• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    The first complete organellar genomes of an Antarctic red alga,Pyropia endiviifolia: insights into its genome architecture and phylogenetic position within genus Pyropia (Bangiales,Rhodophyta)*

    2018-08-02 02:51:04XUKuipeng徐奎鵬TANGXianghai唐祥海BIGuiqi畢桂萁CAOMin曹敏WANGLu王璐MAOYunxiang茅云翔
    Journal of Oceanology and Limnology 2018年4期
    關(guān)鍵詞:王璐

    XU Kuipeng (徐奎鵬) , TANG Xianghai (唐祥海) , , BI Guiqi (畢桂萁) ,CAO Min (曹敏), WANG Lu (王璐) , MAO Yunxiang (茅云翔) ,

    1 Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education, Qingdao 266003, China 2 Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266003, China

    Abstract Pyropia species grow in the intertidal zone and are cold-water adapted. To date, most of the information about the whole plastid and mitochondrial genomes (ptDNA and mtDNA) of this genus is limited to Northern Hemisphere species. Here, we report the sequencing of the ptDNA and mtDNA of the Antarctic red alga Pyropia endiviifolia using the Illumina platform. The plastid genome (195 784 bp, 33.28%GC content) contains 210 protein-coding genes, 37 tRNA genes and 6 rRNA genes. The mitochondrial genome (34 603 bp, 30.5% GC content) contains 26 protein-coding genes, 25 tRNA genes and 2 rRNA genes. Our results suggest that the organellar genomes of Py. endiviifolia have a compact organization.Although the collinearity of these genomes is conserved compared with other Pyropia species, the genome sizes show signi ficant differences, mainly because of the different copy numbers of rDNA operons in the ptDNA and group II introns in the mtDNA. The other Pyropia species have 2–3 distinct intronic ORFs in their cox 1 genes, but Py. endiviifolia has no introns in its cox 1 gene. This has led to a smaller mtDNA than in other Pyropia species. The phylogenetic relationships within Pyropia were examined using concatenated gene sets from most of the available organellar genomes with both the maximum likelihood and Bayesian methods. The analysis revealed a sister taxa affiliation between the Antarctic species Py. endiviifolia and the North American species Py. kanakaensis.

    Keyword: Antarctic; Pyropia endiviifolia; plastid and mitochondrial genomes; genome structure; phylogenetic

    1 INTRODUCTION

    The evolution of plastids and mitochondria by endosymbiosis is a central dogma of modern eukaryotic cell biology. Both plastids and mitochondria possess their own genomes. Plastids are the lightgathering organelles of algae and plants responsible for photosynthesis, whose origin can be traced back to cyanobacteria (Reyes-Prieto et al., 2007). This photosynthetic organelle is commonly believed to have a single origin in the common ancestor of the Archaeplastida, which comprises glaucophytes, red algae (Rhodophyta), and Viridiplantae (Rodríguez-Ezpeleta et al., 2005). Red algae have the most generich and cyanobacteria-like plastid genomes, followed by glaucophytes and green algae. The mitochondrial genome is a remnant of a eubacterial genome, derived speci fically from within the α-Proteobacteria (Gray et al., 2001). Mitochondria play a crucial role in providing cellular energy (Ogihara et al., 2005). During the course of evolution, this endosymbiont has transferred many of its important genes to the nuclear genome(Taanman, 1999).

    The Bangiales order of red algae consists of more than 190 species (Guiry and Guiry, 2017), which are distributed worldwide from tropical seas to polar seas.It is divided into at least fifteen genus-level taxa( Bangia, ‘ Bangia’ 1, ‘ Bangia’ 2, ‘ Bangia’ 3,Boreophyllum, Clymene, Dione, Fuscifolium, Lysithea,Minerva, Miuraea, Porphyra, Pseudobangia, Pyropia,and Wildemania) (Sutherland et al., 2011). The coldwater seaweed genus Pyropia includes the most economically important marine crops grown in intertidal habitats, among which Py ropia haitanensis and Py. yezoensis are widely harvested and traded in East Asian countries, such as China, Korea and Japan(Mumford and Miura, 1988). Pyropia endiviifolia (A.Gepp & E. Gepp) H. G. Choi & M. S. Hwang grows on the Antarctic islands and has been recorded on the Antarctic Peninsula, the South Orkney Islands, the South Shetland Islands and South Georgia Island (Wiencke and Clayton, 1998). This species is olive-green in color, which led to its first speci fic name, Monostroma endiviifolium A & E Gepp (Chamberlain, 1963); this was later revised to Pyropia (Sutherland et al., 2011).

    Previous studies have revealed that a limited number of available DNA sequences results in relatively little genetic variation, which can present difficulties in phylogenetic resolution or species identi fication (Dutcher and Kapraun, 1994; Niwa et al., 2004; Xie et al., 2010; Sutherland et al., 2011). In recent decades, with the rapid development of nextgeneration DNA sequencing technologies, it has become convenient to assemble complete organelle genomes from total genomic DNA sequences at relatively low cost, especially for Pyropia species,which have a high proportion of organellar DNA relative to nuclear DNA (Wang et al., 2013). Complete organellar genome sequence information is not only important for genetic breeding but also for evolutionary studies. Phylogenomics is a useful tool for providing evolutionary information for species identi fication,taxonomy and phylogenetic analysis (Henry, 2005;Verbruggen et al., 2010; Janou?kovec et al., 2013;Yang et al., 2015; Lee et al., 2016). However, most of the available information about Pyropia ptDNAs and mtDNAs is limited to Northern Hemisphere species,and surprisingly little is known about the organellar genomes of Southern Hemisphere species.

    Here, we present the complete organellar genomes of the Antarctic species Py. endiviifolia, which were obtained using the Illumina sequencing technology,and examine its genomic features. Through comparative genomics and phylogenomic analyses,we sought to explore the genome structure and reconstruct the phylogenetic relationships among representative species.

    2 MATERIAL AND METHOD

    2.1 Collection of samples and morphological observations

    Fresh thalli of Py. endiviifolia were collected on February 22, 2014 from intertidal transects along a rocky coastline at Fildes Peninsula, King George Island, Antarctica (62°12′S, 58°57′W). Morphological characters including thallus shape, color, texture and reproductive tissues of the specimens were examined and photographed using an Olympus BX51 microscope (OLYMPUS, Tokyo, Japan).

    2.2 DNA extraction, sequencing and genome assembly

    Total DNA was extracted from 10 g of frozen thallus material according to the CTAB method(Porebski et al., 1997). Puri fied DNA (5 μg) was fragmented and used to construct short-insert PCR-free libraries following the instructions of the Illumina TruseqTMDNA Sample Preparation Kit (Illumina, San Diego, CA, USA) and was sequenced on an Illumina Genome Analyzer. Adapters and low-quality reads(with ambiguous bases, N; length < 100 bp) were removed using the NGS QC Toolkit (Patel and Jain,2012). The pre-processed sequences were first assembled into non-redundant contigs using Edena with default settings (Hernandez et al., 2008). Then,all contigs were mapped to the reference genomes of Py. haitanensis (NC_007932.1 and NC_017751)using the BLAST program (http://blast.ncbi.nlm.nih.gov/) with an e-value of 1e-5 and the order of the aligned contigs was veri fied. Finally, gaps between the contigs were filled by iterative contig extension using the PRICE software (Ruby et al., 2013). To evaluate the quality of the organelle genome sequences,especially the junctions, validation through intensive PCR-based sequencing was carried out on ABI 3730 instrument by randomly designing 20 pairs of primers(Table S1). The PCR sequences and assembled genomes were aligned using MEGA 6.0 to determine the accuracy of the assembly (Tamura et al., 2013).The complete Py. endiviifolia plastid and mitochondria genomes are available for download via GenBank with accession numbers KT716756 and KU356193.

    Fig.1 Pyropia endiviifolia

    2.3 Genome annotation and analysis

    The organellar genomes were annotated using ORF- finder (http://www.ncbi.nlm.nih.gov/projects/gorf/) and aligned via BLASTX and BLASTN searches at the NCBI website (http://blast.ncbi.nlm.nih.gov/). tRNAs were identi fied using the tRNAscan-SE 1.21 web server (http://lowelab.ucsc.edu/tRNAscan-SE/) and rRNAs were identi fied using the RNAmmer 1.2 server (http://www.cbs.dtu.dk/services/RNAmmer/). Genome maps were drawn with OGDraw (Lohse et al., 2007). Multiple genomes were aligned using MAFFT version 5 and visualized using the mVISTA tool (Mayor et al., 2000; Katoh et al.,2005). A structure comparison was generated by Mauve with the ‘Use seed families’ option (Darling et al., 2004).

    2.4 Phylogenetic analyses

    To elucidate the phylogenetic position of Py.endiviifolia, the concatenated protein-coding amino acid sequences from both the plastid and mitochondrial genomes were used to construct a phylogenetic tree(Table S2). The genome sequences were aligned using the program MAFFT version 5 and were adjusted manually (Katoh et al., 2005). The aligned sequences were trimmed using trimAl with the option‘a(chǎn)utomated1’ (Capella-Gutiérrez et al., 2009).Maximum likelihood (ML) analysis was conducted using RaxML-8.2.4 (Stamatakis, 2014). The best model and parameter settings were chosen according to the Akaike information criterion by ProtTest 3.0 for ML analysis (Abascal et al., 2005). The ML searches used the cpREV+G+I substitution model for plastid sequences and JTT+G+I substitution model for mitochondrial sequences (-f a, 1 000 bootstrap replicates). Bayesian analyses were carried out using MrBayes3.2 with the best ProtTest model noted above(Huelsenbeck and Ronquist, 2001). Four independent Markov Chain Monte Carlo chains were run simultaneously and sampled every 100 generations for a total of 1 000 000 generations. The first 10% of the trees were discarded as a “burn-in.”

    3 RESULT

    3.1 Morphological analysis

    On the basis of morphology and life history observations (Wang et al., 2008; Guiry, 2015), the specimen was identi fied as Py. endiviifolia(Chamberlain, 1963; Wiencke and Clayton, 1998).This species was very distinctive in the local region because of its position high in the inter-tidal zone, its rough texture compared with other Pyropia species and its dark greenish color, which became blackish on drying (Fig.1a). The gametophyte blades measured5–20 cm in length and 4–15 cm in width and were monostromatic (Fig.1b, c). They attached to the rocks via abundant rhizoidal cells at the base of the thallus(Fig.1d). The almost colorless spermatangia around the margins of the gametophytes were formed by repeated division of vegetative cells (Fig.1e). The red carposporangia were formed by direct transformation of the vegetative cells while the fertilized zygotosporangium divided mitotically (Fig.1f).

    Table 1 Plastid gene content for Pyropia endiviifolia

    3.2 Organellar genome features of Py. endiviifolia

    The plastid genome of Py. endiviifolia was 195 784 base pairs (bp) long and contained two direct nonidentical repeat (DR) regions encoding 16S, 23S, 5S rRNA and two tRNA genes (trnI, trnA). These two repeats divided the circular molecule into a 150.6-kb large single copy (LSC) region and a 35.6-kb small single copy (SSC) region (Fig.2a). The overall GC content was 33.28%. The plastid genome encoded a total of 253 genes, consisting of 210 protein-coding genes (including 23 hypothetical protein genes ( ycf s)and 22 function-unknown open reading frames( orf s)), 37 tRNA genes and 6 rRNA genes, which comprised 75.83%, 1.44% and 4.58% of the total sequence, respectively (Table 1). Similar to other Bangiales species ( Py. haitanensis, 254 genes; Py.yezoensis, 256 genes; Bangia fuscopurpurea, 250 genes), all the genes in the LSC and SSC regions were single copy without introns, and 14 genes overlapped( psb C–psb D, atp D–atp F, ycf 24–ycf 16, rps 19–rpl 2,rpl 23–rpl 4, car A–orf 238 and rpl 24–rpl 14).

    The mitochondrial genome of Py. endiviifolia contained 53 genes, was 34 603 bp in length and had 30.46% GC content (Fig.2b). The genome contained 2 ribosomal RNA genes (1 large subunit and 1 small subunit), 25 transfer RNAs, 3 orf s, 2 secY-independent transporter proteins ( ymf s), 4 ribosomal proteins, and 17 genes related to electron transport and oxidative phosphorylation (Table 2). The protein-coding, tRNA and rRNA genes comprised 58.41%, 5.44% and 18.65% of the whole sequence, respectively.

    3.3 Genome conservation and dissimilarities

    Multiple alignment of 10 plastid sequences of Bangiales was conducted to further understand the structure and sequence similarity of the Py. endiviifolia plastid genome. Using Py. yezoensis as a reference,the sequence identity alignment results were plotted(Fig.3a). The results revealed high similarity across the Pyropia ptDNAs. The majority of variationsresulted from small insertions or deletions in intergenic regions. As expected, the rDNA regions were more conserved than the single-copy regions,and the coding regions were more conserved than the intergenic regions. Pyropia showed some differences when compared with other genera of Bangiales. For example, the intergenic regions between the pet G-rps 14 genes were longer in the Pyropia ptDNAs.Notably, the similarity of orf 621 was very low between Pyropia and other groups. Collinearity analysis showed that the architecture of the ptDNAs was highly conserved without any large rearrangements, despite their evolutionary distance(Fig.4a). The only apparent distinction was a single

    copy rDNA region in the species Py. perforate and Wildemania schizophylla. By contrast, Py. endiviifolia,Py. yezoensis, Py. haitanensis, Porphyra and Bangia possessed two direct non-identical rDNA repeats ( Py.fucicola and Py. kanakaensis had partial genomes).

    Table 2 Mitochondrial gene content for Pyropia endiviifolia

    Fig.2 Genome maps of the Pyropia endiviifolia plastid (a) and mitochondrion (b)

    Fig.3 Visualization of the alignment of Bangiales organelle genomes sequences

    Fig.4 Local collinear block (LCB) analysis of 10 plastid genomes (a) and 12 mitochondrial genomes (b)

    Table 3 General characteristics of Bangiales plastid and mitochondrial genomes

    Collinearity analysis of 12 mtDNAs showed that most sequence blocks were conserved co-linearly, but the genome contents and lengths were signi ficantly different (Fig.3b; Fig.4b). The observed structural differences mainly arose from the number and organization of mitochondrial group II introns in the large subunit ribosomal RNA ( rnl) gene and the cox 1 gene (Table 3). The mitochondrial genomes of Bangiales possessed different numbers of introns and intronic ORFs ( orf 111, orf 543, orf 544, orf 546,orf 550) in the rnl gene. The mtDNA of Py. endiviifolia had only one intron, which contained one intronic ORF ( orf 546), in the rnl gene. The other genomes of Pyropia contained at least two introns with 0–3 different intronic ORFs. The Pyropia species had 2–3 distinct introns and intronic ORFs ( orf 693, orf 729,orf 789, orf 813) in the cox 1 gene, except Py.endiviifolia, whose cox 1 gene had no introns. An absence of introns in the cox 1 gene was also observed in the Porphyra and Wildemania mtDNAs. The low number of introns resulted in Py. endiviifolia having the smallest mtDNA within Pyropia. B. fuscopurpurea had the most intronic ORFs in the cox 1 gene ( orf 652,orf 693, orf 780 and orf 813).

    3.4 Phylogenetic analyses

    Fig.5 Phylogenetic relationships within the Bangiales clade

    Trees were constructed using a dataset of 160 amino acid sequences of ptDNAs and 22 amino acid sequences of mtDNAs selected from eight representative species to examine the evolutionary position of Py. endiviifolia, and all of the nodes were inferred with strong support by the ML and BI methods (Fig.5). Within Pyropia, the close relationship between the Antarctic species Py. endiviifolia and the North American species Py. kanakaensis was con firmed. The species Py. haitanensis and Py.perforate also formed a separate clade. These two clades clustered together with a sister relationship.The remaining species Py. yezoensis and Py. fucicola grouped together at the base of the Pyropia group.

    Fig.6 Maximumlikelihoodrootedtree for rbcLsequences of Pyropia

    To verify the phylogenetic relationships of this group, the rbc L genes from the Py. endiviifolia plastid genome and 81 species of Pyropia (Table S3)downloaded from GenBank were used for phylogenetic tree reconstruction (Fig.6). The overall topologies were consistent with the trees constructed using whole organellar genomes. The inconsistencies resulted from the low number of available organellar genomes of Pyropia. The phylogenetic tree topology demonstrated that Py. endiviifolia formed a wellsupported clade together with the unidenti fied Pyropia sp. Antar 68 from Admiralty Bay, King George Island,South Shetlands Archipelago, Antarctica. The sequence similarity between Py. endiviifolia and Pyropia sp. Antar 68 was 100%, which indicated that they might be the same species.

    4 DISCUSSION

    The first plastid and mitochondrial genomes of the Antarctic red algae Py. endiviifolia were determined in this study. The organellar genomes of Py.endiviifolia have large protein-coding gene repertoires and a compact genome organization. Comparative genomic analysis revealed highly conserved collinearity across the whole organellar genomes. The differences in size among mitochondrial genomes were related to the number and organization of mitochondrial group II introns of the large subunit of the ribosomal RNA gene and the cox 1 gene. Typically,eukaryotes possess inserted sequences termed group II introns, but these sequences are only observed in organellar genomes (Michel et al., 1982). A previous study indicated that horizontal transfers have taken place from the mitochondrial genomes of diatoms to the alga Chattonella (Kamikawa et al., 2009). Pyropia endiviifolia had no introns in its cox 1 gene, which was unique among Pyropia species. The number of introns in the rnl gene was also lower than in other Pyropia species. This lack of introns could lead to a convergent and stabilized mtDNA structure. It could also be used as a basis for designing molecular markers for species identi fication. The structure and number of rnl and cox 1 introns in Py. endiviifolia implies a speci fic evolutionary mechanism in this Antarctic species.

    We identi fied two direct non-identical repeats in the Py. endiviifolia plastid genomes. By comparison,there was only one copy in Py. perforate and W.schizophylla, a phenomenon that has also been found in some Florideophyte species ( Calliarthron tuberculosum and Chondrus crispus). Typically, most plastid genomes possess two large inverted repeats containing the rRNA genes. However, with the number of sequenced genomes increasing, more and more variations have been found (Hagopian et al.,2004). Analysis of the rDNA operons in Guillardia and Porphyra suggests that the directly repeated rDNA genes of the ancestral Rhodophyte were transformed into inverted repeats in Guillardia(Douglas, 1998). Lee et al. detected three minor structural types (R1-, R2-, and R3-type) in the Florideophyceae group, which were explained by recombination events of the duplicated rDNA operons(Lee et al., 2016). The two rDNA operons have been only partially retained or one copy has been completely lost in some red algae species. This process could lead to structural stabilization of the plastid genomes. The ancestral R1-type rDNA operon was retained in Py.endiviifolia, which implies slow evolution of the ptDNA structure.

    Studies have shown that multigene phylogenies can elucidate phylogenetic relationships more exactly when the different evolutionary rates of the genes are considered (Yoon et al., 2006; Verbruggen et al.,2010). We utilized a set of ptDNA and mtDNA genes to explore the phylogenetic relationships of Pyropia.In this study, the Antarctic species Py. endiviifolia and the North American species Py. kanakaensis grouped together with high support in the phylogenetic analysis, rather than all the of Northern Hemisphere species clustering together first. Despite their geographical isolation, all members of this group are cold-water adapted (Brodie and Irvine, 2003), which has led to almost identical environmental selection pressure. The fixation rate in genome evolution depends on the purifying selection of the environment(Buschiazzo et al., 2012). This result implies that the selection pressure the Antarctic species has experienced was more similar to that of Py.kanakaensis than other species. However,inconsistencies in phylogenetic analysis can occur when there is sparse taxon sampling (Zhao et al.,2016). The current evidence is insufficient to interpret the origin and evolution of Py. endiviifolia, because it is the only Southern Hemisphere species with complete organellar genomes available. Therefore,more taxon information needs to be obtained and further studies combining the nuclear, plastid and mitochondrial genomes need to be performed to better understand the relationship of this algal group.

    5 DATA AVAILABILITY STATEMENT

    The authors declare that all data supporting the findings of this study are available within the methods and appendix sections.

    猜你喜歡
    王璐
    Wave nature of Rosensweig instability
    Static-to-kinematic modeling and experimental validation of tendon-driven quasi continuum manipulators with nonconstant subsegment stiffness
    Atmospheric pressure pulsed modulated arc discharge plasma
    Bandgap evolution of Mg3N2 under pressure:Experimental and theoretical studies
    交互式教學(xué)在英語(yǔ)專業(yè)閱讀課改中的應(yīng)用研究
    Observation of the BEC-BCS crossover in a degenerate Fermi gas of lithium atoms
    公路橋梁設(shè)計(jì)中的隱患及解決措施
    Improved Fibroblast Adhesion and Proliferation by Controlling Multi-level Structure of Polycaprolactone Microfiber
    A m,p-Laplacian Parabolic Equation with Nonlinear Absorption and Boundary Flux
    Divergence time, historical biogeography and evolutionary rate estimation of the order Bangiales (Rhodophyta) inferred from multilocus data*
    成年女人毛片免费观看观看9 | 超碰97精品在线观看| 天堂俺去俺来也www色官网| 国产av国产精品国产| 国产一区亚洲一区在线观看| 19禁男女啪啪无遮挡网站| 国产精品蜜桃在线观看| 咕卡用的链子| 伦理电影免费视频| 在线观看国产h片| 美国免费a级毛片| 丰满少妇做爰视频| 天美传媒精品一区二区| 日本午夜av视频| xxx大片免费视频| 国产亚洲午夜精品一区二区久久| 2018国产大陆天天弄谢| 日韩av不卡免费在线播放| 国产在线免费精品| 免费女性裸体啪啪无遮挡网站| 久久99精品国语久久久| 久久久久久久久免费视频了| 亚洲精品中文字幕在线视频| 欧美日本中文国产一区发布| 婷婷色综合大香蕉| 色播在线永久视频| 涩涩av久久男人的天堂| 欧美日韩一区二区视频在线观看视频在线| 精品久久蜜臀av无| 老司机亚洲免费影院| 国产日韩欧美亚洲二区| 中文字幕人妻丝袜制服| 大片电影免费在线观看免费| 欧美乱码精品一区二区三区| tube8黄色片| 人人妻人人澡人人爽人人夜夜| 波多野结衣一区麻豆| 精品第一国产精品| 国产成人欧美| 美女高潮到喷水免费观看| tocl精华| 成人欧美大片| 久久久久亚洲av毛片大全| 日韩三级视频一区二区三区| 18禁黄网站禁片午夜丰满| 窝窝影院91人妻| 色哟哟哟哟哟哟| 亚洲,欧美精品.| 午夜福利在线观看吧| 午夜久久久在线观看| 精品卡一卡二卡四卡免费| 法律面前人人平等表现在哪些方面| 久久久精品国产亚洲av高清涩受| cao死你这个sao货| 久久欧美精品欧美久久欧美| 两性午夜刺激爽爽歪歪视频在线观看 | 午夜精品国产一区二区电影| 国产精品九九99| 国产欧美日韩一区二区精品| 男男h啪啪无遮挡| 老熟妇仑乱视频hdxx| 国产成年人精品一区二区| 日韩大码丰满熟妇| 精品国产乱子伦一区二区三区| 夜夜看夜夜爽夜夜摸| 亚洲第一青青草原| 中文字幕人妻熟女乱码| netflix在线观看网站| 97碰自拍视频| 满18在线观看网站| √禁漫天堂资源中文www| 757午夜福利合集在线观看| 国产一区在线观看成人免费| 中国美女看黄片| 欧美国产日韩亚洲一区| 妹子高潮喷水视频| videosex国产| 老司机午夜福利在线观看视频| 天天一区二区日本电影三级 | svipshipincom国产片| 欧美日韩精品网址| 99热只有精品国产| 国产国语露脸激情在线看| 久久国产亚洲av麻豆专区| 午夜福利高清视频| 中文字幕另类日韩欧美亚洲嫩草| 日本三级黄在线观看| 国产乱人伦免费视频| 国产蜜桃级精品一区二区三区| 一级,二级,三级黄色视频| 中文字幕最新亚洲高清| 亚洲成人久久性| 啦啦啦 在线观看视频| 99香蕉大伊视频| 日日摸夜夜添夜夜添小说| 18禁观看日本| 久久中文字幕一级| 欧洲精品卡2卡3卡4卡5卡区| 老汉色∧v一级毛片| 欧美日本中文国产一区发布| 女人被狂操c到高潮| 国产免费男女视频| 日韩欧美一区二区三区在线观看| 两性夫妻黄色片| 精品久久久久久久久久免费视频| www.自偷自拍.com| 欧美成人性av电影在线观看| 亚洲精品国产一区二区精华液| 9热在线视频观看99| 亚洲国产看品久久| 午夜福利在线观看吧| 制服诱惑二区| 久久久久国内视频| 在线观看免费午夜福利视频| 大香蕉久久成人网| 亚洲无线在线观看| 啦啦啦 在线观看视频| 国产黄a三级三级三级人| 色综合亚洲欧美另类图片| av天堂在线播放| 欧美av亚洲av综合av国产av| 老熟妇仑乱视频hdxx| 大型黄色视频在线免费观看| 国产一级毛片七仙女欲春2 | 午夜两性在线视频| av中文乱码字幕在线| 欧美黄色片欧美黄色片| 亚洲成av片中文字幕在线观看| 美女高潮到喷水免费观看| 黄片大片在线免费观看| 一级作爱视频免费观看| 亚洲三区欧美一区| 亚洲精品美女久久av网站| 一级作爱视频免费观看| 激情在线观看视频在线高清| 亚洲精品粉嫩美女一区| 女人被狂操c到高潮| 777久久人妻少妇嫩草av网站| 黄片小视频在线播放| 欧美人与性动交α欧美精品济南到| 亚洲中文日韩欧美视频| 婷婷六月久久综合丁香| 搡老妇女老女人老熟妇| a在线观看视频网站| 亚洲av第一区精品v没综合| 在线观看日韩欧美| 十分钟在线观看高清视频www| 法律面前人人平等表现在哪些方面| 中文字幕高清在线视频| 女同久久另类99精品国产91| 日韩欧美一区视频在线观看| 久久人妻福利社区极品人妻图片| 欧美人与性动交α欧美精品济南到| 人妻丰满熟妇av一区二区三区| www日本在线高清视频| 精品国产超薄肉色丝袜足j| 久久国产乱子伦精品免费另类| 啦啦啦 在线观看视频| 黄片大片在线免费观看| 久久草成人影院| 一区二区三区国产精品乱码| 在线观看免费视频日本深夜| 97人妻精品一区二区三区麻豆 | 午夜激情av网站| 午夜精品国产一区二区电影| 国产野战对白在线观看| 亚洲欧美日韩无卡精品| 深夜精品福利| 久久久久九九精品影院| 午夜老司机福利片| 国产激情久久老熟女| 精品日产1卡2卡| 亚洲第一欧美日韩一区二区三区| 美女扒开内裤让男人捅视频| 亚洲天堂国产精品一区在线| 男人舔女人的私密视频| 在线永久观看黄色视频| 国产精品香港三级国产av潘金莲| 亚洲国产看品久久| 国产精品九九99| 美女高潮喷水抽搐中文字幕| 亚洲视频免费观看视频| 国产不卡一卡二| 亚洲男人天堂网一区| 久久久久久久午夜电影| 一进一出抽搐动态| 高潮久久久久久久久久久不卡| 精品一区二区三区视频在线观看免费| 老熟妇仑乱视频hdxx| 19禁男女啪啪无遮挡网站| 精品欧美国产一区二区三| 成人欧美大片| 亚洲va日本ⅴa欧美va伊人久久| 少妇 在线观看| 一区二区三区高清视频在线| 1024香蕉在线观看| 亚洲精华国产精华精| 最近最新中文字幕大全电影3 | 一本综合久久免费| 久久狼人影院| www.www免费av| 亚洲精品av麻豆狂野| 国产欧美日韩一区二区三区在线| 巨乳人妻的诱惑在线观看| 深夜精品福利| 精品国产乱码久久久久久男人| 欧美成人一区二区免费高清观看 | 夜夜躁狠狠躁天天躁| 一区二区三区激情视频| 亚洲,欧美精品.| 中亚洲国语对白在线视频| 久久热在线av| 亚洲 欧美 日韩 在线 免费| 88av欧美| 91国产中文字幕| 精品一区二区三区av网在线观看| 国产欧美日韩一区二区三区在线| 国产精品av久久久久免费| 国产亚洲精品久久久久5区| 黄频高清免费视频| 18禁黄网站禁片午夜丰满| 欧美国产日韩亚洲一区| 色播在线永久视频| 欧美激情久久久久久爽电影 | 一边摸一边抽搐一进一小说| 18禁黄网站禁片午夜丰满| 国产成人啪精品午夜网站| 高潮久久久久久久久久久不卡| 欧美 亚洲 国产 日韩一| 成人永久免费在线观看视频| 精品一区二区三区视频在线观看免费| 精品人妻在线不人妻| 制服丝袜大香蕉在线| 十分钟在线观看高清视频www| 91九色精品人成在线观看| 国产精品98久久久久久宅男小说| 久久久久久免费高清国产稀缺| 国产精品久久久av美女十八| 久久狼人影院| 国产欧美日韩精品亚洲av| 美女高潮到喷水免费观看| 露出奶头的视频| 午夜福利视频1000在线观看 | 亚洲欧美日韩另类电影网站| 老熟妇仑乱视频hdxx| 午夜a级毛片| 精品国产乱码久久久久久男人| 国产精品 国内视频| 给我免费播放毛片高清在线观看| 亚洲情色 制服丝袜| 亚洲人成网站在线播放欧美日韩| 99热只有精品国产| 亚洲人成电影免费在线| 色综合婷婷激情| 久久国产乱子伦精品免费另类| 国产精品久久久久久人妻精品电影| 亚洲成国产人片在线观看| 黄色毛片三级朝国网站| 黑人巨大精品欧美一区二区mp4| 国产91精品成人一区二区三区| 欧美成人性av电影在线观看| 中文字幕人妻熟女乱码| 国产精品 欧美亚洲| 中文字幕久久专区| 久久精品亚洲熟妇少妇任你| 亚洲一区二区三区色噜噜| 久久久国产欧美日韩av| 十八禁网站免费在线| a级毛片在线看网站| 婷婷丁香在线五月| 又黄又爽又免费观看的视频| av中文乱码字幕在线| 成人免费观看视频高清| 男人操女人黄网站| 国产成人免费无遮挡视频| 亚洲精品一区av在线观看| 久久午夜亚洲精品久久| 美女国产高潮福利片在线看| 免费高清在线观看日韩| 制服人妻中文乱码| 国产成人系列免费观看| 亚洲一区高清亚洲精品| 亚洲电影在线观看av| 亚洲aⅴ乱码一区二区在线播放 | 成年女人毛片免费观看观看9| 91字幕亚洲| 两性夫妻黄色片| 国产精品一区二区精品视频观看| 免费人成视频x8x8入口观看| 不卡av一区二区三区| 国产成人精品在线电影| 久久青草综合色| 国产91精品成人一区二区三区| 亚洲av电影不卡..在线观看| 国产xxxxx性猛交| av片东京热男人的天堂| 亚洲成人久久性| a在线观看视频网站| 激情在线观看视频在线高清| 久久久久久久精品吃奶| 无限看片的www在线观看| 国产精品九九99| 精品久久久久久久久久免费视频| 1024香蕉在线观看| 精品久久久久久成人av| 中文字幕人成人乱码亚洲影| 最新在线观看一区二区三区| 午夜福利18| 国产成人一区二区三区免费视频网站| 91字幕亚洲| 久9热在线精品视频| 亚洲三区欧美一区| 亚洲av第一区精品v没综合| 级片在线观看| 亚洲精品一卡2卡三卡4卡5卡| 国产精品久久久人人做人人爽| 国产精品 国内视频| 亚洲欧洲精品一区二区精品久久久| 国产精品免费视频内射| 国产欧美日韩一区二区三| 亚洲性夜色夜夜综合| 黄色片一级片一级黄色片| 精品国内亚洲2022精品成人| 在线观看一区二区三区| 亚洲成a人片在线一区二区| 999久久久国产精品视频| 两性夫妻黄色片| 一二三四在线观看免费中文在| 少妇裸体淫交视频免费看高清 | 麻豆国产av国片精品| 国产亚洲av高清不卡| 满18在线观看网站| 中文字幕精品免费在线观看视频| 免费观看人在逋| 热re99久久国产66热| 国产精品一区二区三区四区久久 | 麻豆一二三区av精品| 99热只有精品国产| 级片在线观看| 黄片小视频在线播放| 高清在线国产一区| 久久国产精品男人的天堂亚洲| 极品人妻少妇av视频| 大型黄色视频在线免费观看| 国产精品秋霞免费鲁丝片| 午夜视频精品福利| 大香蕉久久成人网| 精品一区二区三区视频在线观看免费| 亚洲成av人片免费观看| 又紧又爽又黄一区二区| 1024视频免费在线观看| 欧美成人午夜精品| 中亚洲国语对白在线视频| 日韩精品中文字幕看吧| 69av精品久久久久久| 欧美绝顶高潮抽搐喷水| 免费高清在线观看日韩| 成人精品一区二区免费| 国产黄a三级三级三级人| 啦啦啦观看免费观看视频高清 | 搡老熟女国产l中国老女人| 成人亚洲精品一区在线观看| 久久久久久久久中文| 女性生殖器流出的白浆| 久久 成人 亚洲| 国产午夜精品久久久久久| 人妻丰满熟妇av一区二区三区| 亚洲av美国av| 国产精品一区二区免费欧美| 免费在线观看完整版高清| 久久影院123| 欧美黄色片欧美黄色片| 精品久久久久久久久久免费视频| 久久久水蜜桃国产精品网| 日韩大尺度精品在线看网址 | 亚洲一区二区三区不卡视频| 亚洲七黄色美女视频| 超碰成人久久| 亚洲国产欧美一区二区综合| 国产精品亚洲一级av第二区| 午夜福利视频1000在线观看 | 成人国语在线视频| 亚洲国产毛片av蜜桃av| 自拍欧美九色日韩亚洲蝌蚪91| 美女午夜性视频免费| 欧美另类亚洲清纯唯美| 久久精品aⅴ一区二区三区四区| 老司机福利观看| 久久狼人影院| 国产精品一区二区在线不卡| 亚洲,欧美精品.| 亚洲在线自拍视频| 99在线人妻在线中文字幕| 日日摸夜夜添夜夜添小说| videosex国产| 熟妇人妻久久中文字幕3abv| 99国产精品一区二区蜜桃av| 黑人操中国人逼视频| 91成人精品电影| 一本久久中文字幕| 日韩大尺度精品在线看网址 | 精品欧美国产一区二区三| 久久久久久久久中文| 男人舔女人的私密视频| 亚洲av日韩精品久久久久久密| 国产97色在线日韩免费| 国产免费男女视频| 美女高潮喷水抽搐中文字幕| 午夜精品久久久久久毛片777| 男男h啪啪无遮挡| 亚洲国产毛片av蜜桃av| 久久性视频一级片| 亚洲专区字幕在线| 美女高潮喷水抽搐中文字幕| 好男人在线观看高清免费视频 | 日本三级黄在线观看| 黄网站色视频无遮挡免费观看| 国产亚洲精品久久久久5区| 男男h啪啪无遮挡| 国产精品一区二区三区四区久久 | 99香蕉大伊视频| 老熟妇乱子伦视频在线观看| 男女床上黄色一级片免费看| 日本在线视频免费播放| 国产精品香港三级国产av潘金莲| tocl精华| 精品国产亚洲在线| 一边摸一边抽搐一进一小说| 香蕉久久夜色| 国产欧美日韩精品亚洲av| 欧美日韩亚洲国产一区二区在线观看| 亚洲色图综合在线观看| 久久久久亚洲av毛片大全| 久久久国产成人精品二区| 男人舔女人下体高潮全视频| 中文字幕最新亚洲高清| 国产黄a三级三级三级人| 亚洲午夜理论影院| cao死你这个sao货| 亚洲电影在线观看av| 中文字幕人妻熟女乱码| 色在线成人网| 色av中文字幕| 亚洲男人天堂网一区| 国产精品野战在线观看| 精品免费久久久久久久清纯| 在线观看免费视频日本深夜| 免费在线观看黄色视频的| av天堂在线播放| 精品日产1卡2卡| 亚洲视频免费观看视频| 国产1区2区3区精品| 香蕉丝袜av| 成人国产综合亚洲| 欧美乱妇无乱码| 亚洲av成人不卡在线观看播放网| 可以免费在线观看a视频的电影网站| 久久亚洲精品不卡| 精品一区二区三区av网在线观看| 日韩视频一区二区在线观看| 欧美日韩精品网址| 一区在线观看完整版| 亚洲少妇的诱惑av| 日本在线视频免费播放| 国产黄a三级三级三级人| av电影中文网址| 人成视频在线观看免费观看| 亚洲一区二区三区色噜噜| 国内精品久久久久久久电影| 亚洲精品久久成人aⅴ小说| 欧美大码av| 19禁男女啪啪无遮挡网站| 午夜福利影视在线免费观看| 欧美成人一区二区免费高清观看 | aaaaa片日本免费| av在线播放免费不卡| 久久久久精品国产欧美久久久| 变态另类丝袜制服| 久久精品亚洲熟妇少妇任你| 禁无遮挡网站| 国产亚洲精品第一综合不卡| 国产片内射在线| 亚洲视频免费观看视频| svipshipincom国产片| 人人妻,人人澡人人爽秒播| 一边摸一边抽搐一进一小说| 99国产精品一区二区三区| 欧美日本中文国产一区发布| 亚洲精品国产一区二区精华液| 天天躁夜夜躁狠狠躁躁| 一级,二级,三级黄色视频| 91精品国产国语对白视频| 久久狼人影院| 可以在线观看的亚洲视频| 国产精品98久久久久久宅男小说| 国产一区二区在线av高清观看| 中文字幕最新亚洲高清| www.自偷自拍.com| 99riav亚洲国产免费| 欧美乱色亚洲激情| 久久中文看片网| 夜夜夜夜夜久久久久| 日韩免费av在线播放| 真人一进一出gif抽搐免费| 亚洲精品中文字幕在线视频| 国产av又大| 国产精品综合久久久久久久免费 | 高潮久久久久久久久久久不卡| 日韩欧美一区二区三区在线观看| aaaaa片日本免费| 欧美亚洲日本最大视频资源| 91国产中文字幕| 动漫黄色视频在线观看| 91国产中文字幕| 国产99白浆流出| 制服诱惑二区| 一边摸一边做爽爽视频免费| 日本 欧美在线| 色老头精品视频在线观看| 高清黄色对白视频在线免费看| 亚洲国产精品合色在线| 亚洲aⅴ乱码一区二区在线播放 | 色尼玛亚洲综合影院| www.999成人在线观看| 欧美乱码精品一区二区三区| a在线观看视频网站| 精品人妻1区二区| 亚洲欧洲精品一区二区精品久久久| 琪琪午夜伦伦电影理论片6080| 亚洲色图av天堂| 免费在线观看黄色视频的| 在线观看一区二区三区| 看片在线看免费视频| 母亲3免费完整高清在线观看| 纯流量卡能插随身wifi吗| 欧美一级毛片孕妇| 亚洲熟妇熟女久久| 老熟妇乱子伦视频在线观看| bbb黄色大片| 国产精品香港三级国产av潘金莲| 久久 成人 亚洲| 久久亚洲真实| 久久久久亚洲av毛片大全| 亚洲欧洲精品一区二区精品久久久| 嫩草影院精品99| 久久国产精品影院| 桃色一区二区三区在线观看| 亚洲av美国av| 天天一区二区日本电影三级 | 午夜福利18| 黄片播放在线免费| 黄频高清免费视频| 亚洲国产欧美日韩在线播放| 婷婷丁香在线五月| 国产亚洲欧美在线一区二区| 97人妻天天添夜夜摸| 国产极品粉嫩免费观看在线| 黄色女人牲交| 女人爽到高潮嗷嗷叫在线视频| 国产亚洲av嫩草精品影院| 美女大奶头视频| 国产激情欧美一区二区| 亚洲五月天丁香| 嫩草影视91久久| 欧美大码av| 性色av乱码一区二区三区2| 老司机靠b影院| 成人三级做爰电影| videosex国产| 亚洲三区欧美一区| 99久久综合精品五月天人人| 国产一区二区三区综合在线观看| 老司机在亚洲福利影院| 极品人妻少妇av视频| 岛国视频午夜一区免费看| 少妇熟女aⅴ在线视频| 操出白浆在线播放| 欧美午夜高清在线| 好看av亚洲va欧美ⅴa在| 亚洲色图 男人天堂 中文字幕| 久久狼人影院| 精品卡一卡二卡四卡免费| 国产精华一区二区三区| 午夜福利欧美成人| 色播在线永久视频| 国产色视频综合| 桃红色精品国产亚洲av| 日韩成人在线观看一区二区三区| 久久青草综合色| 色精品久久人妻99蜜桃| 男女午夜视频在线观看| 啦啦啦观看免费观看视频高清 | 成人av一区二区三区在线看| 校园春色视频在线观看| 90打野战视频偷拍视频| 精品一区二区三区视频在线观看免费| 成人亚洲精品av一区二区| 一个人免费在线观看的高清视频| 精品国产超薄肉色丝袜足j| 亚洲av电影不卡..在线观看| 亚洲人成77777在线视频| 欧美日韩黄片免| √禁漫天堂资源中文www| 久久中文字幕一级| 一进一出抽搐gif免费好疼| 正在播放国产对白刺激| 日本a在线网址| 韩国精品一区二区三区| 91老司机精品| 久久久久久久精品吃奶| 亚洲少妇的诱惑av| 欧美最黄视频在线播放免费| 欧美成人一区二区免费高清观看 | 欧美另类亚洲清纯唯美| 黑丝袜美女国产一区|