• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Analysis of the Caratheodory’s Theorem on Dynamical System Trajectories Under Numerical Uncertainty

    2018-07-31 09:49:48PavelOsinenkoGrigoryDevadzeandStefanStreifMemberIEEE
    IEEE/CAA Journal of Automatica Sinica 2018年4期

    Pavel Osinenko,Grigory Devadze,and Stefan Streif,Member,IEEE

    Abstract—The current work proposes a new and constructive proof for the Caratheodory’s theorem on existence and uniqueness of trajectories of dynamical systems.The key concern is the numerical uncertainty,i.e.,the discrepancy between mathematical proofs,algorithms,and their implementations,which may affect the correct functioning of a control system.Due to growing demands on security and compliance with specifications,correctness of the control system functioning is becoming ever more important.Since in both dynamical systems and many control design approaches,one of the central notions is the system trajectory,it is important to address existence and uniqueness of system trajectories in a way which incorporates numerical uncertainty.Constructive analysis is a particular approach to formalizing numerical uncertainty and is used as the basis of the current work.The major difficulties of guaranteeing existence and uniqueness of system trajectories arise in the case of systems and controllers which possess discontinuities in time,since classical solutions to initial value problems do not exist.This issue is addressed in Caratheodory’s theorem.A particular constructive variant of the theorem is proven which covers a large class of problems found in practice.

    I.INTRODUCTION

    M ANY analyses of controllers and associated proofs rely on existence and uniqueness of system trajectories in continuous time.A large class of control systems possess discontinuities in time which oftentimes complicates the analysis.Particular examples include step response,event-triggered systems and optimal control where time-discontinuous control laws are typical.For some of the recent applications,where the discussed phenomenon arises[1]-[3].Consider,for instance,the problem of optimal control of a vibrating spring with an attached unit mass described by the differential equation

    where x is the vertical displacement and u is an external applied force.By Pontryagin’s maximum principle[4],it can be shown that an optimal force control,that brings the spring to a rest in minimum time,has the form

    for a certain parameter δ.This is a time-discontinuous signal with switching each π units of time.

    Consider now the problem of maximizing the number of queens in an ant colony.The dynamics can be described as follows:

    where w,q are the number of workers and queens respectively,a,b>0 are parameters,and u describes the proportion of the workers’effort between producing more workers or queens.It can be shown that an optimal strategy has the form

    In such examples,the right-hand side of the system dynamics becomes discontinuous in time and classical system trajectories do not exist(they may,however,exist in the so called extended sense,or Caratheodory sense,which will be discussed further).In practice,the optimal controller u?is usually implemented in a digital computational device which has a finite precision and computation speed.It may also happen that u?needs to be discontinuous in time,e.g.needs to switch between some fixed values,to achieve optimality.In a computational device,such switchings in general may not take place arbitrarily fast,i.e.,be arbitrarily close to each other.Furthermore,the switching times are in general described by some real numbers.In a computational device,they are usually approximated by rational numbers.Such a discrepancy between the idealistic u?and its representation in a computational device may be indicated as numerical uncertainty.The current work is motivated by the presence of numerical uncertainty in implementations and to investigate under which conditions,Caratheodory solutions may be effectively constructed,i.e.,with discontinuities in time and up to any prescribed precision.The proof of the major result in the current work entails a constructive methodology,which,given a dynamical system with time discontinuities represented by rational numbers(or,equivalently,time discontinuities with a given minimal gap),yields a Caratheodory solution,which is also unique.

    The classical theorem on the existence of solutions in the extended sense is due to Caratheodory[5]-[7].Recent studies in this field include topics such as well-posedness of Caratheodory solutions for bimodal piecewise affine systems[8],existence and uniqueness results for monotone nonincreasing right-hand sides[9],and extended Caratheodory solutions for hybrid systems[10].Further,when the righthand side of the system dynamics is discontinuous in the state variable,the situation becomes more complicated,than only with time discontinuities,and such notions as Filippov solutions may come into place[11],[12].The foundation of such solutions extensively utilizes the theory of differential inclusions which are also used in partial differential equations[13].Particular applications range from discontinuous stabilization[14],sliding-mode control[15],[16]and optimal control[17].An overview of Filippov and other generalized solutions may be found in[18].The proofs of these classical results rely on compactness arguments,such as Arzela-Ascoli theorem[19],and certain fixed-point theorems,such as Schauder fixed-point theorem[20]and Kakutani fixed-point theorem[21],which are,unfortunately,not constructive and do not,generally,provide explicit computational procedures[22].The current work suggests to address the existence and uniqueness of the trajectories of discontinuous systems in a constructive framework.Currently,only the case of time discontinuities is covered.However,the result can be extended onto the case of discontinuous feedback control provided that the controller implementation is considered in the sample-andhold manner(see details in Section IV).

    The main contribution of this work is thus a constructive theorem on existence and uniqueness of system trajectories in the extended sense.Schwichtenberg[23],and Ye[24]addressed the case of initial value problems where the righthand side of the differential equation satisfies the Lipschitz condition(the corresponding classical theorem is originally due to Picard and Lindelof,and the corresponding description may be found in[5]).The new theorem derived in this work is a constructive counterpart of the Caratheodory’s existence and uniqueness theorem.Constructive analysis[25],which is done in intuitionistic logic[26],offers a suitable framework for the purposes of the current work.A related example application of constructive analysis to control theory was recently provided for the Lyapunov stability theory[27].

    The remainder of the work is structured as follows:Section II is concerned with the key aspects of constructive analysis needed for the constructive proof of the theorem which is given in Section III.

    II.PRELIMINARIES

    In this section,some key notions and theorems of constructive analysis,needed for the current work,are discussed.This section mostly follows[24]since it addresses differential equations and measure theory together which will be required in the next section.First,a function f:R→R is a pair consisting of a map computing rational approximations to f(x)for any x,and a map ω :Q>0×Q×Q>0→ Q,called modulus of continuity satisfying the formula:

    A modulus of continuity is an important certificate that every function in constructive analysis must have inside its definition.It allows computing bounds on the change of the argument that leads to a change of the function values within a prescribed bound.A function that possesses a modulus of continuity is clearly uniformly continuous.In case of?x,y.|f(x)-f(y)|≤ L|x-y|,the function is called Lipschitz continuous.Clearly,Lipschitz continuous functions are also uniformly continuous.By default,constructive analysis is only concerned with continuous functions which are provided with continuity moduli and there is no way to define a discontinuous function directly.However,an analog of classical discontinuous functions can be defined within constructive measure theory.Further details will be given in this section.But first,the derivative and Riemann integral are defined as in the classical case[24,Chapter 3].Basic results from classical calculus are available constructively with minor modifications.In particular,Schwichtenberg[23]and Ye[24]proved Picard-Lindelf Theorem on existence and uniqueness of solutions to initial value problems,where the right-hand side is continuous,constructively.Now,integrable and measurable functions are considered.They are required to address the Caratheodory theorem which is classically stated as follows[5]-[7]:

    Theorem 1:Let f(x,t)be a function on the rectangle D:[x0-b,x0+b]×[t0,t0+a];continuous in x and measurable in t.Suppose that there exists an integrable function F:[t0,a]→ R such that?(x,t)∈ D|f(x,t)|≤ F(t).Then,there exists an absolutely continuous function ? on the interval I=[t0,t0+α]such that ?(t0)=x0and=f(?(t),t)for almost all t∈I.That is,? is a solution to the initial value problem x(t0)=x0,=f(t,x(t))in the extended sense.

    Here,absolutely continuous means that for any ε>0,there exists δ> 0 such that for any finite sequence of disjoint intervals{[tk,τk]}kon I with a total length not greater than δ,the function values at the endpoints satisfy

    Now,constructive integrable functions are introduced.An integrable function is a pair({fn}n,f)such that each fn:R→R has a compact support,{fn}nhas the property that

    and

    on the set

    called domain of f.It is said thatconverges pointwise to f on dom(f).The sequence{fn}nis called a representation of f and is invoked whenever required,but usually omitted.The Lebesgue integral is in turn defined as

    Basic properties of the Lebesgue integral can be proven constructively.Integrable functions allow introducing characteristic functions of finite intervals.For example,the characteristic function χ[0,1]of the unit interval is constructed via g0(t)≡0,g1(t)≡0 and,for n>1,

    by the representation fn:=gn+1-gn.Due to undecidability of equality on R,the set A:=(-∞,0]∪(0,1)∪[1,∞)does not coincide with R constructively.This reflects the classical idea that the Lebesgue integral is not concerned with the values of a function on sets of measure zero.It can be shown that{fn}nconverges to χ[0,1]pointwise on A.

    Further,measurable functions are introduced(for details,please refer to[28,Chapter.6]or[24,Chapter.6]).First,a measure of a finite interval I=[a,b]is defined asμ(I)=|a-b|.A generalized interval J is a formal union of a sequence of finite intervals{∪nIn}n,possibly overlapping.Its measure is defined asμ(J)=Pnμ(In)whenever it converges.In this case,J is called finite.A function f:R→R is called measurable if for any ε> 0 and any finite interval I,there exists a generalized interval J withμ(J)≤ ε and a continuous function g with a compact support such that|f-g|≤ ε on IJ.Clearly,all functions of the type

    where each fjis continuous and ?jτj> tj,are measurable.Integrable functions are also measurable.

    Now,consider convergence of measurable functions.The key type of convergence used in the next section is convergence almost uniformly:a sequence{fn}nof measurable functions converges to a measurable function f almost uniformly if for any finite interval I and ε>0,there exists a generalized interval J withμ(J)≤ ε such that{fn}nconverges to f uniformly on IJ.Here,the ordinary uniform convergence implies that for any ε > 0,there exists N such that?t?n ≥ N|fn(t)-f|≤ ε on the respective set.Further,a sequence{fn}nof measurable functions is called Cauchy almost everywhere if for any finite interval I and ε> 0,there exists N and a generalized interval J withμ(J)≤ ε such that?m,n ≥ N|fn(t)-fm(t)|≤ ε on IJ.An important result of constructive measure theory states that an almost everywhere Cauchy sequence converges to a measurable function:

    Lemma 1:[24,pp.165]For any almost uniformly Cauchy sequence of measurable functions{fn}nthere exists a measurable function f such that{fn}nconverges to f almost uniformly,and also pointwise on the respective domain.

    In the next section,a constructive variant of Theorem 1 is addressed.

    III.RESULTS AND DISCUSSION

    The goal of this section is to obtain a constructive counterpart of Theorem 1 which addresses numerical uncertainty.The following theorem is suggested as a particular substitute and uses assumptions which can be justified from the practical standpoint.That is,the theorem requires that the right-hand side of the differential equation have a finite number of separable discontinuities.It is easy to show that in case of indistinguishable discontinuities,the proof would imply decidability of equality over real numbers which is not true constructively.The details are given below.

    Theorem 2:Consider the initial value problem

    on the rectangle D=[x0- x,x0+ x]×[0,T].Suppose that

    such that?j.τj∈ Q and?L > 0?(x1,t),(x2,t)∈ D|fj(x1,t)-fj(x2,t)|≤L|x1-x2|.Further,assume?F>0|f(x,t)|≤F on dom(f)=[x0-,x0+]×([0,T]{τj}j).Then,there exists a unique solution in the extended sense on a subinterval of[0,T]which depends on the initial condition uniformly continuously.

    Proof:Denote domt(f):=[0,T]{τj}j.The condition τj∈ Q is needed precisely to isolate discontinuities.LetAssume that ωfis a common modulus of continuity for fj,j∈{1,...,K}on D.Consider partitions PNof[0,α]into N subintervals of length less than δ=α such that

    1)ti:=α,i=0,...,N;

    2)?i=1,...,N,?j=1,...,K+1,ti/= τj;

    3)each subinterval may contain at most one τj,j=1,...,K+1.

    Condition 3 is not inevitable;it is only used to simplify the proof as will be shown below.Fix some arbitrary n∈N.The number N is chosen so that the conditions 1 and 2 are satisfied and

    Inequality(4)is used in(5)to guarantee that(6),characterizing the precision of the solution,holds.That is,the constructed solution will satisfy the differential equation up to the precision ofNow,construct a function ?non[0,α]∩ domt(f)as follows:

    It follows that

    whence(t,?n(t))is admissible,i.e.,(t,?n(t))is within D.Now,let INbe the generalized intervalsuch that each[tσ(i),tσ(i)+1]contains exactly one τj,j=1,...,K+1.Let IN:=[0,α]JN.It follows that the one-sided derivatives satisfy

    Notice that JNsatisfies

    Further,for each t∈[ti,ti+1]? IN,it follows that

    from which it follows that

    But

    Furthermore,for each t∈[ti,ti+1]? JN,the condition

    holds since f is integrable on JN.Therefore,for any t∈IN,

    Let ?mand the associated intervals IM,JMbe another approximate solution.Supposeand JM?JNwhich can be satisfied by an appropriate choice of partition points.Therefore,for t∈IN,

    Let

    and

    It follows that:

    Therefore,

    Further,

    since,as from the integral above

    Since ti→ τj,ti+1→ τjand f(?(ti),ti)(τj-ti)→ 0,it follows that ? can be defined on the whole[0,α][28,Lemma 3.7].By construction,? is absolutely continuous.Further,˙?(t)exists on[0,α]{τ1,...,τK+1}and is equal to f(?(t),t).Finally,the solution is unique since

    At this point,the condition holds that for any ε> 0,there is p∈N and a corresponding generalized interval JN(p)withμ(JN(p))≤ε such that?m,n≥p|?m- ?n|≤ ε on[0,α]JN(p)by an appropriate choice of N(p).It follows that{?n}nis Cauchy almost everywhere.Therefore,by Lemma 1,there exists a measurable function ? which is the limit of{?n}n.It is obvious that as n → ∞,[0,α]JN(n)→ [0,α]which means that ? is defined on[0,α]almost everywhere.Moreover,for any subinterval[tσ(i),tσ(i)+1],containing some τj,it follows that

    where ψ(t)is a candidate solution,i.e.,

    Therefore

    That means that{?n}nconverges to ψ almost uniformly.It also follows that{?n}nconverges to ψ pointwise on[0,α]{τ1,...,τK+1}.

    Remark 1:It follows that the Picard-iteration

    is constructively well-behaved for the presented special case of f.The generalization for systems of differential equations can be done similarly to[24,pp.107].

    Remark 2:Uniform continuity of the solutions depending on the initial condition can be shown as in the standard case[24,pp.106].

    Remark 3:The assumption that the time discontinuities be rational numbers can be relaxed if there is a minimal gap between them which is known beforehand.

    Remark 4:Theorem 2,unlike Theorem 1,requires the time discontinuities τjto be either rational numbers or to have a distinguished gap,known beforehand.For each predefined natural number n,the proof determines another natural number N according to(4),and constructs a function which satisfies the differential equation up to the precision 1/n as stated in equation(6).The key difference of the statements thus lies in the special representation of the right-hand side(see equation 3),instead of simply requiring that f be measurable in t.This is an important aspect that allows the constructive theory of integrable and measurable functions,briefly discussed in Section II,to be used to yield a unique solution.

    One may see how a failure to meet the assumption in the last remark leads to malfunctioning of the algorithm in Theorem 2.Consider,for example,sliding-mode control where an ideal trajectory is supposed to come onto a sliding surface,but,in implementation,a phenomenon called “chattering”occurs when the numerically computed trajectory jumps back and forth around the sliding surface.This chattering may well depend on the chosen sample time.It can be seen how such a case would become problematic in the method of proof in Theorem 2.Classically,one considers other types of solutions such as,for example,in the sense of Filippov[29].Constructive treatment of such cases might be a challenging task.However,there exist notions of trajectories of differential equations with discontinuous right-hand side which are based on the Caratheodory’s solutions,such as sample-and-hold[18].Theorem 2 is considered as a particular constructive counterpart of Caratheodory’s Theorem 1.It covers a large class of functions in the right-hand side of initial value problems which have a finite number of separable discontinuities.It can be seen that the method used in the proof is not constructively applicable to the case if discontinuities are arbitrary real numbers since it would lead to decidability of equality over reals.However,it is suggested that all practical problems satisfy the conditions stated.The result can also be generalized to the case where f has locally finite number of separable discontinuities.

    IV.EXAMPLES

    In this section,some types of dynamical systems for which Theorem 2 applies are discussed.First,the simplest case is the one in which the right-hand side of(2)possesses only one discontinuity in time.For example,consider the problem of optimal consumption in simple economy.The economy can be given by the following dynamics:

    where x(t)describes the output of the economy and u(t)is the fraction of output reinvested at time t respectively.The goal is to maximize the total consumption

    According to the Pontryagin’s Maximum Principle,the optimal control equals

    where t?=T-1 is the optimal switching time.Since u possesses only one time discontinuity at t?,the conditions of Theorem 2 are satisfied.The next category of control systems where Theorem 2 may be applied arises in some scheduling problems[30].For example,consider a problem of multiprocessor task scheduling in the following form:

    where P(sk)is the instantaneous power consumption of executing a task at speed sk,xiis the remaining estimated minimum execution time of the corresponding task i,uijk(t)indicates that the processor j executes the task i at the speed skat time t and τijk,lijk,τijk,lijk+1is the task beginning and deadline,respectively,which must last a time amount d,minimal time slot duration,at least.Each event τijk,lijkis separated from another event τi0j0k0,li0j0k0by d as well.The scheduling dynamics are described by the state variables xiand controls uijk.It follows that for each state variable xi,the right-hand side-Pj,kskuijkhas the form(1)precisely due to the presence of the minimal time slots d.Theorem 2 addresses the case of dynamical systems whose right-hand side is discontinuous in time and continuous in the state variable.As discussed in the introduction,further generalized notions of system trajectories have to be considered in the case where the right-hand side is also discontinuous in the state variable,such as Filippov solutions.However,the problem of state discontinuities may be overcome by a special technique called“sample-and-hold”[31].This is a method of system analysis where the control variable is given by a feedback law which may itself by discontinuous in time,but is being “sampled”at certain time moments in the zero-and-hold manner.Such a setup is common in case when the controller is implemented in a digital form.This technique can be summarized as follows.Consider a partition of the interval[0,T]as a strictly increasing sequence π ={0= τ0< τ1< ···< τN=T}.Given a feedback law κ and a partition π of[0,T],a sampleand-hold π-trajectory of a control system˙x=f(x,κ(x,t))is defined as the solution in the extended sense of the following initial value problem:

    In this case,the right-hand side takes the form:

    where fi(x,t) ≡ f(x(t),κ(x(τi),τi).If f satisfies the Lipschitz condition in the sense ?u?x,y‖f(x,u)-f(y,u)‖ ≤L‖x-y‖ and f(x,κ(x,t))is bounded on dom(f),Theorem 2 applies if there exists a minimal gap between each subsequent τiand τi+1.Finally,Theorem 2 can be applied to some switched systems[32].Consider the following simple example:

    Here,a piecewise constant function σ :[0,∞) → S is the so-called switching signal where S={1,2,...,m}is a finite index set.If each Aj,j∈S is a Hurwitz matrix,the above switched system is asymptotically stable provided that there exists a sufficiently large dwell time τd> 0[32].The dwell time τdcharacterizes slow switching,and stability in turn can be proven by the multiple Lyapunov function criterion[32]if?iτi+1- τi≥ τdholds.Since arbitrary fast switching is forbidden in the described scenario,Theorem 2 may be applied.

    V.CONCLUSION AND OUTLOOK

    This works was concerned with analysis of the Caratheodory’s theorem on existence and uniqueness of solutions to discontinuous initial value problems within constructive mathematics.A particular variant of the theorem was formulated and proven that covers a large class of practical problems.One of the future important topics is a constructive framework for other generalized solutions,such as in the Filippov sense.However,even though the case of systems discontinuous in the state variable is not addressed by the Caratheodory’s theorem,if the trajectories are to be considered in the sample-and-hold framework,the new result may be applied.In this regard,it is worthwhile to investigate constructive content of system stability under sample-and-hold control.

    最近的中文字幕免费完整| 插阴视频在线观看视频| 少妇丰满av| 日本黄大片高清| 99久久九九国产精品国产免费| 97超碰精品成人国产| 麻豆av噜噜一区二区三区| 久久午夜亚洲精品久久| 99九九线精品视频在线观看视频| 淫秽高清视频在线观看| 日本免费a在线| 99久久无色码亚洲精品果冻| 色播亚洲综合网| 嫩草影院入口| 国模一区二区三区四区视频| 可以在线观看的亚洲视频| 欧美成人精品欧美一级黄| 别揉我奶头 嗯啊视频| 国产aⅴ精品一区二区三区波| 免费人成在线观看视频色| 天堂av国产一区二区熟女人妻| 黄色日韩在线| 精品人妻视频免费看| 黄片wwwwww| 黄片wwwwww| 亚洲国产精品sss在线观看| 亚洲成人中文字幕在线播放| 看非洲黑人一级黄片| 蜜臀久久99精品久久宅男| 亚洲中文字幕一区二区三区有码在线看| 国产成人一区二区在线| 不卡视频在线观看欧美| 欧美日韩综合久久久久久| .国产精品久久| 91久久精品电影网| 国产午夜精品久久久久久一区二区三区 | 国产精品99久久久久久久久| 婷婷精品国产亚洲av| 亚洲成人久久性| 亚洲美女黄片视频| 国内揄拍国产精品人妻在线| 国产高清视频在线观看网站| 黄色视频,在线免费观看| 亚洲av第一区精品v没综合| 国产视频内射| 一个人看视频在线观看www免费| 人人妻,人人澡人人爽秒播| 精品久久国产蜜桃| 国产麻豆成人av免费视频| 一级毛片aaaaaa免费看小| 亚洲欧美精品自产自拍| 欧美性猛交黑人性爽| 国产精华一区二区三区| 级片在线观看| 国产女主播在线喷水免费视频网站 | 国产在线精品亚洲第一网站| 黄色一级大片看看| 日韩欧美精品v在线| 亚洲最大成人av| 热99re8久久精品国产| 日韩一区二区视频免费看| 两个人的视频大全免费| 亚洲国产欧洲综合997久久,| av女优亚洲男人天堂| 人妻丰满熟妇av一区二区三区| 国产成人精品久久久久久| 国产精品免费一区二区三区在线| 亚洲精品久久国产高清桃花| 大又大粗又爽又黄少妇毛片口| 亚洲中文字幕一区二区三区有码在线看| 国产成年人精品一区二区| 美女cb高潮喷水在线观看| 久久人妻av系列| av天堂中文字幕网| 亚洲自偷自拍三级| 可以在线观看的亚洲视频| 国产激情偷乱视频一区二区| 又粗又爽又猛毛片免费看| 综合色av麻豆| 免费看av在线观看网站| 99久久九九国产精品国产免费| 亚洲欧美成人综合另类久久久 | 亚洲av.av天堂| 日韩高清综合在线| 99精品在免费线老司机午夜| 亚洲精品在线观看二区| 亚洲av熟女| 亚洲不卡免费看| 国产精品1区2区在线观看.| 婷婷六月久久综合丁香| 午夜老司机福利剧场| 乱码一卡2卡4卡精品| 亚洲中文字幕日韩| 国产男人的电影天堂91| 久99久视频精品免费| 天堂av国产一区二区熟女人妻| 日产精品乱码卡一卡2卡三| 我要看日韩黄色一级片| 午夜精品国产一区二区电影 | 日本黄大片高清| 国产一区二区亚洲精品在线观看| 女人被狂操c到高潮| 两性午夜刺激爽爽歪歪视频在线观看| 寂寞人妻少妇视频99o| 免费在线观看影片大全网站| 精品一区二区三区人妻视频| 国内少妇人妻偷人精品xxx网站| 三级男女做爰猛烈吃奶摸视频| 日韩,欧美,国产一区二区三区 | 舔av片在线| 久久久久久大精品| 亚洲av免费在线观看| 我的女老师完整版在线观看| 菩萨蛮人人尽说江南好唐韦庄 | 免费看美女性在线毛片视频| 国产一区亚洲一区在线观看| 国产成人91sexporn| 国内揄拍国产精品人妻在线| 欧美日韩综合久久久久久| 国产亚洲精品综合一区在线观看| 欧美色欧美亚洲另类二区| 久久人人爽人人片av| 狂野欧美白嫩少妇大欣赏| 热99re8久久精品国产| 在线看三级毛片| 秋霞在线观看毛片| 免费看av在线观看网站| 欧洲精品卡2卡3卡4卡5卡区| 成熟少妇高潮喷水视频| 亚洲第一电影网av| 成人欧美大片| 成人毛片a级毛片在线播放| a级毛片免费高清观看在线播放| aaaaa片日本免费| 精品少妇黑人巨大在线播放 | 亚洲av中文av极速乱| 在线观看美女被高潮喷水网站| 一卡2卡三卡四卡精品乱码亚洲| av福利片在线观看| 嫩草影院精品99| 欧美极品一区二区三区四区| 麻豆久久精品国产亚洲av| 狂野欧美激情性xxxx在线观看| 性欧美人与动物交配| av福利片在线观看| 成年女人永久免费观看视频| 精品99又大又爽又粗少妇毛片| 国产老妇女一区| 哪里可以看免费的av片| 91精品国产九色| 波野结衣二区三区在线| 国产精品人妻久久久影院| 日韩 亚洲 欧美在线| 国产成人一区二区在线| 久久99热这里只有精品18| 久久久色成人| 日韩,欧美,国产一区二区三区 | 一a级毛片在线观看| 亚洲精品久久国产高清桃花| 最近最新中文字幕大全电影3| 国产免费男女视频| 国产成人精品久久久久久| 男女做爰动态图高潮gif福利片| 久久久精品欧美日韩精品| 久久天躁狠狠躁夜夜2o2o| 国产亚洲精品久久久com| 欧美色欧美亚洲另类二区| 最近最新中文字幕大全电影3| 午夜福利在线观看免费完整高清在 | 亚洲精品国产成人久久av| 欧美极品一区二区三区四区| 天天躁夜夜躁狠狠久久av| 一区二区三区四区激情视频 | 永久网站在线| 狠狠狠狠99中文字幕| 国产精品一区二区免费欧美| 五月伊人婷婷丁香| 亚洲人与动物交配视频| 高清午夜精品一区二区三区 | 久久人人爽人人片av| 色综合色国产| 最近视频中文字幕2019在线8| 亚洲av不卡在线观看| 国内精品美女久久久久久| 亚洲性夜色夜夜综合| 蜜桃久久精品国产亚洲av| 人妻夜夜爽99麻豆av| 免费电影在线观看免费观看| 久久久久久久亚洲中文字幕| 中文资源天堂在线| 精品一区二区三区人妻视频| 成人毛片a级毛片在线播放| 国产 一区精品| 色综合亚洲欧美另类图片| 亚洲精品粉嫩美女一区| av在线天堂中文字幕| 亚洲高清免费不卡视频| 午夜精品在线福利| 麻豆av噜噜一区二区三区| 直男gayav资源| 日日摸夜夜添夜夜添小说| 国产成人一区二区在线| 欧美区成人在线视频| 午夜福利在线在线| www.色视频.com| 国产一区二区激情短视频| av视频在线观看入口| 国产亚洲精品久久久com| 久久99热6这里只有精品| 亚洲天堂国产精品一区在线| 18+在线观看网站| 欧美最新免费一区二区三区| 亚洲精品亚洲一区二区| 最新中文字幕久久久久| 亚洲自偷自拍三级| 天美传媒精品一区二区| 男插女下体视频免费在线播放| 秋霞在线观看毛片| 天堂影院成人在线观看| 亚洲人成网站在线观看播放| 国产黄片美女视频| 嫩草影视91久久| 久久久久久伊人网av| 久久久久久大精品| 一级毛片我不卡| 中文字幕精品亚洲无线码一区| 日本三级黄在线观看| 亚洲丝袜综合中文字幕| 三级经典国产精品| 久久欧美精品欧美久久欧美| 草草在线视频免费看| 偷拍熟女少妇极品色| 精品无人区乱码1区二区| 成人美女网站在线观看视频| 一个人看的www免费观看视频| 村上凉子中文字幕在线| 成人特级av手机在线观看| 狂野欧美白嫩少妇大欣赏| 色综合色国产| 丰满乱子伦码专区| 亚洲欧美日韩高清在线视频| 久久99热这里只有精品18| 99热这里只有是精品在线观看| 女同久久另类99精品国产91| 久久综合国产亚洲精品| 成人精品一区二区免费| 国产欧美日韩精品亚洲av| 免费黄网站久久成人精品| 嫩草影视91久久| 午夜免费激情av| 成人永久免费在线观看视频| 国产成人福利小说| 内地一区二区视频在线| 最好的美女福利视频网| 给我免费播放毛片高清在线观看| 变态另类成人亚洲欧美熟女| 日韩av在线大香蕉| 中文字幕av在线有码专区| av免费在线看不卡| 国产单亲对白刺激| 波多野结衣高清无吗| 日本一二三区视频观看| 亚洲av中文字字幕乱码综合| 婷婷精品国产亚洲av在线| 久久久精品94久久精品| 欧美丝袜亚洲另类| 搡老熟女国产l中国老女人| 日韩精品青青久久久久久| 久久这里只有精品中国| 久久韩国三级中文字幕| 亚洲精品456在线播放app| 久久久久国产精品人妻aⅴ院| 一进一出好大好爽视频| 欧美另类亚洲清纯唯美| 久久国产乱子免费精品| 国产69精品久久久久777片| 亚洲一区二区三区色噜噜| 欧美成人a在线观看| 成人永久免费在线观看视频| 91久久精品国产一区二区三区| 又黄又爽又刺激的免费视频.| 国产不卡一卡二| 久久精品国产亚洲网站| 男女啪啪激烈高潮av片| 简卡轻食公司| 国产成人精品久久久久久| 18禁在线无遮挡免费观看视频 | 成人午夜高清在线视频| 日本熟妇午夜| 亚洲av一区综合| 美女被艹到高潮喷水动态| 亚洲一级一片aⅴ在线观看| 国产91av在线免费观看| 午夜影院日韩av| 久久久国产成人免费| 一级黄色大片毛片| 午夜福利在线观看吧| 免费看光身美女| a级毛片a级免费在线| 亚洲av成人精品一区久久| 久久精品久久久久久噜噜老黄 | 可以在线观看的亚洲视频| 亚洲国产高清在线一区二区三| 99国产精品一区二区蜜桃av| 国产亚洲精品av在线| 国产黄a三级三级三级人| 国产在视频线在精品| 少妇丰满av| 欧美中文日本在线观看视频| 村上凉子中文字幕在线| 欧美丝袜亚洲另类| 国产三级在线视频| 国产亚洲欧美98| 日本黄大片高清| 美女xxoo啪啪120秒动态图| 女的被弄到高潮叫床怎么办| 亚洲av五月六月丁香网| 久久精品国产清高在天天线| 一区二区三区四区激情视频 | 亚洲av电影不卡..在线观看| 精品久久久久久久人妻蜜臀av| 精品一区二区三区人妻视频| 国产高清视频在线观看网站| 免费观看的影片在线观看| 久久精品国产亚洲av天美| 亚洲色图av天堂| 国产成年人精品一区二区| 日本爱情动作片www.在线观看 | 国产一级毛片七仙女欲春2| 国产成人91sexporn| 97热精品久久久久久| 在线播放国产精品三级| 看十八女毛片水多多多| 一区福利在线观看| 毛片一级片免费看久久久久| 国产精品伦人一区二区| 国产探花极品一区二区| 深夜a级毛片| 亚洲av第一区精品v没综合| 久久草成人影院| 久久鲁丝午夜福利片| 3wmmmm亚洲av在线观看| 岛国在线免费视频观看| 欧美成人免费av一区二区三区| 欧美激情国产日韩精品一区| 国产真实伦视频高清在线观看| 成人漫画全彩无遮挡| a级毛色黄片| 亚洲国产精品合色在线| eeuss影院久久| 俺也久久电影网| 十八禁国产超污无遮挡网站| 国产免费男女视频| 草草在线视频免费看| 51国产日韩欧美| 国产白丝娇喘喷水9色精品| 亚洲av成人av| 中出人妻视频一区二区| 黄色一级大片看看| 男女边吃奶边做爰视频| 亚洲av电影不卡..在线观看| 日本免费一区二区三区高清不卡| 性插视频无遮挡在线免费观看| 免费人成在线观看视频色| 少妇被粗大猛烈的视频| 国产成人aa在线观看| 欧美最新免费一区二区三区| 中国国产av一级| 国产在视频线在精品| 国产午夜精品久久久久久一区二区三区 | 一本精品99久久精品77| 亚洲国产欧洲综合997久久,| 啦啦啦观看免费观看视频高清| 波多野结衣高清作品| 亚洲av成人精品一区久久| 精品午夜福利在线看| 99热这里只有是精品50| 国产av不卡久久| 一级毛片aaaaaa免费看小| 床上黄色一级片| 国产精品一区二区免费欧美| 亚洲精品粉嫩美女一区| 在线播放无遮挡| 偷拍熟女少妇极品色| 欧美激情国产日韩精品一区| 色播亚洲综合网| 精品少妇黑人巨大在线播放 | 免费无遮挡裸体视频| 国产一区二区亚洲精品在线观看| 久久精品国产鲁丝片午夜精品| 久久精品人妻少妇| 一区二区三区免费毛片| 午夜日韩欧美国产| 男女做爰动态图高潮gif福利片| 午夜精品在线福利| 国产伦一二天堂av在线观看| 免费不卡的大黄色大毛片视频在线观看 | 99riav亚洲国产免费| 日本熟妇午夜| 久久久久久大精品| 精品久久久久久久久久免费视频| 精华霜和精华液先用哪个| 亚洲人与动物交配视频| 全区人妻精品视频| 亚洲欧美日韩卡通动漫| 看黄色毛片网站| 日韩三级伦理在线观看| 成熟少妇高潮喷水视频| 欧美又色又爽又黄视频| 午夜福利视频1000在线观看| 婷婷亚洲欧美| 久久韩国三级中文字幕| 日本黄色视频三级网站网址| 国产真实乱freesex| 国内少妇人妻偷人精品xxx网站| 少妇人妻精品综合一区二区 | 久久这里只有精品中国| 国产在线精品亚洲第一网站| 国产精品日韩av在线免费观看| 欧美最黄视频在线播放免费| 色综合亚洲欧美另类图片| 国产精品伦人一区二区| 国产免费一级a男人的天堂| 日韩高清综合在线| 色综合色国产| 天天一区二区日本电影三级| 变态另类丝袜制服| 亚洲在线观看片| 国产精品国产三级国产av玫瑰| 亚洲天堂国产精品一区在线| 久久精品夜夜夜夜夜久久蜜豆| 色av中文字幕| 97人妻精品一区二区三区麻豆| 啦啦啦啦在线视频资源| 国产av在哪里看| 三级毛片av免费| 99视频精品全部免费 在线| videossex国产| 亚洲专区国产一区二区| 久久韩国三级中文字幕| 伦理电影大哥的女人| 俄罗斯特黄特色一大片| 国产精品野战在线观看| 免费高清视频大片| 国产色爽女视频免费观看| 国产精品一及| 日韩三级伦理在线观看| 中出人妻视频一区二区| 精品人妻视频免费看| 女人被狂操c到高潮| 色在线成人网| 欧美3d第一页| 自拍偷自拍亚洲精品老妇| 日本撒尿小便嘘嘘汇集6| 久久久午夜欧美精品| 非洲黑人性xxxx精品又粗又长| 男人舔奶头视频| 美女 人体艺术 gogo| 亚洲精品日韩在线中文字幕 | 别揉我奶头~嗯~啊~动态视频| 国产免费一级a男人的天堂| 老司机影院成人| 悠悠久久av| 人妻少妇偷人精品九色| 日本免费一区二区三区高清不卡| 可以在线观看的亚洲视频| 日韩人妻高清精品专区| 久久国内精品自在自线图片| av.在线天堂| 欧美在线一区亚洲| 搞女人的毛片| 国产精品日韩av在线免费观看| 亚洲av成人精品一区久久| www.色视频.com| 蜜桃久久精品国产亚洲av| 97人妻精品一区二区三区麻豆| 久久久久久久久久黄片| 老司机午夜福利在线观看视频| 亚洲精品一区av在线观看| 99久国产av精品国产电影| 婷婷精品国产亚洲av| 嫩草影院新地址| 精品少妇黑人巨大在线播放 | 婷婷亚洲欧美| 一区二区三区四区激情视频 | 国产午夜福利久久久久久| 国产精品久久视频播放| 精品福利观看| 国产精品久久视频播放| 国产精品1区2区在线观看.| 男女视频在线观看网站免费| 久久精品国产亚洲av涩爱 | 亚洲av成人av| 国产在线精品亚洲第一网站| 我的女老师完整版在线观看| 国产乱人偷精品视频| av国产免费在线观看| 亚洲国产精品成人久久小说 | 国内精品美女久久久久久| 一级毛片我不卡| 在线观看66精品国产| 成人无遮挡网站| 亚洲,欧美,日韩| 身体一侧抽搐| 欧美bdsm另类| 久久久久九九精品影院| 久久久欧美国产精品| 国产成人福利小说| 少妇人妻精品综合一区二区 | 禁无遮挡网站| 九九在线视频观看精品| 18禁在线无遮挡免费观看视频 | 狂野欧美激情性xxxx在线观看| 国产欧美日韩精品一区二区| 日韩制服骚丝袜av| 一卡2卡三卡四卡精品乱码亚洲| 亚洲成人中文字幕在线播放| 午夜福利成人在线免费观看| 久久人人精品亚洲av| 久久人人爽人人片av| 国产乱人视频| 国产真实乱freesex| 91久久精品电影网| 老司机影院成人| 91久久精品电影网| 最近的中文字幕免费完整| 欧美三级亚洲精品| 亚洲av免费高清在线观看| 国产亚洲精品久久久久久毛片| 久久久色成人| 亚洲激情五月婷婷啪啪| aaaaa片日本免费| 国产乱人视频| 97超级碰碰碰精品色视频在线观看| 国产一区二区三区av在线 | 又爽又黄a免费视频| 五月玫瑰六月丁香| 国产色婷婷99| 床上黄色一级片| 97超碰精品成人国产| 最近视频中文字幕2019在线8| 欧美日韩国产亚洲二区| 超碰av人人做人人爽久久| 久久久久国产网址| 女人十人毛片免费观看3o分钟| 小说图片视频综合网站| 欧美色视频一区免费| 欧美一区二区精品小视频在线| 欧美xxxx性猛交bbbb| 波多野结衣高清无吗| 国产精品一二三区在线看| 色在线成人网| 国产精品伦人一区二区| 成人三级黄色视频| 成年av动漫网址| 国产蜜桃级精品一区二区三区| 最近最新中文字幕大全电影3| 日日撸夜夜添| 亚洲在线自拍视频| 国产精品日韩av在线免费观看| av在线亚洲专区| av视频在线观看入口| h日本视频在线播放| 性色avwww在线观看| 在线天堂最新版资源| 最近在线观看免费完整版| 国产爱豆传媒在线观看| 热99re8久久精品国产| 人人妻人人澡欧美一区二区| 麻豆精品久久久久久蜜桃| 日韩欧美精品v在线| 99热这里只有精品一区| 丰满的人妻完整版| 啦啦啦观看免费观看视频高清| 狂野欧美激情性xxxx在线观看| 精品少妇黑人巨大在线播放 | 男人舔奶头视频| 久久草成人影院| 久久久久久久久大av| 99热精品在线国产| 18禁在线播放成人免费| 白带黄色成豆腐渣| 国产亚洲av嫩草精品影院| 91久久精品电影网| 国产亚洲欧美98| 五月伊人婷婷丁香| 国产精品电影一区二区三区| 18禁在线无遮挡免费观看视频 | 中文在线观看免费www的网站| 欧美日韩乱码在线| 国产爱豆传媒在线观看| 午夜久久久久精精品| 亚洲av一区综合| 国产精品综合久久久久久久免费| 别揉我奶头 嗯啊视频| 欧美一区二区亚洲| 一区二区三区高清视频在线| 国产精品久久电影中文字幕| 国产精品爽爽va在线观看网站| 国产视频一区二区在线看| 男人狂女人下面高潮的视频| 色哟哟·www| 九九在线视频观看精品| 欧美成人精品欧美一级黄| 欧美性猛交黑人性爽| 久久精品91蜜桃| 亚洲av不卡在线观看| 亚洲最大成人av| 国产精品一区二区性色av| 日本在线视频免费播放| 少妇裸体淫交视频免费看高清| 一进一出抽搐gif免费好疼| 天堂影院成人在线观看| 天美传媒精品一区二区| 日韩av不卡免费在线播放|