 | av黄色大香蕉| 久久久a久久爽久久v久久| 直男gayav资源| 国产在视频线在精品| 级片在线观看| 欧美一级a爱片免费观看看| 波多野结衣巨乳人妻| 久久亚洲国产成人精品v| 亚洲国产日韩欧美精品在线观看| 日韩精品中文字幕看吧| 精品熟女少妇av免费看| 亚洲精品亚洲一区二区| 一a级毛片在线观看| 草草在线视频免费看| 草草在线视频免费看| 亚洲av免费在线观看| 日韩欧美精品v在线| 九九在线视频观看精品| 国产伦在线观看视频一区| 国产在视频线在精品| 少妇熟女欧美另类| 天美传媒精品一区二区| 欧美bdsm另类| 在线观看av片永久免费下载| 不卡视频在线观看欧美| 亚洲久久久久久中文字幕| 最后的刺客免费高清国语| 麻豆国产97在线/欧美| 久久欧美精品欧美久久欧美| 搡老熟女国产l中国老女人| 人妻制服诱惑在线中文字幕| 国产高清视频在线播放一区| 悠悠久久av| 亚洲av中文av极速乱| 亚洲乱码一区二区免费版| 精品一区二区免费观看| 床上黄色一级片| 男女之事视频高清在线观看| 欧美成人a在线观看| 亚洲欧美日韩高清专用| 国产日本99.免费观看| 欧美成人精品欧美一级黄| 啦啦啦观看免费观看视频高清| 国产亚洲精品综合一区在线观看| 变态另类成人亚洲欧美熟女| 国产午夜精品久久久久久一区二区三区 | 久久久久久久久久久丰满| 亚洲美女搞黄在线观看 | av中文乱码字幕在线| 欧美日韩在线观看h| 久久久久久伊人网av| 久久久久久大精品| 天堂√8在线中文| 天堂√8在线中文| 成人漫画全彩无遮挡| 亚洲精品影视一区二区三区av| 人妻少妇偷人精品九色| 美女 人体艺术 gogo| 亚洲不卡免费看| 亚洲三级黄色毛片| 看黄色毛片网站| 身体一侧抽搐| 日本五十路高清| 国产男人的电影天堂91| 日本a在线网址| 成人性生交大片免费视频hd| 久久久久性生活片| 蜜桃久久精品国产亚洲av| 日本一本二区三区精品| 国产精品一区二区三区四区免费观看 | 日本黄大片高清| 搡老岳熟女国产| 国产一区二区亚洲精品在线观看| 淫秽高清视频在线观看| 免费观看人在逋| 亚洲婷婷狠狠爱综合网| 久久国内精品自在自线图片| 麻豆av噜噜一区二区三区| 亚洲国产精品国产精品| 久久久精品大字幕| 伦理电影大哥的女人| 国产乱人视频| 久久中文看片网| 日韩av在线大香蕉| 欧美3d第一页| aaaaa片日本免费| 国产久久久一区二区三区| 97超碰精品成人国产| av天堂中文字幕网| 亚洲精品一区av在线观看| 黑人高潮一二区| 一本久久中文字幕| 久久精品国产亚洲av天美| 欧美高清成人免费视频www| 欧美最新免费一区二区三区| 国产精品综合久久久久久久免费| 国产蜜桃级精品一区二区三区| 亚洲精品国产成人久久av| 日韩亚洲欧美综合| 亚洲第一电影网av| 日韩,欧美,国产一区二区三区 | 能在线免费观看的黄片| 国产大屁股一区二区在线视频| 搞女人的毛片| 高清午夜精品一区二区三区 | 日本 av在线| 露出奶头的视频| 日韩亚洲欧美综合| 久久久久精品国产欧美久久久| 久久久久国产网址| 大型黄色视频在线免费观看| 亚洲国产欧洲综合997久久,| av女优亚洲男人天堂| 国产av一区在线观看免费| 欧美不卡视频在线免费观看| 精华霜和精华液先用哪个| 亚洲熟妇熟女久久| 亚洲欧美清纯卡通| 欧美高清性xxxxhd video| 特级一级黄色大片| 亚洲精品在线观看二区| 天堂√8在线中文| 美女内射精品一级片tv| 99热这里只有精品一区| 亚洲欧美成人精品一区二区| 国产乱人视频| 99热只有精品国产| 久久韩国三级中文字幕| 久久久国产成人精品二区| 成人精品一区二区免费| 天天躁夜夜躁狠狠久久av| 国产av不卡久久| 最后的刺客免费高清国语| 欧洲精品卡2卡3卡4卡5卡区| 日韩,欧美,国产一区二区三区 | 国产精品伦人一区二区| 免费观看精品视频网站| 在线观看美女被高潮喷水网站| 99riav亚洲国产免费| 级片在线观看| 成人亚洲欧美一区二区av| 日韩av不卡免费在线播放| 日韩三级伦理在线观看| 午夜福利在线观看吧| 高清毛片免费看| 黄色配什么色好看| 一区福利在线观看| 18禁裸乳无遮挡免费网站照片| 国产综合懂色| 国产高清不卡午夜福利| 色噜噜av男人的天堂激情| 欧美zozozo另类| 晚上一个人看的免费电影| 看免费成人av毛片| 自拍偷自拍亚洲精品老妇| 久久精品综合一区二区三区| 少妇人妻精品综合一区二区 | 简卡轻食公司| 亚洲人成网站高清观看| 人妻夜夜爽99麻豆av| 男女边吃奶边做爰视频| 国产成人aa在线观看| 亚洲中文日韩欧美视频| 午夜福利高清视频| 色吧在线观看| 一本一本综合久久| 亚洲人成网站高清观看| 国产亚洲精品久久久久久毛片| 男女做爰动态图高潮gif福利片| 亚洲五月天丁香| 国产v大片淫在线免费观看| 91在线观看av| 日韩欧美精品v在线| 成人漫画全彩无遮挡| 午夜精品国产一区二区电影 | 18禁在线播放成人免费| 在线免费观看不下载黄p国产| 中文字幕av在线有码专区| 成人毛片a级毛片在线播放| 九色成人免费人妻av| 可以在线观看的亚洲视频| 日日摸夜夜添夜夜添小说| 亚洲一区二区三区色噜噜| 床上黄色一级片| 少妇人妻精品综合一区二区 | 国产精品伦人一区二区| 成人高潮视频无遮挡免费网站| 国产男靠女视频免费网站| 超碰av人人做人人爽久久| 桃色一区二区三区在线观看| 国产亚洲精品av在线| 自拍偷自拍亚洲精品老妇| 偷拍熟女少妇极品色| 国产精品伦人一区二区| 内射极品少妇av片p| 亚洲成人中文字幕在线播放| 欧美日韩乱码在线| 精品久久久久久成人av| 99久久九九国产精品国产免费| 黄片wwwwww| 欧美一区二区国产精品久久精品| 亚洲aⅴ乱码一区二区在线播放| 久久草成人影院| 两性午夜刺激爽爽歪歪视频在线观看| 国产真实伦视频高清在线观看| 两个人视频免费观看高清| 免费看日本二区| 白带黄色成豆腐渣| 高清日韩中文字幕在线| 久久国内精品自在自线图片| 亚洲三级黄色毛片| 亚洲一区二区三区色噜噜| 亚洲精品国产成人久久av| 1024手机看黄色片| 久久精品夜色国产| 亚洲欧美清纯卡通| 亚洲av美国av| 黄色日韩在线| 亚洲国产精品国产精品| 18禁在线无遮挡免费观看视频 | 欧美国产日韩亚洲一区| 小说图片视频综合网站| 国产一区二区激情短视频| 桃色一区二区三区在线观看| 婷婷亚洲欧美| 国产国拍精品亚洲av在线观看| 最近2019中文字幕mv第一页| 国产毛片a区久久久久| 亚洲av免费在线观看| 亚洲成a人片在线一区二区| 变态另类成人亚洲欧美熟女| 男女边吃奶边做爰视频| 国产91av在线免费观看| 在线观看av片永久免费下载| 一区二区三区四区激情视频 | 精品国内亚洲2022精品成人| 国产男靠女视频免费网站| 欧美zozozo另类| 淫妇啪啪啪对白视频| 97碰自拍视频| 午夜福利在线观看吧| 国产激情偷乱视频一区二区| 亚洲欧美日韩无卡精品| 久久6这里有精品| 国产又黄又爽又无遮挡在线| 此物有八面人人有两片| 亚洲七黄色美女视频| 成人美女网站在线观看视频| 免费看a级黄色片| 亚洲va在线va天堂va国产| 国产精品野战在线观看| 看非洲黑人一级黄片| 国模一区二区三区四区视频| 久久久精品大字幕| 国产男靠女视频免费网站| 成人无遮挡网站| 99久久精品一区二区三区| 菩萨蛮人人尽说江南好唐韦庄 | 99久久精品一区二区三区| 老师上课跳d突然被开到最大视频| 欧美区成人在线视频| 国产一区二区三区在线臀色熟女| 久久精品国产鲁丝片午夜精品| 国产乱人视频| 精品免费久久久久久久清纯| 老师上课跳d突然被开到最大视频| 中文字幕av成人在线电影| 一区二区三区四区激情视频 | 日本三级黄在线观看| 精品一区二区三区人妻视频| 少妇裸体淫交视频免费看高清| 国产色爽女视频免费观看| 亚洲乱码一区二区免费版| 成人无遮挡网站| 亚洲欧美成人精品一区二区| 色吧在线观看| 99热这里只有是精品在线观看| 亚洲av中文字字幕乱码综合| www日本黄色视频网| 久久九九热精品免费| 人人妻人人看人人澡| 国产伦精品一区二区三区视频9| 国产人妻一区二区三区在| 不卡视频在线观看欧美| 精品午夜福利在线看| 如何舔出高潮| 老熟妇仑乱视频hdxx| 女人十人毛片免费观看3o分钟| 又黄又爽又刺激的免费视频.| 日本五十路高清| 午夜免费激情av| 搡老熟女国产l中国老女人| 亚洲av美国av| 99久国产av精品| 色哟哟哟哟哟哟| 91久久精品国产一区二区成人| 午夜免费男女啪啪视频观看 | 亚洲一区高清亚洲精品| 在线a可以看的网站| 国产精品女同一区二区软件| 老师上课跳d突然被开到最大视频| 成人三级黄色视频| 麻豆成人午夜福利视频| 内射极品少妇av片p| 国产一区二区在线av高清观看| 蜜桃久久精品国产亚洲av| 人人妻,人人澡人人爽秒播| 一本精品99久久精品77| 丝袜喷水一区| 日产精品乱码卡一卡2卡三| 毛片女人毛片| 少妇高潮的动态图| 91久久精品国产一区二区三区| 久久久久精品国产欧美久久久| 成人三级黄色视频| 简卡轻食公司| 亚洲成人av在线免费| 亚洲七黄色美女视频| 美女被艹到高潮喷水动态| 久久久久久久久大av| 久久精品国产亚洲网站| 九九在线视频观看精品| 日本a在线网址| 国产亚洲精品av在线| 国产男人的电影天堂91| 国产91av在线免费观看| 又粗又爽又猛毛片免费看| 男女之事视频高清在线观看| 可以在线观看毛片的网站| 菩萨蛮人人尽说江南好唐韦庄 | 日韩精品中文字幕看吧| 久久久久久久午夜电影| 久久久久精品国产欧美久久久| eeuss影院久久| 久99久视频精品免费| 国产精品乱码一区二三区的特点| 亚洲国产欧美人成| 中文在线观看免费www的网站| 少妇人妻一区二区三区视频| 麻豆国产av国片精品| 欧美不卡视频在线免费观看| 一级毛片电影观看 | 成人特级黄色片久久久久久久| 国产精品精品国产色婷婷| 日韩大尺度精品在线看网址| 一进一出好大好爽视频| 啦啦啦啦在线视频资源| 成人毛片a级毛片在线播放| 一本久久中文字幕| 伊人久久精品亚洲午夜| 一级毛片电影观看 | 国产男靠女视频免费网站| 男人和女人高潮做爰伦理| 日韩精品中文字幕看吧| 色哟哟·www| 丝袜喷水一区| 日本色播在线视频| 欧美3d第一页| 亚洲精品日韩在线中文字幕 | 亚洲无线在线观看| 天堂网av新在线| www.色视频.com| 中出人妻视频一区二区| 国产av在哪里看| 国产片特级美女逼逼视频| 三级经典国产精品| 18禁在线播放成人免费| 精品久久久噜噜| 香蕉av资源在线| 亚洲精品456在线播放app| 日韩人妻高清精品专区| 69av精品久久久久久| 国产精品电影一区二区三区| 精品一区二区免费观看| 国产精品美女特级片免费视频播放器| 尾随美女入室| 精品一区二区免费观看| 在线免费观看不下载黄p国产| 一个人看的www免费观看视频| 黄色视频,在线免费观看| 国产精品永久免费网站| 波多野结衣高清无吗| 老司机影院成人| .国产精品久久| 久久久久久大精品| 丝袜喷水一区| 色噜噜av男人的天堂激情| 秋霞在线观看毛片| 国产爱豆传媒在线观看| av在线播放精品| 欧美另类亚洲清纯唯美| 成人毛片a级毛片在线播放| 日日干狠狠操夜夜爽| 亚洲精品亚洲一区二区| 欧美性感艳星| 久久久久久久久中文| 在线免费观看的www视频| 成熟少妇高潮喷水视频| 最好的美女福利视频网| av视频在线观看入口| 啦啦啦观看免费观看视频高清| 精品久久久久久久久亚洲| 一本一本综合久久| 色综合色国产| 69人妻影院| 国产成人freesex在线 | 精品久久久久久久久久久久久| 99国产极品粉嫩在线观看| 中国美女看黄片| 国产亚洲精品综合一区在线观看| 成人国产麻豆网| 亚洲久久久久久中文字幕| 日韩欧美精品v在线| 日日摸夜夜添夜夜爱| 成人一区二区视频在线观看| 日产精品乱码卡一卡2卡三| 久久午夜亚洲精品久久| 高清午夜精品一区二区三区 | 中文亚洲av片在线观看爽| 最近中文字幕高清免费大全6| 国产v大片淫在线免费观看| 亚洲精品在线观看二区| 国产精品日韩av在线免费观看| 一本精品99久久精品77| eeuss影院久久| 午夜老司机福利剧场| 三级经典国产精品| 亚洲自偷自拍三级| 精品久久久噜噜| 五月玫瑰六月丁香| 国产高清三级在线| 亚洲av美国av| 亚洲人成网站高清观看| 日韩欧美三级三区| 日韩大尺度精品在线看网址| 精品久久国产蜜桃| 亚洲人成网站在线观看播放| 国产成年人精品一区二区| 久久人妻av系列| 国产亚洲91精品色在线| 人妻丰满熟妇av一区二区三区| 99在线人妻在线中文字幕| 免费一级毛片在线播放高清视频| 色综合站精品国产| 亚洲av中文字字幕乱码综合| 激情 狠狠 欧美| 国产精品乱码一区二三区的特点| 色播亚洲综合网| 精品不卡国产一区二区三区| 日本欧美国产在线视频| 久久欧美精品欧美久久欧美| 精品一区二区三区视频在线| 男女啪啪激烈高潮av片| aaaaa片日本免费| 国产 一区精品| 中出人妻视频一区二区| 国内揄拍国产精品人妻在线| 成年av动漫网址| 色噜噜av男人的天堂激情| 亚洲av免费高清在线观看| 两个人的视频大全免费| 久久九九热精品免费| 免费av不卡在线播放| 校园人妻丝袜中文字幕| 日日摸夜夜添夜夜添小说| 五月伊人婷婷丁香| 啦啦啦啦在线视频资源| 神马国产精品三级电影在线观看| 国产精华一区二区三区| 久久久久久久久久成人| 最近视频中文字幕2019在线8| 99久久精品一区二区三区| 日韩精品有码人妻一区| 国产精品美女特级片免费视频播放器| 欧美区成人在线视频| 99在线视频只有这里精品首页| 一进一出抽搐gif免费好疼| 亚洲欧美日韩卡通动漫| 亚洲精华国产精华液的使用体验 | 中文字幕av在线有码专区| 香蕉av资源在线|