• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Divergence time, historical biogeography and evolutionary rate estimation of the order Bangiales (Rhodophyta) inferred from multilocus data*

    2018-07-11 01:58:30XUKuipeng徐奎鵬TANGXianghai唐祥海WANGLu王璐YUXinzi于欣孜SUNPeipei孫佩佩MAOYunxiang茅云翔
    Journal of Oceanology and Limnology 2018年3期
    關(guān)鍵詞:王璐

    XU Kuipeng (徐奎鵬) TANG Xianghai (唐祥海) WANG Lu (王璐)YU Xinzi (于欣孜) SUN Peipei (孫佩佩) MAO Yunxiang (茅云翔) 2

    1Key Laboratory of Marine Genetics and Breeding(Ocean University of China),Ministry of Education,Qingdao 266000,China2Laboratory for Marine Biology and Biotechnology,Qingdao National Laboratory for Marine Science and Technology,Qingdao 266000,China

    AbstractBangiales is the only order of the Bangiophyceae and has been suggested to be monophyletic.This order contains approximately 190 species and is distributed worldwide. Previous molecular studies have produced robust phylogenies among the red algae, but the divergence times, historical biogeography and evolutionary rates of Bangiales have rarely been studied. Phylogenetic relationships within the Bangiales were examined using the concatenated gene sets from all available organellar genomes. This analysis has revealed the topology (((Bangia,Porphyra)Pyropia)Wildemania). Molecular dating indicates that Bangiales diversified approximately 246.40 million years ago (95% highest posterior density (HPD)=194.78-318.24 Ma, posterior probability (PP)=0.99) in the Late Permian and Early Triassic, and that the ancestral species most likely originated from eastern Gondwanaland (currently New Zealand and Australia)and subsequently began to spread and evolve worldwide. Based on pairwise comparisons, we found a slower rate of nucleotide substitutions and lower rates of diversifi cation in Bangiales relative to Florideophyceae.Compared with Viridiplantae (green algae and land plants), the evolutionary rates of Bangiales and other Rhodophyte groups were found to be dramatically faster, by more than 3-fold for plastid genome (ptDNA)and 15-fold for mitochondrial genome (mtDNA). In addition, an average 2.5-fold lower dN/dS was found for the algae than for the land plants, which indicates purifying selection of the algae.

    Keyword:Bangiales; phylogenetics; divergence time; historical biogeography; evolutionary rate

    1 INTRODUCTION

    The red algae (Rhodophyta) have been divided into two subphyla, the Rhodophytina and Cyanidiophytina, which are further classified into seven classes, the Bangiophyceae, Compsopogonophyceae, Florideophyceae, Porphyridiophyceae, Rhodellophyceae, Stylonematophyceae and Cyanidiophyceae (Yoon et al.,2006). The Bangiophyceae include only one order,Bangiales, and one family, Bangiaceae, which has been suggested to be monophyletic (Müller et al.,2001). Sutherland et al. (2011) revised the order Bangiales to include at least fi fteen genus-level taxa(Bangia, ‘Bangia’1, ‘Bangia’2, ‘Bangia’3,Boreophyllum,Clymene,Dione,Fuscifolium,Lysithea,Minerva,Miuraea,Porphyra,Pseudobangia,Pyropia,andWildemania). Bangiales have been classified as an ancient lineage, based on a 1 200 million-year-old(Ma) fossil ofBangiomorphapubescens, aBangialike taxon (Butterfi eld, 2000). However,Porphyralike fossils have been found in rocks dated at approximately 425 Ma (Blouin et al., 2011). Yoon et al.(2004) estimated the evolutionary timeline using a six-gene data set, and suggested ca. 800 Ma for the divergence of the Florideophyceae from the Bangiales.However, the multicellular holdfast ofBangiomorpha pubescenshas greater similarity toErythrotrichiathan toBangia. It is possible thatBangiomorphaevolved as an extinct lineage in parallel to the Bangiophyceae and Compsopogonophyceae (Yang et al.,2016). Although previous molecular studies have produced robust phylogenies of the Bangiales, divergence time estimation of this order has rarely been addressed.

    Species of Bangiales include the most economically important marine crops grown worldwide from tropical to polar seas. Previous research suggested that the center of diversity of Bangiales was in the Northern Hemisphere, particularly the North Pacific(Conway et al., 1975). As more taxa have been described worldwide, New Zealand, in the Southern Hemisphere, has more recently been regarded as a center of Bangiales diversity (Broom et al., 2004).Aspects of the historical distributions of this group may be ofinterest, such as: the origin of the lineage,ancestral distribution and the factors that shaped the composition and distribution of this clade over time.Many studies have addressed biogeographic questions using phylogenetic analyses, molecular dating, and reconstruction of ancestral biogeography (Dumont et al., 2005; Deng et al., 2015; Berger et al., 2016).However, to date, no molecular systematic study has been performed to determine the historical biogeography of the Bangiales.

    The Bangiales comprise approximately 190 species, only 0.43% of currently described species of Rhodophyta. Florideophyceae is the most taxon-rich class of the Rhodophyta (95% of described Rhodophyte species) (Guiry and Guiry, 2017).Species diversifi cation represents the balance between speciation and extinction rates that gave rise to the extant diversity of a clade. Studies have suggested that diversifi cation is somehow linked to rates molecular evolution over time (Barraclough and Savolainen, 2001; Webster et al., 2003; Davies et al.,2004). Various types of abrupt genomic disruption can play an important role in promoting speciation via reproductive isolation (Venditti and Pagel, 2010).Collinearity analysis of Bangiales plastid genomes indicated a highly conservative genome structure(Janou?kovec et al., 2013; Lee et al., 2016), but the evolutionary rate at the nucleotide level in this group is unknown. In accordance with the central dogma of molecular biology, the protein-coding gene mutation rate has classically been regarded as a major unit of evolution. A previous study predicted that the evolutionary rate at neutral sites corresponds to the actual mutation rate if synonymous sites are assumed to be neutrally evolving (Kimura, 1984). Studies on the relative synonymous-site substitution rates (dS) of plastid DNA (ptDNA), mitochondrial DNA (mtDNA)and nuclear DNA (nDNA) from different lineages have provided insight into genome evolution(Buschiazzo et al., 2012; Leliaert et al., 2012; Smith,2015). Moreover, in pairwise comparisons of orthologous genes, ratios of dN to dS (dN/dS) give an indication of the mode and strength of selection,where dN/dS >1 suggests adaptive selection and dN/dS <1 indicates purifying selection. The rate of molecular evolution may help us to better understand the speciation and environmental adaptation of Bangiales.

    In this study, all available Bangiales organellar genomes (10 ptDNA and 11 mtDNA genomes) as well as the plastid RUBISCO LSU (rbcL) and nuclear SSU rRNA (nrSSU) gene sequences of 162 Bangiales species were downloaded from the GenBank database to 1) reconstruct phylogenetic relationships among the representative species, 2) estimate divergence times, 3) clarify the historical biogeography, and 4)identify the relative substitution rates of the Bangiales species.

    2 MATERIAL AND METHOD

    2.1 Phylogenetic analyses and divergence time estimation

    Organellar genome data were downloaded from the GeneBank database (Table S1). To determine the phylogenetic relationships among Bangiales species,the concatenated protein-coding amino acid sequences from both plastid and mitochondrial genomes were used to construct phylogenetic trees (Table S2). We used the all-versus-all blast to select single copy homologous genes with the e-value 1e-5. These protein-coding genes are shared by all of the selected taxa. TheChondruscrispusgenome was used as the outgroup. Genome sequences were aligned using the program MAFFT version 5 and adjusted manually(Katoh et al., 2005). The aligned sequences were further trimmed using trimAl with the option‘a(chǎn)utomated1’ (Capella-Gutiérrez et al., 2009).Maximum likelihood (ML) analyses were conducted using RaxML-8.2.4 (Stamatakis, 2014). The best model and parameter settings were chosen according to the Akaike information criterion using ProtTest 3.0 for the ML analyses (Abascal et al., 2005). The ML searches relied on the cpREV+G+I substitution model for plastid sequences and the JTT+G+I substitution model for mitochondrial sequences (-f a, 1 000 bootstrap replicates). The MP trees were constructed with PAUP*4.0b10 (Swofford, 2003). Heuristic searches were conducted using random taxon addition with branch swapping tree bisection and reconnection(TBR). Non-parametric bootstrap analysis was performed with 1 000 replicates with TBR branch swapping. Bayesian analyses were carried out using MrBayes3.2 with the best ProtTest model determined as noted above (Huelsenbeck and Ronquist, 2001).Four independent Markov Chain Monte-Carlo chains were run simultaneously and sampled every 100 generations for a total of 1 000 000 generations. The fi rst 10% of the trees were discarded as “burn-in.”

    To calculate the divergence times of Bangiales species, a dataset of 66 protein-coding nucleotide sequences from 27 Rhodophyte plastid genomes were selected (Table S2). We used BEAST v1.8.3 with the uncorrelated lognormal relaxed clock model to estimate rate change (Drummond et al., 2012). The best model inferred by ModelTest3.7, GTR+G+I, was used (Posada and Crandall, 1998). The Yule tree prior and unlinked clock models were used across gene regions. We set the most recent common ancestor with a lognormal prior, an offset of 950 Ma, and a standard deviation of 25.0 based on the divergence of the Florideophyceae and Bangiophyceae (Herron et al., 2009; Yang et al., 2016).

    2.2 Estimation of substitution rates

    The bidirectional best hit algorithm (BDBH) was used to compile clusters of potential 1:1 orthologous sequences using BLAST with the -e threshold=1e-10 in GET_HOMOLOGUES v2.0.3 (Contreras-Moreira and Vinuesa, 2013). Selected core gene amino acid sequences were aligned with MAFFT and then converted to nucleotide sequences using a Perl script written in house to achieve the codon alignment pattern. Pairwise distances at non-synonymous (dN)and synonymous (dS) sites were estimated for individual genes (Pyropiaendiviifoliavs.Pyropia kanakaensis,Porphyrapurpureavs.Porphyra umbilicalis,Cyanidiaceaesp.MX-AZ01vs.Cyanidioschyzonmerolae,Gelidiumelegansvs.Gelidiumvagum,Gracilariachilensisvs.Gracilaria salicornia) using codeml (PAML 4.9b) (Yang, 2007),with the maximum likelihood method employed with settings seqtype=1, CodonFreq=2, and Runmode=-2.Rates of substitution at coding sites (μ) were calculated using the following formula:

    wheredrepresents the distance at synonymous (dS)or non-synonymous (dN) sites andTrepresents the divergence time between pairwise comparisons(Buschiazzo et al., 2012). Divergence times were estimated as described above.

    2.3 Reconstruction of ancestral areas

    For the reconstruction of ancestral areas,rbcLandnrSSUgene sequences of 162 Bangiales species were downloaded from GenBank (Table S3). The Bayesian analysis was conducted as described by Sutherland(Sutherland et al., 2011). Seven biogeographic areas were defi ned based on the collection information: (A)Southern South America and Antarctica; (B) New Zealand and Australia; (C) Southern Africa; (D)Eastern North America; (E) Western North America;(F) Eastern Asia; (G) Europe. The ancestral area of Bangiales was evaluated using dispersal-vicariance analysis (S-DIVA) by RASP software with two as the maximum number of ancestral areas at each node(Ronquist and Cannatella, 1997; Yu et al., 2010).

    3 RESULT

    3.1 Phylogenomic analysis

    Trees were constructed using a dataset of 153 amino acid sequences from 11 plastid genomes and 19 amino acid sequences from 13 mitochondrial genomes to illustrate the evolutionary relationships within Bangiales, and most of the nodes were inferred with strong support using the MP, ML and BI methods.The ptDNA tree showed that the clade unitingPy.endiviifoliaformed a sister group withPy.kanakaensis, andPy.yezoensisclustered withPy fucicola. The remainingPy.haitanensisandPy.perforategrouped together. Moreover,BangiaandPorphyrawere assigned to the same clade supported by all three methods and they were added to the sister group withPyropia, leavingWildemaniaat the basal node of Bangiales in MP and BI analyses (Fig.1a).However, the ptDNA ML tree showed thatWildemaniaformed a sister group withPyropiafi rst. The topology of mtDNA tree was similar with ptDNA tree (Fig.1b).The added speciesPy.tenerawas clustered withPy.yezoensis, and then assigned toPy.fucicolawith high support.Py.nitidawas clustered withPy.endiviifoliaand then assigned toPy.kanakaensis. The mtDNA tree showedWildemaniawas at the basal node of Bangiales supported by all three methods. On the whole, our results support the (((Bangia,Porphyra)Pyropia)Wildemania) topology.

    Fig.1 Phylogenetic relationships of the Bangialesa. tree constructed from a dataset of 153 concatenated protein-coding sequences from 11 plastid genomes; b. tree constructed from a dataset of 18 concatenated protein-coding sequences from 13 mitochondrial genomes. Numbers from left to right represent MP and ML bootstrap and Bayesian posterior probabilities,respectively; “#” represent full support from all methods, and “//” represent the outgroup. Alternative tree branch positions of species are indicated by “-”.

    3.2 Divergence time estimation and reconstruction of ancestral areas

    Based on the analysis of aligned nucleotide sequences of Rhodophyte plastid genomes, we estimated divergence times. The results revealed that the multicellular red algae originated in the late Mesoproterozoic to early Neoproterozoic at approximately 1 001.87 Ma (95% HPD=910.27-1 281.12 Ma, PP=0.99). Bangiales diversified ca.246.40 Ma (95% HPD=194.78-318.24 Ma, PP=0.99),in the Permian and Triassic (Fig.2a). ThePyropiaclade diversified at 121.37 Ma (95% HPD=111.31-131.40 Ma, PP=1), in the Early Cretaceous, andPorphyrabegan to diverge fromBangiaat 180.51 Ma(95% HPD=165.73-195.31 Ma, PP=1), in the Jurassic(Fig.2b). In this study, the speciesPy.endiviifoliadiverged fromPy.kanakaensisat 68.07 Ma (95%HPD=62.01-73.91 Ma, PP=1), in the Late Cretaceous.

    Fig.2 Chronogram of Bangiales based on concatenated protein-coding nucleotide sequences from BEASTa. schematic of the Rhodophyta chronogram calculated from 65 concatenated genes; b. chronogram of Bangiales calculated from 153 concatenated genes.The yellow node values of the trees represent estimated divergence times.

    Ancestral area reconstruction within the Bangiales was conducted using S-DIVA (Ronquist and Cannatella, 1997). Because of the limited organellar genome data, which contained very few Bangiales species from the Southern Hemisphere, the biogeographic analysis was conducted using the plastidrbcLandnrSSUgene sequences of 162 widespread Bangiales species together with the corresponding distribution information (Fig.3, Table S3). The analysis revealed that Bangiales had a center of origin in eastern Gondwanaland, in the current area encompassing New Zealand and Australia (Oceania)(S-DIVA=0.77). Moreover, the ancestral area of the subgroupPyropiaspread to Eastern Asia(S-DIVA=0.88).Porphyradispersed to Oceania(S-DIVA=0.85) and “Bangia” dispersed to either Oceania (S-DIVA=0.85) or Western North America(S-DIVA=1.00). The details of the ancestral area distribution as determined based on S-DIVA analysis are shown in Fig.4.

    Fig.3 Biogeographic information collected on the order Bangiales based on 162 speciesMap drawing No. GS(2016)1666 (accessed from the National Administration of Surveying, Mapping and Geoinformation of China).

    Table 1 Substitution rates of protein-coding genes among plastid and mitochondrial genomes within various eukaryotic lineages

    3.3 Substitution rates in Bangiales

    To better understand the evolutionary rate of the order Bangiales, protein-coding genes from ptDNAs and mtDNAs were aligned, and the numbers of pairwise synonymous (dS) and non-synonymous(dN) substitutions per site were inferred (Table 1).The mean dS values were 0.528±0.242 (ptDNA) and 1.623±0.699 (mtDNA) withinPyropia, and 0.463±0.193 (ptDNA) and 1.738±0.581 (mtDNA)withinPorphyra. The rates of substitution atdN were lower than those ofdS. ThedN/dS values were significantly smaller than 1, with averages ranging from 0.035 to 0.044, which suggest the existence of purifying selection acting on the organelle proteincoding genes of the Bangiales species.

    Fig.4 Ancestral area reconstruction of Bangiales as inferred from S-DIVANumeric values at the nodes are Bayesian posterior probabilities (%) obtained from the BEAST tree. Letters in the centers of nodes are the most likely ancestral areas. A maximum of two areas are represented at each node; therefore, the colors of those nodes are integrated based on the colors of the two corresponding locations in the internal legend.

    Table 2 Divergence times (Ma) and their confi dence intervals (CI) used to estimate μS

    Combining substitution rates with the divergence times (Table 2), we estimated the substitution rates per site per year at synonymous sites (μS). The meanμSin Bangiales ranged from 0.356×10-8to 0.388×10-8(ptDNA) and from 1.193×10-8to 1.337×10-8(mtDNA).The average synonymous mutation rates of ptDNA were all lower than those of other groups of red algae.However, compared with other lineages outside the red algae, Rhodophytes had dramatically higherμS,by more than 3-fold for ptDNA and 23-fold for mtDNA relative to land plants, and by more than 5-fold for ptDNA and 15-fold for mtDNA relative to green algae. Consequently, the mean dN/dS value was lower in algae than in land plants, 2.5-fold on average, which implies different levels of environmental adaptability.

    4 DISCUSSION

    4.1 Phylogenetic relationships within Bangiales taxa

    Studies have shown that multigene phylogenies elucidate phylogenetic relationships more precisely when the different evolutionary rates of the different genes are considered (Yoon et al., 2006; Verbruggen et al., 2010). Several studies based on complete plastid or mitochondrial multigene sequences showed great potential to elucidate the phylogenetic relationships of red algae (Reith and Munholland,1995; Ohta et al., 2003; Hagopian et al., 2004;Verbruggen et al., 2010; Wang et al., 2013; Campbell et al., 2014; Yang et al., 2015). We utilized the entire available set of ptDNA and mtDNA genes to explore the phylogenetic tree of the Bangiales. In this study,the speciesB.fuscopurpureawas ascribed to the clade‘Bangia’, which was closer toPyropia2, based on the combined data sets ofnrSSUandrbcLgenes (Fig.4).Nevertheless, phylogenomics based on information from the entire genome revealed that the phylogenetic relationship betweenBangiaandPorphyrawas closer than that of either withPyropia, with high bootstrap support. Regarding the position of the genusWildemania, our results indicated with high support that this clade diverged at the base of the Bangiales,which was in accordance with the results of Yang et al. (2015) based on whole mitochondrial genomes.Based on plastid genes, Hughey (2016) proposed thatWildemaniawas more closely related toPyropia.Such inconsistency may occur when taxon sampling is sparse and when substitution saturation is present(Zhao et al., 2016). Therefore, more taxon information should be obtained; further works that combine the nuclear, plastid and mitochondrial genomes could help to better understand the relationships of Bangiales groups.

    4.2 Divergence times and biogeography

    Estimating divergence times using molecular data and fossil constraints is an advantage of the evolutionary study of red algae. There have been several studies on the divergence time of the taxonomically diverse class Florideophyceae (Xiao et al., 1998; Saunders and Hommersand, 2004; Xiao et al., 2004). The multicellular fi lamentous red algaBangiomorphapubescensfrom the ca. 1 200 Ma Hunting Formation (Somerset Island, Arctic Canada)was considered the oldest known taxonomically resolved eukaryotic fossil (Butterfi eld, 2000).However, the multicellular holdfast ofB.pubescenshad greater similarity toErythrotrichiathan toBangia. It is possible thatBangiomorphaevolved as an extinct lineage in parallel to the Bangiophyceae and Compsopogonophyceae (Yang et al., 2016). A recent study indicated thatRafatazmiaandRamathallusrepresent crown-group multicellular Rhodophytes, which would antedate the oldest previously accepted red algae in the fossil record by about 400 million years (Bengtson et al., 2017). In our work, the organellar genomes of multicellular Rhodophytes include only Florideophyceae and Bangiophyceae. The latest common ancestor dating of the Florideophyceae and Bangiophyceae may not be suffcient to represent the dating of multicellular Rhodophytes. The present study provides molecular evidence of divergence times and historical biogeographic information, which indicate that Bangiales diversified approximately 246.40 Ma in the late Permian and early Triassic. Based on the present results, Bangiales is not as ancient as other red algae groups. This fi nding implies that this group experienced a long period of selection or an extinction event. Further genomic information of long-branch species such asDioneandMinervais needed to more accurately evaluate the divergence time. At least three major diversifi cation events occurred, which determined the four largest genera of the Bangiales(Bangia,Porphyra,PyropiaandWildemania). We traced the ancestral species of Bangiales of eastern Gondwanaland, in the present New Zealand and Australia (Oceania) area of the Southern Hemisphere.At the time of these ancestral species, the land masses were still bound together into the vast supercontinent Pangaea. This emerging supercontinent presented severe climatic and environmental extremes because ofits vast size (Chumakov and Zharkov, 2002). The south was cold and arid, with much of the region frozen under ice caps. Although climatic cooling was supposedly a primary cause of Permian mass extinctions (Stanley, 1988), Bangiales and other coldadapted species may have survived and expanded in the extreme environments of this period. Pangaea began to break apart in the mid-Triassic, forming Gondwanaland (South America, Africa, India,Antarctica, and Australia) in the south and Laurasia(North America and Eurasia) in the north (Ogg et al.,2004). These changes made it possible for plant migration across these continents. The ancestral area of theBangiasubgroup was determined to be in the Oceania area or western North America around the Jurassic. We infer that there may have been geographic isolation events at that time. The fi lamentous members ofBangiawere divided into four groups:Bangia,‘Bangia’1, ‘Bangia’2and ‘Bangia’3(Sutherland et al., 2011).Bangiaand ‘Bangia’1were deduced to originate from the Oceania area, and the other two genera were determined to be from western North America. The genusPyropiadiversified at 121.37 Ma in the Cretaceous and was widely distributed. In the Cretaceous, the breakup of the supercontinent Pangaea, which began during the Jurassic, continued.This change led to increased regional differentiation in species between the northern and southern continents (Casey, 1964). Based on our results, we speculate thatPyropiaoriginated in East Asia and subsequently spread worldwide.

    4.3 Evolutionary rate of Bangiales compared with other groups

    A previous study implied that the high collinearity of plastid genomes indicate that the organellar genomes of red algae evolve slowly (Janou?kovec et al., 2013). Smith et al. (2012) studied the relative rates of evolution among the three genetic compartments of the red algaPorphyra(mtDNA,ptDNA, and nDNA) and concluded that the mutation rates do not correlate with genome architecture. The present study was based upon whole plastid and mitochondrial genomic loci rather than on a small set of genes, and is relevant to understanding the differences in evolutionary patterns between Bangiales and other groups. First, we found that evolutionary rates are dramatically faster in red algae than in land plants and green algae. Secondly,evolutionary rates are slower in Bangiales than in Florideophyceae. To date, Bangiales is the only order that has been identified in the class Bangiophyceae,and includes ca. 190 species. However, at least 27 orders, including approximately 6 799 species, have been classified in Florideophyceae (Guiry and Guiry,2017). The low speciation rate of the Bangiophyceae may be due to the relatively low evolutionary rates at the nucleotide level. In seed plants, gymnosperms are more conserved than angiosperms and have experienced very low speciation rates (Levin and Wilson, 1976). In birds, diversifi cation has also been shown to be positively correlated with mutation rate(Lanfear et al., 2010). The lower evolutionary rates of Bangiales relative to Florideophyceae may be the cause of the lower species diversity.

    Interestingly, land plants possess more species diversity than algae, despite generally lower mutation rates. The number of currently known, described and accepted land plant species exceeds 300 000, whereas the corresponding number of algae species worldwide is approximately 44 000 (Christenhusz and Byng,2016). Species arise after splitting from ancestral species when they acquire new adaptations to a changing environment. We found that the meandN/dS was approximately five times lower in algae than in land plants, despite much higher substitution rates in red algae genes (Table 1). To some extent, the fi xation rate of mutations depends on the purifying(background) selection of the environment(Buschiazzo et al., 2012). LowerdN/dS in algae may arise from high selective constraints on nonsynonymous mutations because of the purifying selection of relatively constant marine life. The more variable terrestrial environment of land plants induces more adaptive mutations, which leads to a staggeringly high rate of fi xation for non-synonymous mutations.

    Simultaneously, we found that the average number of substitutions per synonymous site was higher(1.75-3.75 times) in mtDNA than in ptDNA in red algae, which was consistent with previously reported results (Robba et al., 2006; Milstein et al., 2008;Smith et al., 2012). This trend is also observed inPhaeocystisalgae (Smith et al., 2014). In contrast,synonymous substitution rates are estimated at lower rates in mtDNA than in ptDNA (1:3) for seed plants and at roughly equal rates for green algae (Drouin et al., 2008; Hua et al., 2012). Seed plant cpDNA had lower conservation than mtDNA because of constraints on synonymous codon choice in the mitochondria, which may reduce the rate of synonymous substitution (Wolfe et al., 1987). The inverse situation exists in Rhodophyte species; plastid DNA exhibits a slower evolutionary rate than mtDNA.This difference in rates may be largely because of the conservation of ribosomal RNA regions of red algae,whereas contraction or expansion of the IR regions often occurred in seed plant chloroplast genomes(Kim and Lee, 2004).

    5 CONCLUSION

    In summary, our results indicate that the lower evolutionary rates of Bangiales relative to Florideophyceae may be the cause of their lower species diversity. The Rhodophyta had a faster evolutionary rate than the Viridiplantae, however, this clade also had a lowerdN/dS ratio, which corresponds to adaptation to marine life. Phylogenomic analyses were conducted using complete organelle genomes of Bangiales, and the results support the topology(((Bangia, Porphyra)Pyropia)Wildemania) with high supporting values. In addition, divergence time dating and ancestral area reconstruction within the Bangiales were conducted for the fi rst time. The increasing number of sequenced organelle genomes may allow further improvement of the understanding of the phylogenetics of the order Bangiales.

    6 DATA AVAILABILITY STATEMENT

    The authors declare that all data supporting the fi ndings of this study are available in the appendix.References

    Abascal F, Zardoya R, Posada D. 2005. ProtTest: selection of best-fi t models of protein evolution.Bioinformatics,21(9): 2 104-2 105.

    Barraclough T G, Savolainen V. 2001. Evolutionary rates and species diversity in flowering plants.Evolution, 55(4):677-683.

    Bell C D, Soltis D E, Soltis P S. 2010. The age and diversifi cation of the angiosperms re-revisited.American JournalofBotany, 97(8): 1 296-1 303.

    Bengtson S, Sallstedt T, Belivanova V, Whitehouse M. 2017.Three-dimensional preservation of cellular and subcellular structures suggests 1.6 billion-year-old crown-group red algae.PLoSBiology, 15(3): e2000735.

    Berger B A, Kriebel R, Spalink D, Sytsma K J. 2016.Divergence times, historical biogeography, and shifts in speciation rates of Myrtales.MolecularPhylogenetics andEvolution, 95: 116-136.

    Blouin N A, Brodie J A, Grossman A C, Xu P, Brawley S H.2011.Porphyra: a marine crop shaped by stress.Trendsin PlantScience, 16(1): 29-37.

    Broom J E S, Farr T J, Nelson W A. 2004. Phylogeny of theBangiafl ora of New Zealand suggests a southern origin forPorphyraandBangia(Bangiales, Rhodophyta).MolecularPhylogeneticsandEvolution, 31(3): 1 197-1 207.

    Buschiazzo E, Ritland C, Bohlmann J, Ritland K. 2012. Slow but not low: genomic comparisons reveal slower evolutionary rate and higher dN/dS in conifers compared to angiosperms.BMCEvolutionaryBiology, 12: 8.

    Butterfi eld N J. 2000.Bangiomorphapubescensn. gen., n. sp.:implications for the evolution of sex, multicellularity, and the Mesoproterozoic/Neoproterozoic radiation of eukaryotes.Paleobiology, 26(3): 386-404.

    Campbell M A, Presting G, Bennett M S, Sherwood A R. 2014.Highly conserved organellar genomes in the Gracilariales as inferred using new data from the Hawaiian invasive algaGracilariasalicornia(Rhodophyta).Phycologia,53(2): 109-116.

    Capella-Gutiérrez S, Silla-Martínez J M, Gabaldón T. 2009.trimAl: a tool for automated alignment trimming in largescale phylogenetic analyses.Bioinformatics, 25(15):1 972-1 973.

    Casey R. 1964. The cretaceous period.GeologicalSociety,London,SpecialPublications, 1(1): 193-202.

    Christenhusz M J M, Byng J W. 2016. The number of known plants species in the world and its annual increase.Phytotaxa, 261(3): 201-217.

    Chumakov N M, Zharkov M A. 2002. Climate during Permian-Triassic biosphere reorganizations, Article 1: climate of the early Permian.StratigraphyandGeological Correlation, 10(6): 586-602.

    Contreras-Moreira B, Vinuesa P. 2013. GET_HOMOLOGUES,a versatile software package for scalable and robust microbial pangenome analysis.AppliedandEnvironmental Microbiology, 79(24): 7 696-7 701.

    Conway E, Mumford Jr T F, Scagel R F. 1975. The genusPorphyrain British Columbia and Washington.Syesis, 8:185-244.

    Davies T J, Savolainen V, Chase M W, Moat J, Barraclough T G. 2004. Environmental energy and evolutionary rates in flowering plants.ProceedingsoftheRoyalSocietyB:BiologicalSciences, 271(1553): 2 195-2 200.

    Deng J B, Drew B T, Mavrodiev E V, Gitzendanner M A, Soltis P S, Soltis D E. 2015. Phylogeny, divergence times, and historical biogeography of the angiosperm family Saxifragaceae.MolecularPhylogeneticsandEvolution,83: 86-98.

    Drouin G, Daoud H, Xia J N. 2008. Relative rates of synonymous substitutions in the mitochondrial,chloroplast and nuclear genomes of seed plants. MolecularPhylogeneticsandEvolution, 49(3): 827-831.

    Drummond A J, Suchard M A, Xie D, Rambaut A. 2012.Bayesian phylogenetics with BEAUti and the BEAST 1.7.MolecularBiologyandEvolution, 29(8): 1 969-1 973.

    Dumont H J, Vanf l eteren J R, De Jonckheere J F, Weekers P H H. 2005. Phylogenetic relationships, divergence time estimation, and global biogeographic patterns of calopterygoid damself l ies (Odonata, Zygoptera) inferred from ribosomal DNA sequences.SystematicBiology,54(3): 347-362.

    Guiry M D, Guiry G M. 2017. AlgaeBase. World-Wide Electronic Publication, National University ofireland,Galway, http://www.marinespecies.org/aphia.php?p=sourcedetails&id=37.

    Hagopian J C, Reis M, Kitajima J P, Bhattacharya D, de Oliveira M C. 2004. Comparative analysis of the complete plastid genome sequence of the red algaGracilaria tenuistipitatavar.liuiprovides insights into the evolution of rhodoplasts and their relationship to other plastids.JournalofMolecularEvolution, 59(4): 464-477.

    Herron M D, Hackett J D, Aylward F O, Michod R E. 2009.Triassic origin and early radiation of multicellular volvocine algae.ProceedingsoftheNationalAcademyof SciencesoftheUnitedStatesofAmerica, 106(9): 3 254-3 258.

    Hua J M, Smith D R, Borza T, Lee R W. 2012. Similar relative mutation rates in the three genetic compartments ofMesostigmaandChlamydomonas.Protist, 163(1): 105-115.

    Huelsenbeck J P, Ronquist F. 2001. MRBAYES: Bayesian inference of phylogenetic trees.Bioinformatics, 17(8):754-755.

    Hughey J R. 2016. Genomic and phylogenetic analysis of the complete plastid Genome of the California endemic seaweedWildemaniaschizophylla(Bangiaceae).Madro?o, 63(1): 34-38.

    Janou?kovec J, Liu S L, Martone P T, Carré W, Leblanc C,Collén J, Keeling P J. 2013. Evolution of red algal plastid genomes: ancient architectures, introns, horizontal gene transfer, and taxonomic utility of plastid markers.PLoS One, 8(3): e59001.

    Katoh K, Kuma K I, Toh H, Miyata T. 2005. MAFFT version 5: improvement in accuracy of multiple sequence alignment.NucleicAcidsResearch, 33(2): 511-518.

    Kim K J, Lee H L. 2004. Complete chloroplast genome sequences from Korean ginseng (PanaxschinsengNees)and comparative analysis of sequence evolution among 17 vascular plants.DNAResearch, 11(4): 247-261.

    Kimura M. 1984. The Neutral Theory of Molecular Evolution.Cambridge University Press, Cambridge.

    Lanfear R, Ho S Y W, Love D, Bromham L. 2010. Mutation rate is linked to diversifi cation in birds.Proceedingsofthe NationalAcademyofSciencesoftheUnitedStatesof America, 107(47): 20 423-20 428.

    Lee J, Cho C H, Park S I, Choi J W, Song H S, West J A,Bhattacharya D, Yoon H S. 2016. Parallel evolution of highly conserved plastid genome architecture in red seaweeds and seed plants.BMCBiology, 14: 75.

    Leliaert F, Smith D R, Moreau H, Herron M D, Verbruggen H,Delwiche C F, De Clerck O. 2012. Phylogeny and molecular evolution of the green algae.CriticalReviews inPlantSciences, 31(1): 1-46.

    Levin D A, Wilson A C. 1976. Rates of evolution in seed plants: net increase in diversity of chromosome numbers and species numbers through time.Proceedingsofthe NationalAcademyofSciencesoftheUnitedStatesof America, 73(6): 2 086-2 090.

    Lu Y, Ran J H, Guo D M, Yang Z Y, Wang X Q. 2014.Phylogeny and divergence times of gymnosperms inferred from single-copy nuclear genes.PLoSOne, 9(9): e107679.

    Milstein D, Oliveira M C, Martins F M, Matioli S R. 2008.Group I introns and associated homing endonuclease genes reveals a clinal structure forPorphyraspiralisvar.amplifolia(Bangiales, Rhodophyta) along the eastern coast of South America.BMCEvolutionaryBiology, 8:308.

    Müller K M, Oliveira M C, Sheath R G, Bhattacharya D. 2001.Ribosomal DNA phylogeny of the Bangiophycidae(Rhodophyta) and the origin of secondary plastids.AmericanJournalofBotany, 88(8): 1 390-1 400.

    Ogg J G, Agterberg F, Gradstein F. 2004. A geologic time scale 2004.In: Abstracts with Programs-Geological Society of America, 36: 74.

    Ohta N, Matsuzaki M, Misumi O, Miyagishima S Y, Nozaki H,Tanaka K, Shin-I T, Kohara Y, Kuroiwa T. 2003. Complete sequence and analysis of the plastid genome of the unicellular red algaCyanidioschyzonmerolae.DNA Research, 10(2): 67-77.

    Posada D, Crandall K A. 1998. MODELTEST: testing the model of DNA substitution.Bioinformatics, 14(9): 817-818.

    Reith M, Munholland J. 1995. Complete nucleotide sequence of thePorphyrapurpureachloroplast genome.Plant MolecularBiologyReporter, 13(4): 333-335.

    Robba L, Russell S J, Barker G L, Brodie J. 2006. Assessing the use of the mitochondrialcox1marker for use in DNA barcoding of red algae (Rhodophyta).AmericanJournal ofBotany, 93(8): 1 101-1 108.

    Ronquist F, Cannatella D. 1997. Dispersal-vicariance analysis:a new approach to the quantifi cation of historical biogeography.SystematicBiology, 46(1): 195-203.

    Saunders G W, Hommersand M H. 2004. Assessing red algal supraordinal diversity and taxonomy in the context of contemporary systematic data.AmericanJournalof Botany, 91(10): 1 494-1 507.

    Smith D R, Arrigo K R, Alderkamp A C, Allen A E. 2014.Massive difference in synonymous substitution rates among mitochondrial, plastid, and nuclear genes ofPhaeocystisalgae.MolecularPhylogeneticsand Evolution, 71: 36-40.

    Smith D R, Hua J M, Lee R W, Keeling P J. 2012. Relative rates of evolution among the three genetic compartments of the red algaPorphyradiffer from those of green plants and do not correlate with genome architecture.Molecular PhylogeneticsandEvolution, 65(1): 339-344.

    Smith D R. 2015. Mutation rates in plastid genomes: they are lower than you might think.GenomeBiologyand Evolution, 7(5): 1 227-1 234.

    Stamatakis A. 2014. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies.Bioinformatics, 30(9): 1 312-1 313.

    Stanley S M. 1988. Paleozoic mass extinctions; shared patterns suggest global cooling as a common cause.American JournalofScience, 288(4): 334-352.

    Sutherland J E, Lindstrom S C, Nelson W A, Brodie J, Lynch M D J, Hwang M S, Choi H G, Miyata M, Kikuchi N,Oliveira M C, Farr T, Neefus C, Mols-Mortensen A,Milstein D, Müller K M. 2011. A new look at an ancient order: generic revision of the Bangiales (Rhodophyta).JournalofPhycology, 47(5): 1 131-1 151.

    Swofford D L. 2003. PAUP*: Phylogenetic Analysis Using Parsimony (and Other Methods), Version 4. Sinauer Associates, Sunderland, MA.

    Venditti C, Pagel M. 2010. Speciation as an active force in promoting genetic evolution.TrendsinEcology&Evolution, 25(1): 14-20.

    Verbruggen H, Maggs C A, Saunders G W, Le Gall L, Yoon H S, De Clerck O. 2010. Data mining approach identifi es research priorities and data requirements for resolving the red algal tree of life.BMCEvolutionaryBiology, 10: 16.Wang L, Mao Y X, Kong F N, Li G Y, Ma F, Zhang B L, Sun P P, Bi G Q, Zhang F F, Xue H F, Cao M. 2013. Complete sequence and analysis of plastid genomes of two economically important red algae:PyropiahaitanensisandPyropiayezoensis.PLoSOne, 8(5): e65902.

    Webster A J, Payne R J H, Pagel M. 2003. Molecular phylogenies link rates of evolution and speciation.Science, 301(5632): 478.

    Wolfe K H, Li W H, Sharp P M. 1987. Rates of nucleotide substitution vary greatly among plant mitochondrial,chloroplast, and nuclear DNAs.Proceedingsofthe NationalAcademyofSciencesoftheUnitedStatesof America, 84(24): 9 054-9 058.

    Xiao S H, Knoll A H, Yuan X L, Pueschel C M. 2004.Phosphatized multicellular algae in the Neoproterozoic Doushantuo Formation, China, and the early evolution of fl orideophyte red algae.AmericanJournalofBotany,91(2): 214-227.

    Xiao S H, Zhang Y, Knoll A H. 1998. Three-dimensional preservation of algae and animal embryos in a Neoproterozoic phosphorite.Nature, 391(6667): 553-558.

    Yang E C, Boo S M, Bhattacharya D, Saunders G W, Knoll A H, Fredericq S, Graf L, Yoon H S. 2016. Divergence time estimates and the evolution of major lineages in the fl orideophyte red algae.scientificReports, 6: 21361.

    Yang E C, Kim K M, Kim S Y, Lee J, Boo G H, Lee J H,Nelson W A, Yi G M, Schmidt W E, Fredericq S, Boo S M, Bhattacharya D, Yoon H S. 2015. Highly conserved mitochondrial genomes among multicellular red algae of the Florideophyceae.GenomeBiologyandEvolution,7(8): 2 394-2 406.

    Yang Z H. 2007. PAML 4: phylogenetic analysis by maximum likelihood.MolecularBiologyandEvolution, 24(8):1 586-1 591.

    Yoon H S, Hackett J D, Ciniglia C, Pinto G, Bhattacharya D.2004. A molecular timeline for the origin of photosynthetic eukaryotes.MolecularBiologyandEvolution, 21(5): 809-818.

    Yoon H S, Müller K M, Sheath R G, Ott F D, Bhattacharya D.2006. Defi ning the major lineages of red algae(Rhodophyta).JournalofPhycology, 42(2): 482-492.

    Yu Y, Harris A, He X J. 2010. S-DIVA (Statistical Dispersal-Vicariance Analysis): a tool for inferring biogeographic histories.MolecularPhylogeneticsandEvolution, 56(2):848-850.

    Zhao L, Li X, Zhang N, Zhang S D, Yi T S, Ma H, Guo Z H, Li D Z. 2016. Phylogenomic analyses of large-scale nuclear genes provide new insights into the evolutionary relationships within the rosids.MolecularPhylogenetics andEvolution, 105: 166-176.

    猜你喜歡
    王璐
    Wave nature of Rosensweig instability
    Static-to-kinematic modeling and experimental validation of tendon-driven quasi continuum manipulators with nonconstant subsegment stiffness
    Atmospheric pressure pulsed modulated arc discharge plasma
    Bandgap evolution of Mg3N2 under pressure:Experimental and theoretical studies
    交互式教學(xué)在英語(yǔ)專(zhuān)業(yè)閱讀課改中的應(yīng)用研究
    Observation of the BEC-BCS crossover in a degenerate Fermi gas of lithium atoms
    公路橋梁設(shè)計(jì)中的隱患及解決措施
    Improved Fibroblast Adhesion and Proliferation by Controlling Multi-level Structure of Polycaprolactone Microfiber
    A m,p-Laplacian Parabolic Equation with Nonlinear Absorption and Boundary Flux
    The first complete organellar genomes of an Antarctic red alga,Pyropia endiviifolia: insights into its genome architecture and phylogenetic position within genus Pyropia (Bangiales,Rhodophyta)*
    欧美黑人欧美精品刺激| 你懂的网址亚洲精品在线观看| 亚洲欧美中文字幕日韩二区| 亚洲四区av| 亚洲精品av麻豆狂野| 少妇猛男粗大的猛烈进出视频| 久久久久久久精品精品| 在线观看免费高清a一片| 色视频在线一区二区三区| 国产精品三级大全| 可以免费在线观看a视频的电影网站 | 国产淫语在线视频| 天天躁夜夜躁狠狠躁躁| 亚洲av综合色区一区| www日本在线高清视频| 亚洲欧美中文字幕日韩二区| 在线观看www视频免费| a 毛片基地| 亚洲美女搞黄在线观看| 日本91视频免费播放| 久久人人97超碰香蕉20202| av在线老鸭窝| 伊人久久国产一区二区| 精品一区二区三卡| 在线观看一区二区三区激情| kizo精华| 岛国毛片在线播放| 成人免费观看视频高清| 久久99一区二区三区| 波多野结衣一区麻豆| 超色免费av| 十分钟在线观看高清视频www| 日日撸夜夜添| 国产精品人妻久久久影院| 国产一区二区在线观看av| 日韩大片免费观看网站| 国产成人av激情在线播放| 丝袜美足系列| 久久久久精品性色| 如何舔出高潮| 麻豆乱淫一区二区| 欧美 日韩 精品 国产| 美女午夜性视频免费| 国产淫语在线视频| 80岁老熟妇乱子伦牲交| 丝袜美腿诱惑在线| 天天操日日干夜夜撸| 一级,二级,三级黄色视频| 国产一区二区三区av在线| 日本色播在线视频| 国产成人免费观看mmmm| www.精华液| 久久人人爽av亚洲精品天堂| 在线观看免费高清a一片| 人妻人人澡人人爽人人| 99久国产av精品国产电影| 精品少妇一区二区三区视频日本电影 | 久久久精品94久久精品| 亚洲精品国产一区二区精华液| 免费观看性生交大片5| 最近手机中文字幕大全| 一二三四在线观看免费中文在| 亚洲精品国产区一区二| 久久久久久免费高清国产稀缺| 日本av手机在线免费观看| 人人妻人人澡人人看| 亚洲色图 男人天堂 中文字幕| 看非洲黑人一级黄片| 中文字幕色久视频| 日本爱情动作片www.在线观看| 午夜福利视频精品| 在线 av 中文字幕| 天天躁夜夜躁狠狠躁躁| 欧美97在线视频| 国产伦理片在线播放av一区| 亚洲av电影在线进入| 国产有黄有色有爽视频| 欧美亚洲 丝袜 人妻 在线| 男女边吃奶边做爰视频| svipshipincom国产片| 亚洲国产欧美网| 国产无遮挡羞羞视频在线观看| 亚洲精品第二区| 男女午夜视频在线观看| 久久精品aⅴ一区二区三区四区| 18禁国产床啪视频网站| 国产成人精品福利久久| 永久免费av网站大全| 国产精品国产三级专区第一集| av又黄又爽大尺度在线免费看| 国产成人免费无遮挡视频| 亚洲欧美中文字幕日韩二区| 妹子高潮喷水视频| 少妇精品久久久久久久| 18禁国产床啪视频网站| 精品国产露脸久久av麻豆| 国产国语露脸激情在线看| 国产片内射在线| 日日摸夜夜添夜夜爱| 狂野欧美激情性bbbbbb| 亚洲精品国产区一区二| 日本91视频免费播放| 赤兔流量卡办理| 久久精品人人爽人人爽视色| 一级片免费观看大全| 久久精品久久久久久噜噜老黄| 亚洲一卡2卡3卡4卡5卡精品中文| 69精品国产乱码久久久| 少妇人妻 视频| 看免费av毛片| 日韩一区二区三区影片| 丁香六月天网| av视频免费观看在线观看| 国产免费现黄频在线看| 中文天堂在线官网| xxx大片免费视频| 卡戴珊不雅视频在线播放| 国语对白做爰xxxⅹ性视频网站| 久久久久久久国产电影| 亚洲男人天堂网一区| 黄色一级大片看看| 国产伦人伦偷精品视频| 高清黄色对白视频在线免费看| 成人国产麻豆网| 久久ye,这里只有精品| 亚洲欧美清纯卡通| 精品人妻一区二区三区麻豆| 欧美人与善性xxx| 大话2 男鬼变身卡| 国产麻豆69| 中文字幕最新亚洲高清| 国产精品嫩草影院av在线观看| 18禁观看日本| avwww免费| 国产有黄有色有爽视频| 在线观看免费日韩欧美大片| 日韩大片免费观看网站| av国产精品久久久久影院| 在线免费观看不下载黄p国产| 国产日韩欧美在线精品| 女性生殖器流出的白浆| 久久人妻熟女aⅴ| 哪个播放器可以免费观看大片| 最黄视频免费看| 校园人妻丝袜中文字幕| 亚洲熟女毛片儿| a级片在线免费高清观看视频| 亚洲欧美一区二区三区黑人| 日日撸夜夜添| netflix在线观看网站| 一级a爱视频在线免费观看| 日韩精品免费视频一区二区三区| 午夜福利网站1000一区二区三区| 操出白浆在线播放| 亚洲 欧美一区二区三区| 亚洲欧美激情在线| kizo精华| 国产黄色免费在线视频| 亚洲综合色网址| 国产免费一区二区三区四区乱码| 久久久精品区二区三区| 嫩草影视91久久| 国产精品久久久人人做人人爽| 亚洲中文av在线| 亚洲一码二码三码区别大吗| 亚洲av男天堂| 中文字幕高清在线视频| 国产精品蜜桃在线观看| 国产成人一区二区在线| 男女边摸边吃奶| 国产高清国产精品国产三级| 国产野战对白在线观看| 国产一区二区三区av在线| 毛片一级片免费看久久久久| 亚洲精华国产精华液的使用体验| 中国三级夫妇交换| 如何舔出高潮| 色精品久久人妻99蜜桃| 亚洲综合精品二区| 午夜免费男女啪啪视频观看| 性少妇av在线| 精品国产超薄肉色丝袜足j| 大陆偷拍与自拍| 国产精品 欧美亚洲| 中文字幕亚洲精品专区| 亚洲国产av新网站| 热re99久久精品国产66热6| 欧美日韩综合久久久久久| 国产精品 欧美亚洲| 国产精品蜜桃在线观看| 免费观看人在逋| 亚洲国产精品一区三区| 国产精品麻豆人妻色哟哟久久| 亚洲精品久久久久久婷婷小说| 卡戴珊不雅视频在线播放| 久久精品熟女亚洲av麻豆精品| 国产精品成人在线| 老司机在亚洲福利影院| 成人亚洲精品一区在线观看| 久久ye,这里只有精品| 亚洲伊人色综图| 亚洲一码二码三码区别大吗| 毛片一级片免费看久久久久| 久久亚洲国产成人精品v| 精品一区二区免费观看| 国产一级毛片在线| 视频在线观看一区二区三区| 午夜福利影视在线免费观看| 欧美黄色片欧美黄色片| 熟女少妇亚洲综合色aaa.| 欧美国产精品va在线观看不卡| 亚洲精品国产区一区二| 欧美黑人欧美精品刺激| 女性生殖器流出的白浆| 哪个播放器可以免费观看大片| 久久 成人 亚洲| 亚洲精品久久成人aⅴ小说| 国产欧美日韩综合在线一区二区| 久热爱精品视频在线9| 久久精品人人爽人人爽视色| 丰满乱子伦码专区| 国产日韩欧美在线精品| 精品一区二区三区四区五区乱码 | 极品人妻少妇av视频| 韩国av在线不卡| 丝袜美腿诱惑在线| 91精品国产国语对白视频| 亚洲精品久久成人aⅴ小说| 国产极品粉嫩免费观看在线| 亚洲欧美激情在线| 交换朋友夫妻互换小说| 一级毛片我不卡| 高清视频免费观看一区二区| 夫妻午夜视频| 丝袜喷水一区| 精品国产一区二区久久| 亚洲精品国产区一区二| 亚洲av国产av综合av卡| 曰老女人黄片| 中文字幕人妻丝袜制服| 国产1区2区3区精品| 欧美变态另类bdsm刘玥| 亚洲av福利一区| 在线亚洲精品国产二区图片欧美| av在线观看视频网站免费| 婷婷色综合www| 99国产精品免费福利视频| 国产男人的电影天堂91| 精品亚洲成a人片在线观看| 欧美精品一区二区免费开放| 成年人午夜在线观看视频| 国产在线免费精品| 青青草视频在线视频观看| av在线app专区| 亚洲色图 男人天堂 中文字幕| 一边摸一边抽搐一进一出视频| 亚洲国产日韩一区二区| 丰满迷人的少妇在线观看| 国产成人系列免费观看| 一区二区av电影网| 女人被躁到高潮嗷嗷叫费观| 国产精品成人在线| 亚洲精品第二区| 免费女性裸体啪啪无遮挡网站| 日韩成人av中文字幕在线观看| 日韩精品免费视频一区二区三区| 亚洲av男天堂| 亚洲av成人不卡在线观看播放网 | 最近最新中文字幕大全免费视频 | 韩国精品一区二区三区| 91aial.com中文字幕在线观看| 中文乱码字字幕精品一区二区三区| 午夜福利免费观看在线| 久久99热这里只频精品6学生| 午夜福利乱码中文字幕| 一级片'在线观看视频| 人人妻,人人澡人人爽秒播 | 成人三级做爰电影| 午夜福利视频在线观看免费| 日韩一卡2卡3卡4卡2021年| 亚洲精品在线美女| 男女边摸边吃奶| 免费在线观看视频国产中文字幕亚洲 | 综合色丁香网| 久久久久人妻精品一区果冻| 黄色视频在线播放观看不卡| 十八禁网站网址无遮挡| 国产国语露脸激情在线看| 大片免费播放器 马上看| 无遮挡黄片免费观看| 亚洲av日韩在线播放| 免费久久久久久久精品成人欧美视频| av女优亚洲男人天堂| 国产午夜精品一二区理论片| 青草久久国产| 一二三四中文在线观看免费高清| 久久人人97超碰香蕉20202| 国产欧美亚洲国产| 国产欧美日韩综合在线一区二区| 欧美日韩国产mv在线观看视频| 免费少妇av软件| 色精品久久人妻99蜜桃| 日本爱情动作片www.在线观看| 亚洲av在线观看美女高潮| 午夜av观看不卡| 免费黄色在线免费观看| 久久免费观看电影| 亚洲欧美精品综合一区二区三区| 美女大奶头黄色视频| 亚洲精品国产av成人精品| 久久精品人人爽人人爽视色| 天美传媒精品一区二区| 精品人妻熟女毛片av久久网站| 国产视频首页在线观看| av视频免费观看在线观看| av网站在线播放免费| 国产亚洲精品第一综合不卡| e午夜精品久久久久久久| 久久久久久人妻| 日本av免费视频播放| 精品少妇一区二区三区视频日本电影 | 国产精品av久久久久免费| 少妇猛男粗大的猛烈进出视频| 欧美激情 高清一区二区三区| 亚洲欧洲日产国产| 精品人妻在线不人妻| 成人三级做爰电影| avwww免费| 精品午夜福利在线看| 男女午夜视频在线观看| 中国三级夫妇交换| 国产一区有黄有色的免费视频| 精品久久久久久电影网| 人人妻,人人澡人人爽秒播 | svipshipincom国产片| 国产精品久久久av美女十八| 自拍欧美九色日韩亚洲蝌蚪91| 亚洲成人免费av在线播放| 日本爱情动作片www.在线观看| 97人妻天天添夜夜摸| 国精品久久久久久国模美| 女人被躁到高潮嗷嗷叫费观| 亚洲欧美精品自产自拍| 久久影院123| 国产精品久久久久久精品古装| 亚洲成人av在线免费| av天堂久久9| 久久久久久人妻| 1024视频免费在线观看| 国产激情久久老熟女| 国产乱来视频区| 在线精品无人区一区二区三| 桃花免费在线播放| 无限看片的www在线观看| 少妇被粗大的猛进出69影院| 观看av在线不卡| 亚洲精品国产av成人精品| 亚洲视频免费观看视频| 久久这里只有精品19| 午夜激情av网站| 欧美黄色片欧美黄色片| 日本wwww免费看| 九色亚洲精品在线播放| 国产在线视频一区二区| 亚洲一级一片aⅴ在线观看| 亚洲三区欧美一区| 国产精品偷伦视频观看了| 国产精品99久久99久久久不卡 | 又黄又粗又硬又大视频| 国产福利在线免费观看视频| av女优亚洲男人天堂| 国产女主播在线喷水免费视频网站| 色婷婷久久久亚洲欧美| 伊人亚洲综合成人网| 777久久人妻少妇嫩草av网站| 纵有疾风起免费观看全集完整版| 一级a爱视频在线免费观看| 日韩av在线免费看完整版不卡| 午夜激情av网站| a级毛片在线看网站| 免费在线观看视频国产中文字幕亚洲 | 国产黄色视频一区二区在线观看| 天堂中文最新版在线下载| 久久精品亚洲熟妇少妇任你| 伊人亚洲综合成人网| 九色亚洲精品在线播放| 只有这里有精品99| 欧美日韩亚洲高清精品| 亚洲伊人久久精品综合| 国产精品麻豆人妻色哟哟久久| 狂野欧美激情性xxxx| 日韩视频在线欧美| 久久久久精品国产欧美久久久 | 久久人人爽人人片av| 亚洲精品日韩在线中文字幕| 免费看av在线观看网站| 视频区图区小说| 老熟女久久久| 大码成人一级视频| 一区福利在线观看| 两个人看的免费小视频| 国产成人精品福利久久| 欧美日韩国产mv在线观看视频| 你懂的网址亚洲精品在线观看| 一本大道久久a久久精品| 亚洲av日韩在线播放| 欧美日韩av久久| 亚洲精品日韩在线中文字幕| 国产精品久久久久久精品古装| 中文字幕人妻熟女乱码| 男女午夜视频在线观看| 一级片'在线观看视频| 日韩欧美一区视频在线观看| 黑人欧美特级aaaaaa片| 女人久久www免费人成看片| netflix在线观看网站| 免费观看人在逋| 久久久久网色| 免费高清在线观看视频在线观看| 女的被弄到高潮叫床怎么办| 性少妇av在线| 青春草视频在线免费观看| 夫妻午夜视频| 91精品三级在线观看| 少妇猛男粗大的猛烈进出视频| 99精国产麻豆久久婷婷| 国产精品久久久久久精品电影小说| 日韩av在线免费看完整版不卡| 久久久精品区二区三区| 日韩不卡一区二区三区视频在线| 波多野结衣av一区二区av| 亚洲av福利一区| 赤兔流量卡办理| 91老司机精品| 成人免费观看视频高清| 久久精品亚洲熟妇少妇任你| 丝袜人妻中文字幕| 三上悠亚av全集在线观看| 亚洲国产av影院在线观看| 国产精品久久久av美女十八| 国产视频首页在线观看| 19禁男女啪啪无遮挡网站| 9191精品国产免费久久| 在线看a的网站| 一级黄片播放器| 成人黄色视频免费在线看| 日韩制服丝袜自拍偷拍| 亚洲av福利一区| 赤兔流量卡办理| 精品少妇久久久久久888优播| 麻豆乱淫一区二区| 国产一区二区三区av在线| 男人舔女人的私密视频| 一本色道久久久久久精品综合| 美女中出高潮动态图| 久久久久人妻精品一区果冻| 国产欧美亚洲国产| 国产在视频线精品| 亚洲精品aⅴ在线观看| 麻豆精品久久久久久蜜桃| 少妇被粗大猛烈的视频| 日韩制服丝袜自拍偷拍| 大码成人一级视频| 亚洲精品一二三| 啦啦啦视频在线资源免费观看| 美女脱内裤让男人舔精品视频| 成年人午夜在线观看视频| 欧美亚洲 丝袜 人妻 在线| 纯流量卡能插随身wifi吗| 国产成人免费观看mmmm| 精品一品国产午夜福利视频| 人人澡人人妻人| 午夜福利在线免费观看网站| 男人爽女人下面视频在线观看| 亚洲精品久久久久久婷婷小说| 午夜精品国产一区二区电影| av又黄又爽大尺度在线免费看| 国产又色又爽无遮挡免| 亚洲 欧美一区二区三区| 叶爱在线成人免费视频播放| 黄色视频在线播放观看不卡| 成人黄色视频免费在线看| 精品人妻一区二区三区麻豆| 男女边吃奶边做爰视频| 日韩,欧美,国产一区二区三区| 咕卡用的链子| 日韩一本色道免费dvd| 欧美亚洲日本最大视频资源| 极品人妻少妇av视频| 久久精品熟女亚洲av麻豆精品| 久久久久久久久免费视频了| 大陆偷拍与自拍| 国产精品99久久99久久久不卡 | 国产乱人偷精品视频| 亚洲国产欧美在线一区| 深夜精品福利| av电影中文网址| 母亲3免费完整高清在线观看| 美女视频免费永久观看网站| 一本—道久久a久久精品蜜桃钙片| 少妇被粗大的猛进出69影院| 一二三四中文在线观看免费高清| 久久99一区二区三区| 免费看av在线观看网站| 成人国产av品久久久| 狂野欧美激情性xxxx| 国产又色又爽无遮挡免| 亚洲成人手机| 美女大奶头黄色视频| 飞空精品影院首页| 成年女人毛片免费观看观看9 | 欧美日韩综合久久久久久| 777久久人妻少妇嫩草av网站| 免费观看a级毛片全部| 午夜福利视频在线观看免费| 成人漫画全彩无遮挡| 亚洲成人av在线免费| 一级a爱视频在线免费观看| 99香蕉大伊视频| 巨乳人妻的诱惑在线观看| 91老司机精品| 国产av精品麻豆| 国产黄色视频一区二区在线观看| 日韩精品有码人妻一区| 久久婷婷青草| 少妇猛男粗大的猛烈进出视频| 天天操日日干夜夜撸| 久久久久久久大尺度免费视频| 精品久久蜜臀av无| 精品人妻熟女毛片av久久网站| 欧美 亚洲 国产 日韩一| 国产黄频视频在线观看| 91成人精品电影| 久久久久人妻精品一区果冻| 成人亚洲欧美一区二区av| 精品少妇一区二区三区视频日本电影 | 在线观看国产h片| 黑丝袜美女国产一区| 麻豆乱淫一区二区| e午夜精品久久久久久久| 热99久久久久精品小说推荐| 亚洲国产最新在线播放| 国产精品偷伦视频观看了| 无遮挡黄片免费观看| 黑人欧美特级aaaaaa片| 精品免费久久久久久久清纯 | 精品人妻熟女毛片av久久网站| 日本欧美国产在线视频| 亚洲一卡2卡3卡4卡5卡精品中文| 国产淫语在线视频| 啦啦啦在线免费观看视频4| 中文天堂在线官网| 国产欧美亚洲国产| 丝袜美足系列| 美女脱内裤让男人舔精品视频| 国产一区亚洲一区在线观看| 咕卡用的链子| 亚洲av电影在线进入| 色婷婷久久久亚洲欧美| 亚洲人成电影观看| 国产一级毛片在线| 日本wwww免费看| 亚洲第一av免费看| 如日韩欧美国产精品一区二区三区| 97精品久久久久久久久久精品| 青草久久国产| 欧美成人精品欧美一级黄| 免费人妻精品一区二区三区视频| 中文字幕亚洲精品专区| 中国三级夫妇交换| 国产色婷婷99| 777米奇影视久久| 亚洲成人国产一区在线观看 | 亚洲专区中文字幕在线 | 麻豆精品久久久久久蜜桃| 国产精品一国产av| 国产精品久久久久久久久免| 少妇人妻 视频| 丝袜喷水一区| 国产亚洲午夜精品一区二区久久| 80岁老熟妇乱子伦牲交| 观看美女的网站| 亚洲av日韩精品久久久久久密 | 搡老乐熟女国产| 19禁男女啪啪无遮挡网站| 亚洲精品国产av成人精品| 欧美精品人与动牲交sv欧美| 性色av一级| 亚洲伊人久久精品综合| 青春草视频在线免费观看| 亚洲国产精品一区三区| 五月开心婷婷网| 亚洲婷婷狠狠爱综合网| 天堂中文最新版在线下载| 国产精品免费视频内射| 男人操女人黄网站| 天天躁夜夜躁狠狠躁躁| 男女高潮啪啪啪动态图| 国产熟女欧美一区二区| 欧美 日韩 精品 国产| 国产片内射在线| 午夜福利免费观看在线| 热re99久久精品国产66热6| 国产精品免费大片| 亚洲av电影在线进入| 蜜桃国产av成人99| 又粗又硬又长又爽又黄的视频| 久久女婷五月综合色啪小说| 免费看av在线观看网站| 国产精品 欧美亚洲| 欧美激情高清一区二区三区 | 中国三级夫妇交换| 欧美激情极品国产一区二区三区| 亚洲欧美精品综合一区二区三区| 美女主播在线视频|