• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Adaptive Sliding-Mode Control of an Automotive Electronic Throttle in the Presence of Input Saturation Constraint

    2018-07-31 09:50:08RuiBai
    IEEE/CAA Journal of Automatica Sinica 2018年4期

    Rui Bai

    Abstract—In modern vehicles,electronic throttle(ET)has been widely utilized to control the air flow into gasoline engine.To solve the control difficulties with an ET,such as strong nonlinearity,unknown model parameters and input saturation constraints,an adaptive sliding-mode tracking control strategy for an ET is presented.Compared with the existing control strategies for an ET,input saturation constraints and parameter uncertainties are adequately considered in the proposed control strategy.At first,the nonlinear dynamic model for control of an ET is described.According to the dynamical model,the nonlinear adaptive sliding-mode tracking control method is presented,where parameter adaptive laws and auxiliary design system are employed.Parameter adaptive law is given to estimate the unknown parameter with an ET.An auxiliary system is designed,and its state is utilized in the tracking control method to handle the input saturation.Stability proof and analysis of the adaptive sliding-mode control method is performed by using Lyapunov stability theory.Finally,the reliability and feasibility of the proposed control strategy are evaluated by computer simulation.Simulation research shows that the proposed sliding-mode control strategy can provide good control performance for an ET.

    I.INTRODUCTION

    I N vehicles powered by gasoline engines,the accelerator pedal actuated by the driver is linked to the engine throttle.Engine throttle plays an important role in vehicle’s engine.The throttle plate opening regulates air flow into the intake manifold of engine system,which will affect the engine operating efficiency[1],[2].In the past,the accelerator pedal and the throttle were connected by mechanical equipment.Nowadays,many important functions of vehicles are shifting from a purely mechanical to an electromechanical execution,commonly known as an “X-by-wire”system.This electromechanical system is utilized as an interface between the driver and the directed automotive subsystem(e.g.,engine throttle,brakes,etc.)[3]-[6].The mechanical connection between the accelerator pedal and the engine throttle is replaced by an electronic linkage,commonly known as an electronic throttle(ET)in modern vehicles.An ET is essentially a valve driven by a servo dc-motor,which regulates the air in flow into the engine system.By using an ET,the engine control unit can control the throttle valve angle according to the specific engine operation condition and mode.Therefore,the fuel economy,drivability,and emission of vehicle can be significantly improved[7],[8].ET has been widely used in automotive engine for its above mentioned advantage.

    The control objective of an ET is to control the actual valve angle track a reference signal with the fast and accurate property[8].The main difficult problem of ET control is the presence of the strong nonlinearity caused by the transmission friction and return spring,unknown system parameters,external disturbance,and input saturation constraint.For the past few years,this challenging and important automotive control issue has attracted more and more attention in the research community and vehicle industry,and some control methods for ET have been presented[8]-[16],including Proportionalintegral-derivative(PID)control,state feedback control,optimal control,adaptive control,robust control,sliding control,intelligent control,and so on.[8]presented the dynamical model and unknown parameters identification of an industrial automotive ET control system.A nonlinear closed-loop control system based on the input-output liberalization approach is designed for an ET.In[9],a PID controller with a feed for word compensator was presented for the ET control system.In[10],based on the theory of linear quadratic regulator(LQR)control,a scheme of discrete-time optimal preview position control algorithm for an ET was designed.In[11],an adaptive servo control method was presented for an ET.In[12],a robust H∞control strategy with mixed-sensitivity synthesis method was designed for an ET.In[13],at first,some observers were designed to estimate the unmeasured states in an ET and a sliding-mode controller was designed to control an ET.In[14],an adaptive control strategy with the inverse model was presented for an ET.The unknown functions in an ET were approximated by using two RBF neural networks.In[15],an explicit Luenberger-sliding mode observer was designed,and a sliding-mode control with fuzzy double loop was presented for an ET.[16]proposed a robust terminal sliding-mode control method,and the uncertainty in an ET was approximated by using a neural network.

    Although these existing works have obtained the acceptable control performance for the specified operation condition,there are some important issues for an ET that should be further discussed,especially,the input saturation constraint with an ET.In many industrial systems,due to the physical saturation constraint on hardware including the actuator,the magnitude of the control command signal is often limited to a specified range.Input saturation is an important issue for the control system,which often severely affects control system performance and can reduce control accuracy and system stability[17],[18].The control strategy of an uncertain nonlinear system under the input saturation constraint has been extensively researched in recent years.For example,in[18],an adaptive control method of the nonlinear dynamical system with input saturation was proposed.In the proposed adaptive control method,the Nussbaum function was introduced to compensate for the influence of the input saturation.In[19],by employing an neural network,an adaptive control method was designed for an n-link robotic manipulator with an input saturation constraint.The proposed control method can obtain satisfactory tracking control performance.In[20],to analyze the effect of input saturation,an auxiliary design system was introduced.The state of auxiliary design system was used to design the control method for handling input saturation.In[21],[22],the novel symmetric and asymmetric barrier Lyapunov functions(BLFs)are adopted to guarantee that the states do not violate their constraints.

    Due to limited power supply capacity in vehicles,the driving-motor voltage in an ET has a limited range.In general,the limited range of the driving-motor voltage is 0 to 5 volts.Thus,there is an input saturation constraint in the control system of ET.Input saturation severely degrades the control performance of ET,including the position accuracy and closed-loop stability.However,in the aforementioned existing control methods for ET,the input saturation problem is rarely considered.To improve the control performance of ET,an adaptive sliding-mode tracking control method for ET is proposed in this paper.The innovations and contributions of this paper are summarized and listed as follows.

    1)To solve the nonlinearity,unknown parameter,and external disturbance,we have presented an adaptive sliding-mode control for an ET.Parameter adaptive law is used to estimate the unknown parameter on ET.Compared with the existing control methods for ET,sliding-mode control with parameter adaptive laws is firstly used to control ET.

    2)To solve the input saturation constraint,we have designed an auxiliary design system to analyze the effect of input saturation on an ET.For handling the input saturation constraint,the state of auxiliary design system is used in the presented adaptive sliding-mode control.Furthermore,the stability of closed-loop system is ensured using Lyapunov stability theorem.Compared with the existing control methods for an ET,input saturation is considered and solved in the proposed control method.

    The rest of this paper is organized as follows.The uncertain nonlinear dynamic model of an ET is described in Section II.The adaptive sliding-mode controller with input saturation for an ET is designed in Section III.Section IV is the presentation and analysis of the simulation results.At last,some conclusions are given in Section V.

    The following nomenclature is used throughout the paper:Nomenclature:

    θdReference angle of the throttle valve

    θ(t) Actual angle of the throttle valve

    θ0Static angle of the throttle valve

    ω(t) Angular speed of the throttle valve

    ia(t) Armature current

    RaArmature resistance

    Ua(t) Input voltage of the driving motor

    Ea(t) Counter electromotive force

    LaInductance of the armature loop

    Te(t) Electromagnetism torque

    TL(t) Load torque of the driving motor

    Ts(t) Return spring torque

    Tf(t) Friction torque

    KtTorque constant

    KaElectromotive force constant

    KsElastic coefficient in the return spring

    KmTorque compensation coefficient in the return spring

    KdSliding friction coefficient in the friction torque

    KkCoulomb friction coefficient in the friction torque

    JREquivalent moment of inertia

    j Gear ratio

    II.DESCRIPTIONS AND MODELING OF ET

    An ET is a valve driven by the servo dc motor in modern vehicles.The ET can control the air flow into the vehicle’s engine by adjusting the opening angle of the valve plate.The schematic control structure of ET is described in Fig.1.The main components of Fig.1 include the controller and electronic throttle body.An electronic throttle body is assembled with a dc motor,a gear unit,a valve plate,a return spring and a position sensor.The driving motor and throttle valve plate are connected by a gear unit.The throttle valve plate determines the load on the driving motor.By changing the input voltage of driving motor,the electromagnetic torque of driving motor is changed,and the angle of the throttle valve plate is regulated at the same time.The return spring is a mechanical protection device introduced with an ET.The return spring ensures that when the driving motor fails to work,the throttle valve plate maintains a certain safety angle,named the limp-home(LH)angle.The position sensor detects the angle of the throttle valve in real time,and delivers the angle to the controller.The control objective of ET is to achieve the fast and accurate tracking control performance of the opening angle.

    Fig.1.Schematic diagram of electronic throttle control.

    The dynamical characteristic of the dc motor in ET is shown as

    The electrical balance equations of the armature loop are

    According to(2)and(3)and ignoring the inductance La,we have

    According to the electromagnetic torque expression,we have

    Substituting(4)into(5),we have

    The nonlinear toque of return spring in ET is

    where θ is the initial angle of the valve plate.

    The nonlinear friction torque in ET consists of a viscous and a Coulomb torque.The nonlinear friction torque is[11]

    Substituting(6)-(8)into(1),the dynamic equation of ET is given by

    Defining state variables x1(t)= θ(t)- θ0,x2(t)= ω(t),control variable u(t)=Ua(t),and considering the external disturbance d(t),the aforementioned dynamic equation can be simplified as

    where

    In(10),d(t)is the unknown external disturbance.d(t)satisfies the following constraint inequality:

    where D is a known constant,indicates the maximum value of d(t).

    Therefore,(10)is the nonlinear state-space model of ET.The major control difficulties for ET are discussed as follows:

    1)Strong nonlinear dynamics caused by the return spring and friction.

    2)In the electronic throttle system,Kt,Ka,JRand Raare known parameters.Ks,Km,Kdand Kkare unknown parameters.Therefore,in(10),μ0is a known parameter,andμ1,μ2,μ3as well asμ4are unknown parameters.

    3)The driving voltage of the dc motor in ET has a limited range.Therefore,there is an input saturation constraint in the control system of ET.

    III.TRACKING CONTROL METHOD FOR ET

    To solve the control difficulties listed in the end of Section II,an adaptive sliding-mode control method for an ET is designed in this section.Fig.2 illustrates the proposed control method of an ET.According to the dynamical model,the nonlinear adaptive sliding-mode tracking control method is designed,where the parameter adaptive laws and auxiliary design system are employed.?μiis the estimation of unknown parameter in an ET.ξ is the state variable of auxiliary design system.Parameter adaptive laws are designed to estimate the unknown parameters in the dynamical model of an ET.To analyze the effect of input saturation in ET,an auxiliary design system was introduced.The state variable of the auxiliary design system is introduced into the proposed tracking controller to handle the input saturation.

    Fig.2.Schematic diagram of electronic throttle control.

    To get a better description of the proposed control method,at first,we design a sliding-mode control for ET without considering the unknown parameters and input saturation in Section III-A.Based on the control method in Section IIIA,an adaptive sliding-mode control for ET is designed in Section III-B,where unknown parameters and input saturation are considered.

    A.Sliding-Mode Control for ET

    The tracking error of valve plate angle is defined as

    where xd(t)= θd(t)- θ0.

    s(t)is the sliding-mode surface,which is described as

    where c is a positive constant.

    The sliding-mode control signal consists of two parts,including the equivalent control signal and the switching control signal[23].The equivalent control signal is the control which keeps the trajectories of the dynamical system on the slidingmode surface.It can be solved from˙s(t)=0.A switching control signal makes the trajectories of the dynamical system move towards the sliding-mode surface.

    The sliding-mode control signal is

    where ueq(t)is the equivalent control signal.usw(t)is the switching control signal.

    Neglecting the external disturbance,the derivative of s(t)is given by

    Letting˙s(t)=0,u(t)in(15)is the equivalent control signal ueq(t).From(15),ueq(t)is computed as

    According to designing principle of the sliding-mode control[21],the switching control signal usw(t)is designed as

    where K is a positive constant.K satisfies the following condition:

    Therefore,sliding-mode control is

    B.Adaptive Sliding-Mode Control With Input Saturation for ET

    As described in Section II,μ1,μ2,μ3and μ4are unknown parameters.Therefore,the control law(20)cannot be applied in engineering practice.In this section,to estimate the unknown parameters with an ET,parameter adaptive laws are designed.An auxiliary design system is designed which is utilized to analyze the effect of the input saturation.

    For the input saturation constraint,we define

    where Uminand Umaxare known constants.

    Therefore,the control input signal u is

    In(23),v is the control command,which will be designed in the following steps.

    The following auxiliary design system is used to analyze and reduce the saturation effect[19],[20]:

    where ξ is the state variable of the auxiliary design system.ε is a small positive design parameter.b> μ0> 0.

    The Lyapunov function candidate V(t)is given as

    where γ1,γ2,γ3,and γ4are positive constants,respectively.

    The time derivative of V(t)is

    Substituting(12),(13),(21),(24)into(27),we have

    Noting the following fact

    we have

    In this section,parameter adaptive laws are designed as

    Invoking(30)-(34),the derivative of V(t)is

    In this section,the control command v is designed as

    where c2>0 is a design parameter.

    In this section,design parameters c1and c2are specified to satisfy the following inequality constraint:

    Remark 1:For stability,K is usually chosen to be conservatively large.This is not very desirable due to the chattering introduced.To improve the response time,c should be chosen to be conservatively large.

    Theorem 1:For the nonlinear dynamical electronic throttle system described by(10),under the control law(36)with the parameter adaptation laws(31)-(34),with the specified inequality(37)for design parameters,the closed-loop control system of ET is stable.

    The proof process of Theorem 1 is provided in the Appendix.

    IV.SIMULATION RESULTS

    Some simulations are executed to evaluate the reliability and feasibility of the proposed adaptive sliding-mode controller with input saturation for ET.According to the actual power supply capacity in engine control unit,the limited range of driving-motor voltage is[0,5].In the simulation,some main parameters of ET are j=18,JR=5×10-4,Ra=4.5,Ka=0.0193,Kt=0.019,Ks=0.046,Km=0.15,Kd=4×10-4,Kk=4.8×10-3,d(t)=0.5 sin(t),Umax=5,Umin=0.

    Simulation results are given in Figs.4-6.In the simulation,the reference valve angle in ET is 60 degrees.Both the control command v and the control input variable u are shown in Fig.3.In the initial stage of Fig.3,the input voltage(i.e.,the control command v)exceeds its maximum limit.This input voltage can not be applied in practice due to limitation of the power supply capacity.Using the proposed method in this paper,the control variable u is limited into its range,which can be applied in the actual engine control unit.

    Fig.3.Control input u and control command v.

    Fig.4.Reference angle θd and actual angle θ.

    In Fig.3,the oscillation of the control variable u is caused by the action of the switching control signal.In Fig.4,the actual angle θ of ET can track its reference value θd.In Fig.5,the angle speed ω(t)is also regulated to zero.The closed-loop control system is stable and the tracking accuracy is satisfactory.

    Fig.5.Angle speed ω.

    In the actual control unit,the PI control method is widely used in an ET.Comparison simulation results with the conventional PI control method and the proposed control method are given in Fig.6 and Fig.7.According to Fig.6 and Fig.7,we know that the proposed control method will result in better control performance than the conventional PI control method.Therefore,we provide a new option for ET control in the vehicle industry.

    Fig.6.Comparison of angle with PI control and the proposed control.

    Remark 2:In the control system of automotive electronic throttle,the control input variable is the input voltage of the driving motor.The magnitude of the voltage is affected by the actual power supply capacity,that is,it must be within a certain range.In general,the certain range is[0 5].However,in the existing control methods for ET,the input signal limitation is not considered.If the input signal is too large,it cannot be applied even though the control performance is satisfactory.

    V.CONCLUSIONS

    In this paper,the dynamical model including the nonlinear characteristics of the return spring and friction of ET is presented.Based on the nonlinear dynamical model,an adaptive sliding-mode control strategy of ET is proposed.During the controller design process,parametric uncertainties,unknown disturbances,and input saturation constraint are adequately considered and solved.Stability of the closed-loop control system is proved via the Lyapunov stability method.From the simulation results,we know that the proposed control method can obtain satisfactory control performance with a control input that does not exceed the saturation constraint.

    Fig.7.Comparison of angle speed with PI control and the proposed control.

    APPENDIX

    Substituting(36)into(35),the time derivative of V(t)is

    According to the following inequality

    we have

    Considering K≥D≥d(t),c2>0,the inequality(37)for c1and c2,we have

    Therefore,the closed-loop control system is stable according to the Lyapunov stability theory.

    老司机靠b影院| 俄罗斯特黄特色一大片| 69精品国产乱码久久久| 亚洲欧洲日产国产| 午夜免费鲁丝| av免费在线观看网站| 大型黄色视频在线免费观看| 少妇被粗大的猛进出69影院| 露出奶头的视频| 久久性视频一级片| 午夜久久久在线观看| 日日夜夜操网爽| 欧美日韩av久久| 老汉色∧v一级毛片| 在线观看一区二区三区激情| 十八禁网站网址无遮挡| 久久免费观看电影| av又黄又爽大尺度在线免费看| 国精品久久久久久国模美| 国产精品国产高清国产av | 极品人妻少妇av视频| 日本撒尿小便嘘嘘汇集6| 视频区图区小说| 99精品久久久久人妻精品| 如日韩欧美国产精品一区二区三区| 母亲3免费完整高清在线观看| 叶爱在线成人免费视频播放| 国产亚洲欧美在线一区二区| 在线天堂中文资源库| 高清视频免费观看一区二区| 1024香蕉在线观看| 久久狼人影院| tube8黄色片| 亚洲国产毛片av蜜桃av| 天天躁狠狠躁夜夜躁狠狠躁| 国产主播在线观看一区二区| 国产男女超爽视频在线观看| 制服诱惑二区| 国产在线精品亚洲第一网站| 国产老妇伦熟女老妇高清| 亚洲专区中文字幕在线| 人妻一区二区av| 久久久久久久精品吃奶| 精品欧美一区二区三区在线| 91精品国产国语对白视频| 一级黄色大片毛片| 午夜福利欧美成人| 深夜精品福利| av超薄肉色丝袜交足视频| 极品人妻少妇av视频| 国产在线精品亚洲第一网站| 精品福利观看| 亚洲欧美色中文字幕在线| 捣出白浆h1v1| 高清毛片免费观看视频网站 | 在线 av 中文字幕| 亚洲国产成人一精品久久久| 高清视频免费观看一区二区| 如日韩欧美国产精品一区二区三区| 国产男女内射视频| av一本久久久久| 亚洲欧美精品综合一区二区三区| av天堂久久9| 精品国内亚洲2022精品成人 | 桃花免费在线播放| av天堂久久9| 国产精品久久久久久精品电影小说| 老熟女久久久| 国产一区二区三区综合在线观看| 国产免费福利视频在线观看| 亚洲第一欧美日韩一区二区三区 | 一本一本久久a久久精品综合妖精| 久久亚洲精品不卡| 日本欧美视频一区| 欧美av亚洲av综合av国产av| 午夜精品国产一区二区电影| 国产日韩欧美视频二区| 亚洲精品成人av观看孕妇| 建设人人有责人人尽责人人享有的| 久久人人97超碰香蕉20202| 在线观看人妻少妇| 欧美在线黄色| 午夜精品国产一区二区电影| 国产欧美日韩一区二区三区在线| 好男人电影高清在线观看| 久久久久久人人人人人| 成人国产一区最新在线观看| 高清视频免费观看一区二区| 日韩大码丰满熟妇| 人妻久久中文字幕网| 日韩免费高清中文字幕av| 老熟妇仑乱视频hdxx| 亚洲,欧美精品.| 国产精品 国内视频| 宅男免费午夜| 丝袜美腿诱惑在线| 老司机福利观看| 99国产精品99久久久久| 日韩欧美国产一区二区入口| 国产一区二区激情短视频| 三级毛片av免费| 人人妻人人添人人爽欧美一区卜| av免费在线观看网站| 国产又爽黄色视频| 亚洲av欧美aⅴ国产| 精品欧美一区二区三区在线| 日韩免费高清中文字幕av| 自线自在国产av| 欧美日本中文国产一区发布| 久久精品91无色码中文字幕| 亚洲精品乱久久久久久| 啦啦啦视频在线资源免费观看| 黄色成人免费大全| 国产淫语在线视频| 成人手机av| 国产aⅴ精品一区二区三区波| 下体分泌物呈黄色| 欧美精品高潮呻吟av久久| 午夜福利在线免费观看网站| 99精品久久久久人妻精品| 午夜免费鲁丝| 久久久久久人人人人人| 女人久久www免费人成看片| 欧美日韩成人在线一区二区| av一本久久久久| 国产精品一区二区精品视频观看| 精品国产一区二区三区四区第35| 日韩欧美免费精品| 精品久久蜜臀av无| 国产精品99久久99久久久不卡| 少妇精品久久久久久久| 久久久久久久精品吃奶| 国产激情久久老熟女| 老司机亚洲免费影院| 久久久国产欧美日韩av| 亚洲性夜色夜夜综合| 国产精品美女特级片免费视频播放器 | 亚洲一卡2卡3卡4卡5卡精品中文| 国产一区二区 视频在线| 麻豆成人av在线观看| 久久亚洲精品不卡| 亚洲精品中文字幕一二三四区 | 久久狼人影院| 男女下面插进去视频免费观看| 成人国语在线视频| 99国产精品一区二区三区| 天天影视国产精品| 久久天躁狠狠躁夜夜2o2o| 欧美另类亚洲清纯唯美| www日本在线高清视频| 色在线成人网| 国产三级黄色录像| 一区二区av电影网| 一区二区三区国产精品乱码| 久久久久久久国产电影| 久久久水蜜桃国产精品网| 久久性视频一级片| 亚洲av成人一区二区三| 成人国产一区最新在线观看| 色94色欧美一区二区| 热99re8久久精品国产| 真人做人爱边吃奶动态| 国产亚洲精品第一综合不卡| 欧美日韩亚洲综合一区二区三区_| 国产成人一区二区三区免费视频网站| 两性午夜刺激爽爽歪歪视频在线观看 | 岛国在线观看网站| h视频一区二区三区| 国产成人精品无人区| 午夜激情久久久久久久| 在线观看66精品国产| 久久av网站| 日本av免费视频播放| 淫妇啪啪啪对白视频| 超碰97精品在线观看| 99精品欧美一区二区三区四区| 在线观看免费日韩欧美大片| 黑人欧美特级aaaaaa片| av网站在线播放免费| 99久久99久久久精品蜜桃| 在线观看人妻少妇| 在线看a的网站| 可以免费在线观看a视频的电影网站| 国产精品国产高清国产av | 一个人免费看片子| 久久亚洲真实| 99精品在免费线老司机午夜| 日韩欧美国产一区二区入口| 91av网站免费观看| 一级毛片电影观看| 久久久久久人人人人人| 亚洲av第一区精品v没综合| 久久ye,这里只有精品| 建设人人有责人人尽责人人享有的| 十八禁网站网址无遮挡| 人人妻人人澡人人看| 国产精品久久久久成人av| 国产又爽黄色视频| 国产av又大| 国产成人免费无遮挡视频| 久久精品国产a三级三级三级| 男女无遮挡免费网站观看| 男女边摸边吃奶| 欧美国产精品一级二级三级| 黄网站色视频无遮挡免费观看| a级片在线免费高清观看视频| 欧美日韩一级在线毛片| 在线十欧美十亚洲十日本专区| 啦啦啦免费观看视频1| 69av精品久久久久久 | 国产一卡二卡三卡精品| 久久香蕉激情| 中文字幕精品免费在线观看视频| 精品一品国产午夜福利视频| 欧美乱妇无乱码| 午夜免费鲁丝| 久久人人97超碰香蕉20202| 国产成人精品在线电影| 精品久久蜜臀av无| 亚洲精品国产区一区二| 老司机影院毛片| 国产精品亚洲av一区麻豆| 亚洲自偷自拍图片 自拍| 国产又色又爽无遮挡免费看| 欧美亚洲 丝袜 人妻 在线| xxxhd国产人妻xxx| 啦啦啦免费观看视频1| 久久精品91无色码中文字幕| 一级毛片精品| 他把我摸到了高潮在线观看 | 老熟妇仑乱视频hdxx| 国产在线视频一区二区| 中国美女看黄片| 国产97色在线日韩免费| 久久 成人 亚洲| 国产视频一区二区在线看| 十八禁高潮呻吟视频| 男女床上黄色一级片免费看| 香蕉丝袜av| 成年人黄色毛片网站| 成人18禁在线播放| 精品卡一卡二卡四卡免费| 老司机靠b影院| 热99久久久久精品小说推荐| 国产成人精品在线电影| 亚洲黑人精品在线| 三级毛片av免费| 50天的宝宝边吃奶边哭怎么回事| 天天躁日日躁夜夜躁夜夜| 久热爱精品视频在线9| 亚洲第一av免费看| 国产有黄有色有爽视频| 国产高清国产精品国产三级| 国产成人欧美| 久久99一区二区三区| 黑人欧美特级aaaaaa片| 99久久人妻综合| 亚洲国产精品一区二区三区在线| 欧美精品av麻豆av| 日本五十路高清| 满18在线观看网站| 50天的宝宝边吃奶边哭怎么回事| 丝袜喷水一区| 国产成人av教育| 欧美性长视频在线观看| 欧美激情 高清一区二区三区| 视频区图区小说| 国产老妇伦熟女老妇高清| 人妻一区二区av| 十分钟在线观看高清视频www| 在线观看66精品国产| 性高湖久久久久久久久免费观看| 婷婷丁香在线五月| 午夜两性在线视频| 99国产综合亚洲精品| 欧美国产精品一级二级三级| 五月天丁香电影| 99re6热这里在线精品视频| 国产区一区二久久| 超碰97精品在线观看| 肉色欧美久久久久久久蜜桃| 丰满人妻熟妇乱又伦精品不卡| 欧美日韩亚洲高清精品| 久久人妻熟女aⅴ| 国产高清videossex| 18禁观看日本| 99re6热这里在线精品视频| e午夜精品久久久久久久| 少妇 在线观看| 亚洲中文av在线| 亚洲国产欧美在线一区| 激情视频va一区二区三区| 久久中文字幕人妻熟女| 亚洲欧美日韩高清在线视频 | 久久午夜亚洲精品久久| 岛国在线观看网站| 成在线人永久免费视频| 正在播放国产对白刺激| 国产成人系列免费观看| 99精品久久久久人妻精品| 国产精品国产高清国产av | 精品国产一区二区三区久久久樱花| 免费不卡黄色视频| 美女福利国产在线| 999久久久精品免费观看国产| 国产av一区二区精品久久| 一夜夜www| 91国产中文字幕| 国产成人啪精品午夜网站| 美国免费a级毛片| 999久久久国产精品视频| 人妻一区二区av| 日韩人妻精品一区2区三区| 亚洲成国产人片在线观看| 国产精品av久久久久免费| 免费在线观看黄色视频的| 亚洲专区字幕在线| 午夜福利视频在线观看免费| 五月开心婷婷网| 精品午夜福利视频在线观看一区 | 亚洲精品成人av观看孕妇| 亚洲av电影在线进入| 天堂8中文在线网| 日韩视频在线欧美| av片东京热男人的天堂| 日本黄色视频三级网站网址 | 国产精品 国内视频| 欧美乱码精品一区二区三区| 亚洲av美国av| av网站在线播放免费| 中文字幕制服av| 中亚洲国语对白在线视频| 欧美乱码精品一区二区三区| 中文字幕人妻丝袜一区二区| 亚洲色图 男人天堂 中文字幕| 亚洲三区欧美一区| 国产精品久久久久久人妻精品电影 | 免费日韩欧美在线观看| 十八禁网站网址无遮挡| 国产片内射在线| 国产欧美日韩一区二区三区在线| 日韩大码丰满熟妇| 国产精品免费视频内射| 黄频高清免费视频| av国产精品久久久久影院| 日韩欧美一区视频在线观看| 高清av免费在线| 91字幕亚洲| 色精品久久人妻99蜜桃| 国产在视频线精品| 国产午夜精品久久久久久| 国产男女内射视频| 免费黄频网站在线观看国产| 亚洲欧美一区二区三区黑人| 丁香六月欧美| 十八禁网站免费在线| 一级片'在线观看视频| 日韩欧美国产一区二区入口| 欧美成狂野欧美在线观看| 成年人午夜在线观看视频| 国产亚洲欧美在线一区二区| 黑人欧美特级aaaaaa片| 少妇被粗大的猛进出69影院| 亚洲五月婷婷丁香| 国产老妇伦熟女老妇高清| 高清视频免费观看一区二区| 美女扒开内裤让男人捅视频| 日本五十路高清| 亚洲天堂av无毛| 一级a爱视频在线免费观看| 国产男女超爽视频在线观看| 国产99久久九九免费精品| 中文字幕人妻丝袜一区二区| xxxhd国产人妻xxx| 99在线人妻在线中文字幕 | 搡老熟女国产l中国老女人| 国产精品免费一区二区三区在线 | 国产国语露脸激情在线看| 国产成人精品久久二区二区免费| 亚洲成人国产一区在线观看| 婷婷丁香在线五月| 一个人免费看片子| 久久久久久亚洲精品国产蜜桃av| 亚洲美女黄片视频| 日本撒尿小便嘘嘘汇集6| 黄色 视频免费看| 一级片免费观看大全| 亚洲欧美一区二区三区久久| 亚洲第一青青草原| 久久香蕉激情| 超碰成人久久| 99精品欧美一区二区三区四区| 欧美中文综合在线视频| 国产日韩欧美在线精品| av片东京热男人的天堂| 丝瓜视频免费看黄片| 极品教师在线免费播放| 看免费av毛片| 国产精品九九99| 黄色a级毛片大全视频| 另类亚洲欧美激情| 日韩中文字幕视频在线看片| 伊人久久大香线蕉亚洲五| 青草久久国产| 麻豆乱淫一区二区| 老鸭窝网址在线观看| 一区二区三区乱码不卡18| 国产一区二区激情短视频| 我的亚洲天堂| 少妇被粗大的猛进出69影院| 最新美女视频免费是黄的| 精品一品国产午夜福利视频| 久久久久国产一级毛片高清牌| 亚洲伊人色综图| 欧美人与性动交α欧美精品济南到| 一级a爱视频在线免费观看| 亚洲欧美一区二区三区黑人| 老司机深夜福利视频在线观看| 蜜桃在线观看..| 可以免费在线观看a视频的电影网站| 嫩草影视91久久| 亚洲人成电影免费在线| 999精品在线视频| 高清毛片免费观看视频网站 | 欧美午夜高清在线| 亚洲第一欧美日韩一区二区三区 | 日韩欧美免费精品| 精品国产国语对白av| 在线天堂中文资源库| 啦啦啦在线免费观看视频4| 国产精品免费一区二区三区在线 | 最近最新中文字幕大全免费视频| 真人做人爱边吃奶动态| 日韩三级视频一区二区三区| 免费在线观看日本一区| 99国产综合亚洲精品| 精品卡一卡二卡四卡免费| 午夜福利乱码中文字幕| 少妇的丰满在线观看| 国产又爽黄色视频| 91麻豆av在线| 国产成人系列免费观看| 老司机午夜福利在线观看视频 | 捣出白浆h1v1| 脱女人内裤的视频| 久久久水蜜桃国产精品网| 精品国产乱子伦一区二区三区| 国产欧美日韩一区二区三| 免费观看a级毛片全部| 老司机在亚洲福利影院| 亚洲精品粉嫩美女一区| 色视频在线一区二区三区| 午夜福利,免费看| 男女高潮啪啪啪动态图| 两个人免费观看高清视频| 熟女少妇亚洲综合色aaa.| 国产不卡一卡二| 成人影院久久| 日韩欧美一区视频在线观看| 亚洲综合色网址| 一个人免费看片子| 成人国产av品久久久| 一级,二级,三级黄色视频| 一本久久精品| 国产伦理片在线播放av一区| 热99re8久久精品国产| av不卡在线播放| 国产一区二区激情短视频| 国产片内射在线| av欧美777| 三级毛片av免费| 日本黄色视频三级网站网址 | 日本av免费视频播放| 国产老妇伦熟女老妇高清| 亚洲av第一区精品v没综合| 亚洲五月色婷婷综合| 亚洲精华国产精华精| 久热爱精品视频在线9| 亚洲精华国产精华精| 女同久久另类99精品国产91| 久久九九热精品免费| 午夜两性在线视频| 成人手机av| 99国产极品粉嫩在线观看| 色婷婷av一区二区三区视频| 91成人精品电影| 日韩一卡2卡3卡4卡2021年| 在线亚洲精品国产二区图片欧美| 国产成人av教育| 少妇 在线观看| 人成视频在线观看免费观看| 我要看黄色一级片免费的| 免费女性裸体啪啪无遮挡网站| 757午夜福利合集在线观看| 99国产精品一区二区蜜桃av | 热99国产精品久久久久久7| 俄罗斯特黄特色一大片| 两性午夜刺激爽爽歪歪视频在线观看 | 啦啦啦 在线观看视频| 啦啦啦中文免费视频观看日本| 欧美午夜高清在线| 777米奇影视久久| 亚洲色图av天堂| 亚洲av电影在线进入| 亚洲精品av麻豆狂野| 久久精品人人爽人人爽视色| netflix在线观看网站| 色94色欧美一区二区| 午夜91福利影院| 亚洲九九香蕉| a级毛片黄视频| 两性夫妻黄色片| 中文字幕制服av| 性少妇av在线| 91成人精品电影| 法律面前人人平等表现在哪些方面| 一进一出好大好爽视频| 国产精品一区二区免费欧美| 欧美日韩中文字幕国产精品一区二区三区 | 亚洲黑人精品在线| 777久久人妻少妇嫩草av网站| 1024视频免费在线观看| 日本黄色视频三级网站网址 | 男女边摸边吃奶| 亚洲五月色婷婷综合| 一区二区三区精品91| 久久婷婷成人综合色麻豆| 国产成人av教育| 丁香六月天网| 一级片'在线观看视频| 日本黄色日本黄色录像| 757午夜福利合集在线观看| 后天国语完整版免费观看| 亚洲欧美色中文字幕在线| 天堂8中文在线网| 久久人妻熟女aⅴ| 亚洲精品国产区一区二| 可以免费在线观看a视频的电影网站| 人妻一区二区av| 一本大道久久a久久精品| 十八禁人妻一区二区| 涩涩av久久男人的天堂| 9色porny在线观看| 精品免费久久久久久久清纯 | 他把我摸到了高潮在线观看 | 久久精品91无色码中文字幕| 亚洲精品在线观看二区| 最新美女视频免费是黄的| 精品少妇黑人巨大在线播放| 老司机深夜福利视频在线观看| 亚洲精华国产精华精| 老汉色∧v一级毛片| 色婷婷av一区二区三区视频| 亚洲,欧美精品.| 黄色毛片三级朝国网站| 国产有黄有色有爽视频| 老司机在亚洲福利影院| 制服诱惑二区| 一级黄色大片毛片| 国产97色在线日韩免费| av视频免费观看在线观看| 国产成人av激情在线播放| 人妻 亚洲 视频| 久久午夜综合久久蜜桃| 欧美日韩中文字幕国产精品一区二区三区 | 男人操女人黄网站| 国产在线一区二区三区精| 成人国产av品久久久| 欧美人与性动交α欧美精品济南到| 亚洲国产成人一精品久久久| 成人国产av品久久久| 无人区码免费观看不卡 | aaaaa片日本免费| 亚洲少妇的诱惑av| 久久热在线av| 叶爱在线成人免费视频播放| 999精品在线视频| 亚洲avbb在线观看| 欧美变态另类bdsm刘玥| 看免费av毛片| 丝袜美腿诱惑在线| 久久精品国产综合久久久| a在线观看视频网站| 国产深夜福利视频在线观看| 18禁裸乳无遮挡动漫免费视频| 国产av一区二区精品久久| 窝窝影院91人妻| 久久国产精品大桥未久av| 高清欧美精品videossex| 男女边摸边吃奶| 久久久久久人人人人人| 久久久久视频综合| 1024香蕉在线观看| 啦啦啦在线免费观看视频4| 1024视频免费在线观看| 三上悠亚av全集在线观看| 日韩中文字幕视频在线看片| 国产伦理片在线播放av一区| 男男h啪啪无遮挡| 久久性视频一级片| 男女午夜视频在线观看| 国产精品免费大片| 成年人免费黄色播放视频| 成年人午夜在线观看视频| 天天操日日干夜夜撸| 三上悠亚av全集在线观看| 视频区图区小说| 18禁国产床啪视频网站| av不卡在线播放| 麻豆国产av国片精品| av天堂在线播放| 免费在线观看日本一区| 久久精品国产亚洲av高清一级| 三上悠亚av全集在线观看| √禁漫天堂资源中文www|