• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Polyhedral Feasible Set Computation of MPC-Based Optimal Control Problems

    2018-07-31 09:49:42LantaoXieLeiXieHongyeSuSeniorMemberIEEEandJingdaiWang
    IEEE/CAA Journal of Automatica Sinica 2018年4期

    Lantao Xie,Lei Xie,Hongye Su,Senior Member,IEEE,and Jingdai Wang

    Abstract—Feasible sets play an important role in model predictive control(MPC)optimal control problems(OCPs).This paper proposes a multi-parametric programming-based algorithm to compute the feasible set for OCP derived from MPC-based algorithms involving both spectrahedron(represented by linear matrix inequalities)and polyhedral(represented by a set of inequalities)constraints.According to the geometrical meaning of the inner product of vectors,the maximum length of the projection vector from the feasible set to a unit spherical coordinates vector is computed and the optimal solution has been proved to be one of the vertices of the feasible set.After computing the vertices,the convex hull of these vertices is determined which equals the feasible set.The simulation results show that the proposed method is especially effcient for low dimensional feasible set computation and avoids the non-unicity problem of optimizers as well as the memory consumption problem that encountered by projection algorithms.

    I.INTRODUCTION

    M ODEL predictive control(MPC)is a widely used method in process industries and fields such as automobile,energy,environment,aerospace and medical treatment,etc[1],[2]because of its ability to effectively handle the complex dynamics of systems with multiple inputs and outputs,system constraints,and conflicting control objectives.A key role played in a MPC framework is the so-called feasible set,i.e.the largest subset of the state space for which there exists a control action satisfying all the constraints[3].MPC-based controllers will finally result in solving a standard optimal control problems(OCPs)such as linear programming(LP),quadratic programming(QP),semidefinite programming(SDP),dynamic programming(DP),etc.If the corresponding OCP is designed to be stable or recursively feasible,once the initial state is in the feasible set,there always exists an optimal control action at each following sample time.

    As stated in[4],a larger feasible set usually means that the corresponding MPC algorithm is less conservative.Thus,when comparing conservativeness of different MPC algorithms,feasible sets are often compared,such as in[5],[6].Feasible sets can also be used to modify initial work states to ensure feasibility,and its shape description plays an important role in the effectiveness of many of the approaches for approximate explicit MPC[3].By restricting the state of the second step in the prediction horizon in the feasible set and computing each set iteratively,the algorithm proposed in[7]obtains the recursively feasible set and guarantees recursive feasibility.Even with the consideration of techniques used for stability,feasible sets are closely related with the prediction horizon and system constraints;generally longer horizons and looser system constraints result in larger feasible sets.

    Oval-shaped and polyhedral feasible sets are two commonly used convex sets in MPC algorithms.Ellipsoid can be described as a weighted 2-norm and its size is related with some measure of the weighted matrix.By performing a maximum volume optimization in terms of the weighted matrix,one can obtain the largest ellipsoid,i.e.,the oval-shaped feasible set,such as that shown in[8].A polyhedron is the intersection of finitely many halfspaces.Computation of a polyhedron is much more complicated than of a ellipsoid.The standard approach to compute polyhedral feasible set is orthogonal projection[9].However,the orthogonal projection needs the polyhedron to be described by its vertices(V-representation)or the intersection of halfspaces(H-representation),which cannot be applied when the polyhedron is written in linear matrix inequality(LMI)form.Moreover,orthogonalprojection often turns out to be computationally intractable in high spatial dimensions.This often happens when the feasible set is computed for MPC-based OCPs with long prediction horizons or with large number of slack variables such as that in some robust MPC[10]and stochastic MPC algorithms[7].Alternatives to compute feasible set involve parametric linear programming(PLP)methods[11]and set relation methods[3].However,PLP methods may lead to numerical difficulties due to the non-unicity of the optimizers[12],while set relation methods are only efficient for OCPs without slack variables.

    Based on the final OCP derived from MPC-based algorithms,this paper proposes a novel multi-parametric programming problem where the final OCP involves both spectrahedron(represented by LMI)and polyhedral(represented by a set of inequalities)constraints.According to the geometrical meaning of an inner product of vectors,the maximum length of the projection vector from the feasible set to a unit spherical coordinates vector is computed and the optimal solution is proven to be one of the vertices of the feasible set.After computing all the vertices of the feasible set,the convex hull of these vertices is computed which is equivalent to the feasible set.The simulation results show that the proposed method is especially efficient for low dimensional feasible set computation and avoids the non-unicity problem of optimizers,as well as the memory consumption problem encountered by projection algorithms.

    Notations:The sets of reals is denoted by R.Given two integers a and b where a<b,N[a,b]=[a,a+1,a+2,...,b]and given two sets X?Rnand Y?Rn,the Minkowski set addition is defined by X⊕Y={x+y|x∈X,y∈Y}and the Pontryagin set difference is then defined by X?Y={x|x⊕Y?X}.Given set Z?Rn+m,its projection onto Rnis defined by Projx(Z)={x ∈ Rn|?y∈ Rmsuch that(x,y)∈Z}.Given matrix Qi,diag(Q1,...,Qn)denotes the block diagonal matrix with matrix Qion the main diagonal.E(·)denotes expectation.|→a|denotes the length of vector →a.[x]iis the i-th element of x.‖x‖ denotes the Euclidean norm.The semidefinite matrix A is denoted by A?0.Given two vectors →a,→b,the angle between →a and →b is expressed as∠(→a,→b).conv{v1,v2,...,vn}denotes the convex hull of points(v1,v2,...,vn).

    II.PROBLEM SETUP

    Consider the controlled system to be described as

    where xkis system state and ukis system input,△f is model uncertainty,dkis deterministic noise and wkrepresents stochastic noise with proper dimensions.Constraints to the systems include expectation constraints which can be expressed as HE(x)+GE(u)≥0[13],probability constraints(or chance constraints)(Pro{Hx+Gu≥ 0}≥ 1-?)[14],and hard constraints(Hx+Gu≥0)[15].By using linear matrix inequalities(LMI)or constraints tightening methods,the optimal control problems of different algorithms can befinally converted to a uniform uncertainty-free form:

    where?denotes partial order[16](i.e.A?B if and only if A-B is positive semidefinite)and H(xk,θk)is a square matrix.The symbol“≥”represents the vector inequality or componentwise inequality[17]when G(xk,θk)is a vector or a matrix,i.e.,A ≥ B means that aij≥ bij,for?i,j.xkis the initial state and θkrepresents the inputs as well as the necessary slack variables depending on different systems and different MPC-based algorithms.

    The feasible set of OCP(2)is the largest subset of the state space for which there exists a θksatisfying all the constraints that can be defined as

    Def nition 1(Polytope[18]):A bounded convex polyhedron is a polytope or,equivalently,a set P is called a polytope if it can be expressed as the convex hull of finitely many points,i.e.,P=conv{x1,x2,...,xp}.A k-dimensional polytope is called a k-polytope.This means that some(k+1)-subfamily of(x1,x2,...,xp)is affinely independent,but no such(k+2)-subfamily is affinely independent.The convex hull of k+1 affinely independent points(i.e.,k-polytope)is a k-simplex.A simplex is a k-simplex if and only if it has k+1 vertices.

    From this definition we can see that a 1-simplex is a closed segment,a 2-simplex is a triangle and a 3-simplex is a tetrahedron.We adopt the convention that the empty set is a polytope of dimension-1.

    Assumption 1:The feasible set of OCP(2)is a(p-1)-simplex.

    Thus,F can be represented as[19]:

    where(v1,v2,...,vp)are the p vertices of F.Note that the description of a feasible set by a set of inequalities(H-representation)in(3)and the convex linear combinations(V-representation)in(4)are equivalent.The goal of this paper is to find all the vertices of F.

    III.FEASIBLE SET COMPUTATION

    As the value of inner product between two vectors →a,→b can be treated as the length of the projection vector from →b to →a if→a is a unit vector,the multi-parametric programming problem(mPPP)for computing the vertices of feasible set then can be expressed as:

    where ‖c‖ =1.In fact,the restriction to the length of vector→c is not necessary as long as the cost function is to compute the maximum length of the projection fromto a vector in some direction.However,if we chooseto be unit,the cost function of mPPP(5)would be more meaningful as cTx==where →p is the projection fromto

    We will start with the computation of a 2-dimensional feasible set.

    A.2-D Case

    When x∈R2,the feasible set can be shown in a plane.For convenience,we assume the p vertices(v1,v2,...,vp)of F are ordered.Here,“ordered”means viis adjacent to vi+1,vpis adjacent to v1,and the index increases anticlockwise.Let c=cα=(cosα,sinα),where c is the unit vector of the polar coordinator.Letdenote the boundary of F and let int(F)denote the interior of F,where F=⊕int(F).

    Lemma 1:Given a point x ∈ F and a vectorif the angle between-andis equal or less than 90°for?i∈ N[1,p],then x is on the boundary of polytope F.

    Proof:If p≤2,it is obvious that x∈as=F.When p≥3,assume x is a interior point of F and xqis a point on the boundary of F withand λ > 0.Assume xqis on the edge ofThen,there exists a i such that∠vjxvj+1+∠vj+1xvj+2+···+∠vj+i-1xvj+i≤ 180°and∠vjxvj+1+∠vj+1xvj+2+···+∠vj+ixvj+i+1> 180°where the subscript of v represents the remainder when dividing by p if it is larger than p.As[0°,90°],which means that∠vj+ixq,∠vj+i+1xq ∈ [0°,90°],∠vj+ixvj+i+1=360°-∠vj+ixq-∠vj+i+1xq≥ 180°.Since∠vj+ixvj+i+1is a interior angle of△vj+ixvj+i+1and less than 180°and conflicts with∠vj+ixvj+i+1≥ 180°,x cannot be a interior point of F.Thus,x∈ F.

    Lemma 2:The solution x?to problem(5)is on the boundary of F,i.e.,x?∈

    Proof:As x?is the solution to problem(5),we have cx?≥ cvi,?i ∈ N[1,p].That isThus,the angle betweenis equal to or less than 90°for?i∈ N[1,p].According to Lemma 1,x?would be on the boundary of F.

    Lemma 3:There exists a certain αi∈ [0°,360°]such that the solution x?to problem(5)would be the vertice viof F for?i∈ N[1,p].

    Proof:From Lemma 2 we know that x?∈Assume?xα∈such that xα/=viand cαxα≥cαvifor?α ∈[0°,360°].That is?xα(/=vi)∈such thatfor?α ∈ [0°,360°].Let α = α1such that90°andThen,let α2=180°+α1+? where ? is a extremely small angle such thatThus,we cannot find a xα2∈such thatas Fig.1 shows a contradiction.

    Fig.1. Feasible set in 2-D.

    From Lemma 3 we know that,if we can find all the αi,we will obtain all the vertices of F.Thus,if we traverse α in[0°,360°]with a proper interval,the feasible set can be computed.This procedure can be described as

    1)Let k=1.

    2)For α =0°to 360°with step length ε (i.e.,α = α+ε for the next step).

    3)Compute xαby solving J(x,cα)from OCP(5).

    4)Let xk=xαand k=k+1.

    5)Endfor.

    6)Compute the convex hull of points set P =(x1,x2,...,xend)and let S=conv{P}.

    Th eorem 1:There exists an appropriate ε such that S=F.

    Proof:From Lemma 3 we get that there exists αi∈[0°,360°]such that the solution x?to problem(5)would be the vertice viof F.ε is chosen such that αi=Niε,where Niis a proper integer for?i∈ N[1,p].Thus,vi,?i∈ N[1,p]would be in the points set P and S=conv{P}=F.

    From the proof of theorem 1,we know that the optimal ε would be the maximum to make αi/ε an integer so that the total computation time would be reduced to a minimum.

    B.3-D Case

    If x ∈ R3,let c=cα,β=(sinβ,cosβ sinα,cosβ cosα)which is a unit vector in spherical coordinates.For vertice vi,we assume its adjacent ni vertices can be expressed as(vi+1,...,vi+ni).A similar lemma for the existence of these vertices can be described as:

    Lemma 4:There exists a certain αi∈ [0°,360°]and βj∈[0°,360°]such that the solution x?to problem(5)would be vertice viof F for?i∈ N[1,p].

    Proof:Assume ?xα,β∈ F such that xα,β/= viand cα,βxα,β≥ cα,βvifor ?α ∈ [0°,360°]and ?β ∈ [0°,360°].That is ?xα,β(/=vi) ∈ F such thatfor?α ∈ [0°,360°]and ?β ∈ [0°,360°].Let α = α1,β = β1such thatand90°,j=2,3,...,ni.Then,let α2=180°+ α1+ ?1,β2=360°- β1+ ?2where ?1and ?2are extremely small angles such thatfor some j(such j always exists;otherwise,F will be concave or vicannot be a vertice).Thus,we cannot find a xα2,β2∈ F such thatas Fig.2 shows this contradiction.

    Fig.2.Feasible set in 3-D.

    Again,if we traverse α and β through 0°to 360°,we will find all the needed vertices.This procedure can be described as:

    1)Let k1=1,k2=1.

    2)For β =0°to 360°with step length ε1

    3) For α =0°to 360°with step length ε2

    4) Compute xα,βby solving J(x,cα,β)from OCP(5).

    5) Let xk1,k2=xα,βand k2=k2+1.

    6) Endfor.

    7) k1=k1+1.

    8)Endfor.

    9)Compute the convex hull of points set P=(x1,1,x1,2,...,xend,end)and let S=conv{P}.

    Theorem 2:There exists an appropriate ε =(ε1,ε2)such that S=F.

    Proof:Similar to Theroem 1,omitted here.

    Parameters ε1and ε2can be chosen individually according to prior knowledge of the structure of the feasible set.If the vertices of the feasible set are smooth in some axis,the according ε can be chosen a little larger.The best ε would still be the maximum(ε1,ε2)to make αi/ε1and βj/ε2integers so that the number of circulation can be reduced to minimum.

    C.High er Dimensional Case

    When x∈Rnwhere n≥4 and considering the n-dimensional spherical coordinates,we specify c=(c1,c2,...,cn)where:

    Theoretically,if we traverse (φ1,φ2,...,φn-1) from 0°to 360°with appropriate interval(ε1,ε2,...,εn-1),we will end up with a convex hull conv{P} =conv{x1,...,1,...,xend,...,end} with all the vertices vi∈conv{P},?i∈ N[1,p].Thus,S=conv{P}just like in the 2-D and 3-D cases.However,if the computation time for every loop is T0with the majority comes from solving the mPPP(5),the total computation time Tt=(360°/ε0)n-1T0where we treat ε0= ε1= ···= εn-1will increase so rapidly as the dimension of x increases that the proposed method may not be tractable.

    An alternative is to consider the orthogonal projection if the feasible set is well structured and the projection is computationally tractable.From the definition of orthogonal projection,we know that given P={x,θ|H(x,θ) ? 0,G(x,θ) ≥ 0},F=Projx(P).However,LMI H(x,θk)? 0 cannot be handled in projection algorithms in which only V-representation and H-representation are allowed.In fact,the region of LMI H={x,θk|H(x,θk) ? 0}is called a spectrahedron[20].A lot of work on the connections between polyhedrons and spectrahedrons has been done such as[20],[21].Recently,[22]proposed a method to convert the spectrahedron to an identical polyhedron.In particular,we have to find a transform matrix M such that MTH(x,θk)M=diag(Q(x, θk),D(x, θk))where D(x,θk))is a diagonal matrix map where[22]proved that H={x,θk|D(x,θk)? 0}.Thus,H can be expressed in H-representation H={x,θk|Dii(x,θk) ≥ 0}.Though[22]proposed an approach to compute M by seeking the joint invariant subspace and its orthonormal basis,this procedure is rather complicated.

    Remark 1:The proposed method is particularly efficient for low dimensional feasible set computation.When the total computation time Ttbecomes unacceptable,the transformed orthogonal projection then should be considered.

    IV.SIMULATION EXAMPLE

    Example 1:Consider the widely used system[10],[23],[24]:

    with system constraints x∈X={x|-10≤[x]1≤2,-10≤[x]2≤10},u∈U={u|-1≤u≤1}and w∈W={w|-0.01≤[w]1≤0.01,-0.01≤[w]2≤0.01}.Assume the applied algorithm is the min-max MPC proposed in[8]with open-loop control law.When the prediction horizon N=1,constraints to the mPPP would be

    where S={x|0.5[x]2≤0.99,-0.66[x]1-1.33[x]2≤0.96,0.66[x]1+1.32[x]2≤0.96,0.43[x]1+0.21[x]2≤0.95,-0.43[x]1-0.21[x]2≤0.95}is the maximum robust control invariant set which can be computed by methods introduced in[4]and θ=u.Thus,the feasible set computed by the proposed method with ε=5°is shown in Fig.3 in dark green and set in light green is the set P={x,u|Ax+Bu∈X?S,x∈X,u∈U}.The result is identical to that computed by projection which means ε=5°works well.

    Fig.3.Feasible set of Example 1 with N=1.

    Example 2:Consider the continuously stirred tank reactor(CSTR)system in[7]:

    where

    Constraints for this CSTR system are Pr{-10≤[x]1≤10}≥90%,Pr{-5≤[x]2≤5}≥90%,Pr{-2.8≤[x]3≤2.8}≥90%,-2.156×10-2≤u≤0.2.Deterministic disturbances range-1≤[p]2≤1,-2≤[p]3≤2.[p]1is a persistent deterministic disturbance and[p]1=-1×10-3when t≥30 mins,otherwise,[p]1=0.Stochastic disturbance q~N(0,10)and 10≤q≤10.

    Using the proposed algorithms in[7],the final OCP involves both spectrahedral and polyhedral constraints.Choose ε0= ε1= ε2=3°and the feasible set can be computed accurately when N=12 as Fig.4 shows.The dimension of θ increases when the prediction horizon N increases which in turn increases,the total time to compute the feasible set.We record the total time for the proposed method as well as the orthogonal projection approach based on Fourier method[25]to compute the feasible set.From Fig.5 we can see that the computation time for the proposed method increases slowly as it depends on the computation time of the basic mPPP once the dimension of the feasible set is decided.However,the computation time as well as memory consumption of orthogonal projection increases rapidly when the dimension of θ increases,which ultimately leads to the memory exhaustion when N=10.Thus,when the dimension of θ is large and dimension of x is small,the proposed method would be a good choice to compute the feasible set.

    The implementation was performed on laptop with Intel Core i7-4600U@2.10GHz 2.70GHz and 8 GB RAM.mPPP is solved by cvx tool box[26]in MATLAB and the polyhedron operation and orthogonal projection are realized by the multiparametric toolbox(MPT)[27].

    Fig.4. Feasible set for example 2 with N=12.

    Fig.5.Computation time.

    V.CONCLUSION

    In this paper,a multi-parametric programming problem has been proposed to compute the feasible set of the final OCP derived from MPC-based algorithms and involving both spectrahedral(represented by LMI)and polyhedral(represented by a set of inequalities)constraints.In fact,the forms or even the convexity and linearity of constraints are not restricted as long as assumption 1 holds.The simulation results showed that the proposed method is especially efficient for low dimensional feasible set computation and avoided the non-unicity problem of optimizers.Because the computation procedure just involves solving the basic mPPP repeatedly,memory consumption is not large.Thus,the proposed algorithm avoids the memory depletion problem encountered by projection algorithms.If we choose a large ε,a glimpse of the feasible set is available as the computed S would be a subset of the feasible set.This can be used to find a rough initial state or check the existence of a nonempty feasible set.

    However,if the dimension of the feasible set is very large,the computational burden of the proposed method would be horrific.One may consider transforming the LMI-representation constraints to H-representation using transformation techniques from spectrahedron to polyhedron and then applying the orthogonal projection if the feasible set is well structured and the projection is computationally tractable.

    亚洲九九香蕉| 精品午夜福利视频在线观看一区 | 超碰成人久久| 丁香六月天网| 99精国产麻豆久久婷婷| 青草久久国产| 我的亚洲天堂| 国产日韩欧美视频二区| 国产不卡一卡二| 岛国毛片在线播放| 免费在线观看黄色视频的| 国产日韩一区二区三区精品不卡| 亚洲精品在线美女| 欧美黑人欧美精品刺激| 亚洲精品自拍成人| 黄色丝袜av网址大全| 日韩免费高清中文字幕av| 狠狠精品人妻久久久久久综合| 欧美激情 高清一区二区三区| 精品福利永久在线观看| www.精华液| www日本在线高清视频| 99国产极品粉嫩在线观看| 啦啦啦 在线观看视频| 国产黄频视频在线观看| 国产一区二区 视频在线| 国产精品国产高清国产av | 天天添夜夜摸| 亚洲伊人久久精品综合| 成人永久免费在线观看视频 | 婷婷丁香在线五月| 下体分泌物呈黄色| h视频一区二区三区| 国内毛片毛片毛片毛片毛片| 日韩一卡2卡3卡4卡2021年| 国产一区二区 视频在线| 变态另类成人亚洲欧美熟女 | 9色porny在线观看| 亚洲国产欧美日韩在线播放| 成人免费观看视频高清| 国产熟女午夜一区二区三区| 国产av国产精品国产| 热re99久久精品国产66热6| 1024香蕉在线观看| 后天国语完整版免费观看| 最新美女视频免费是黄的| 亚洲午夜精品一区,二区,三区| 国产在线观看jvid| 色精品久久人妻99蜜桃| 超碰成人久久| 人人妻,人人澡人人爽秒播| 国产精品二区激情视频| 欧美精品一区二区免费开放| 国产av国产精品国产| 国产精品亚洲一级av第二区| 人人妻人人爽人人添夜夜欢视频| 免费观看a级毛片全部| 怎么达到女性高潮| 99久久人妻综合| 色94色欧美一区二区| 精品熟女少妇八av免费久了| 91九色精品人成在线观看| 久久精品国产a三级三级三级| 性高湖久久久久久久久免费观看| 亚洲精品乱久久久久久| 老司机在亚洲福利影院| 80岁老熟妇乱子伦牲交| 亚洲熟女精品中文字幕| 亚洲色图综合在线观看| 精品亚洲乱码少妇综合久久| 最近最新中文字幕大全免费视频| svipshipincom国产片| 九色亚洲精品在线播放| 精品乱码久久久久久99久播| 视频区图区小说| 亚洲精品av麻豆狂野| 亚洲熟女毛片儿| 久久久久久久大尺度免费视频| 精品亚洲成a人片在线观看| 涩涩av久久男人的天堂| videos熟女内射| avwww免费| 亚洲视频免费观看视频| 中文字幕人妻丝袜一区二区| 老司机影院毛片| 母亲3免费完整高清在线观看| 欧美成狂野欧美在线观看| 亚洲国产av影院在线观看| 国产成人欧美在线观看 | 免费在线观看日本一区| 一边摸一边抽搐一进一出视频| av在线播放免费不卡| 啪啪无遮挡十八禁网站| 丰满迷人的少妇在线观看| 亚洲成人免费电影在线观看| 国产免费现黄频在线看| 大片电影免费在线观看免费| 亚洲三区欧美一区| 国产精品九九99| 国产精品美女特级片免费视频播放器 | 老熟女久久久| 夜夜爽天天搞| 最近最新中文字幕大全电影3 | 亚洲 国产 在线| 国产精品一区二区在线观看99| 亚洲人成伊人成综合网2020| 又黄又粗又硬又大视频| 久久中文看片网| 国产色视频综合| 午夜免费鲁丝| 日韩制服丝袜自拍偷拍| 51午夜福利影视在线观看| 久久久国产一区二区| 9热在线视频观看99| 在线永久观看黄色视频| 久9热在线精品视频| av国产精品久久久久影院| 丝瓜视频免费看黄片| 叶爱在线成人免费视频播放| 狂野欧美激情性xxxx| 在线十欧美十亚洲十日本专区| 日韩 欧美 亚洲 中文字幕| 亚洲精品自拍成人| 王馨瑶露胸无遮挡在线观看| 欧美av亚洲av综合av国产av| 久久精品91无色码中文字幕| 免费在线观看日本一区| 天天影视国产精品| 在线观看免费日韩欧美大片| 精品少妇内射三级| av欧美777| 免费看十八禁软件| 王馨瑶露胸无遮挡在线观看| 久久久欧美国产精品| tocl精华| 亚洲va日本ⅴa欧美va伊人久久| 日韩欧美一区视频在线观看| 亚洲熟女精品中文字幕| 色婷婷久久久亚洲欧美| 高清视频免费观看一区二区| 极品人妻少妇av视频| 不卡av一区二区三区| 国产精品香港三级国产av潘金莲| 亚洲一卡2卡3卡4卡5卡精品中文| 老司机深夜福利视频在线观看| 日韩欧美一区视频在线观看| 69精品国产乱码久久久| 国产精品熟女久久久久浪| 一区二区日韩欧美中文字幕| 国产欧美日韩综合在线一区二区| 国产老妇伦熟女老妇高清| 国产不卡av网站在线观看| 亚洲色图 男人天堂 中文字幕| 免费一级毛片在线播放高清视频 | 色尼玛亚洲综合影院| 国产无遮挡羞羞视频在线观看| 99在线人妻在线中文字幕 | 夜夜骑夜夜射夜夜干| 精品一区二区三卡| 麻豆国产av国片精品| 大片免费播放器 马上看| 搡老岳熟女国产| a在线观看视频网站| 久久99热这里只频精品6学生| 三上悠亚av全集在线观看| 亚洲九九香蕉| 可以免费在线观看a视频的电影网站| 亚洲 欧美一区二区三区| 日本五十路高清| 亚洲av日韩在线播放| 正在播放国产对白刺激| 99国产极品粉嫩在线观看| 国产精品久久久久久人妻精品电影 | 女人高潮潮喷娇喘18禁视频| 久久免费观看电影| 日日摸夜夜添夜夜添小说| 日本欧美视频一区| av国产精品久久久久影院| 国产成人欧美| 欧美精品一区二区大全| 久久久久久久久免费视频了| 精品一区二区三卡| 别揉我奶头~嗯~啊~动态视频| 成人永久免费在线观看视频 | 中文字幕高清在线视频| 黄片小视频在线播放| av福利片在线| 久久国产精品影院| 精品国产乱码久久久久久男人| 中文字幕最新亚洲高清| 亚洲美女黄片视频| 18在线观看网站| 亚洲成人手机| 18禁国产床啪视频网站| 成年女人毛片免费观看观看9 | 91字幕亚洲| 满18在线观看网站| 久久99热这里只频精品6学生| 丝袜喷水一区| 久久99一区二区三区| 人妻久久中文字幕网| 亚洲色图综合在线观看| 国产精品亚洲一级av第二区| 国产亚洲精品第一综合不卡| 国产欧美亚洲国产| 成人手机av| 国产高清videossex| 亚洲一区中文字幕在线| 无遮挡黄片免费观看| 国产一区二区三区在线臀色熟女 | 蜜桃在线观看..| 久久久久国内视频| 在线播放国产精品三级| 变态另类成人亚洲欧美熟女 | 亚洲自偷自拍图片 自拍| 欧美老熟妇乱子伦牲交| 人妻久久中文字幕网| 在线亚洲精品国产二区图片欧美| 人成视频在线观看免费观看| 黑人操中国人逼视频| 久久久欧美国产精品| 日本vs欧美在线观看视频| 侵犯人妻中文字幕一二三四区| 国产在线免费精品| 久久久精品94久久精品| 亚洲欧美色中文字幕在线| 日本av免费视频播放| 一本大道久久a久久精品| 中文字幕人妻丝袜一区二区| 国产亚洲午夜精品一区二区久久| 国产日韩欧美亚洲二区| 欧美人与性动交α欧美精品济南到| 国产精品久久久久成人av| a级片在线免费高清观看视频| 国产成人免费观看mmmm| 久久久精品区二区三区| 老鸭窝网址在线观看| 美女福利国产在线| 亚洲av美国av| 免费久久久久久久精品成人欧美视频| 国产野战对白在线观看| 亚洲熟女精品中文字幕| 亚洲欧美日韩另类电影网站| 男女之事视频高清在线观看| 99久久99久久久精品蜜桃| 国产伦理片在线播放av一区| 法律面前人人平等表现在哪些方面| 日韩制服丝袜自拍偷拍| 亚洲一卡2卡3卡4卡5卡精品中文| 国产视频一区二区在线看| 成在线人永久免费视频| av国产精品久久久久影院| 一区二区日韩欧美中文字幕| av又黄又爽大尺度在线免费看| 丝袜在线中文字幕| 这个男人来自地球电影免费观看| 激情在线观看视频在线高清 | 亚洲免费av在线视频| 国产无遮挡羞羞视频在线观看| 亚洲七黄色美女视频| 亚洲精品av麻豆狂野| 热99久久久久精品小说推荐| 亚洲国产中文字幕在线视频| 国产亚洲精品第一综合不卡| 久久这里只有精品19| 国产亚洲av高清不卡| 欧美日韩亚洲综合一区二区三区_| 久久人人爽av亚洲精品天堂| 国产不卡av网站在线观看| 国产单亲对白刺激| 飞空精品影院首页| 国产色视频综合| 老司机在亚洲福利影院| 狠狠婷婷综合久久久久久88av| 精品国产乱子伦一区二区三区| av欧美777| 国产区一区二久久| 99久久人妻综合| 一区在线观看完整版| 午夜激情av网站| 精品国产一区二区三区久久久樱花| 黑人欧美特级aaaaaa片| 两个人免费观看高清视频| 日本撒尿小便嘘嘘汇集6| 另类精品久久| 青草久久国产| 亚洲五月色婷婷综合| 免费观看av网站的网址| 丰满少妇做爰视频| 露出奶头的视频| 久久99热这里只频精品6学生| 另类亚洲欧美激情| www.精华液| 少妇精品久久久久久久| 在线av久久热| 精品亚洲成a人片在线观看| 别揉我奶头~嗯~啊~动态视频| 国产视频一区二区在线看| 国产福利在线免费观看视频| 高清欧美精品videossex| 女人久久www免费人成看片| 精品第一国产精品| 一进一出好大好爽视频| 黄色丝袜av网址大全| 日韩视频在线欧美| 十分钟在线观看高清视频www| 午夜精品国产一区二区电影| 在线观看免费午夜福利视频| 飞空精品影院首页| 美女主播在线视频| 少妇粗大呻吟视频| 后天国语完整版免费观看| 黑人巨大精品欧美一区二区mp4| 亚洲av第一区精品v没综合| netflix在线观看网站| 亚洲精品粉嫩美女一区| 精品国产乱子伦一区二区三区| 亚洲成人国产一区在线观看| 成人18禁高潮啪啪吃奶动态图| 美女午夜性视频免费| 两人在一起打扑克的视频| 老熟妇仑乱视频hdxx| 超色免费av| 成年版毛片免费区| av超薄肉色丝袜交足视频| 免费日韩欧美在线观看| 免费女性裸体啪啪无遮挡网站| 精品国产国语对白av| 岛国毛片在线播放| 国产99久久九九免费精品| 国产精品影院久久| 99久久国产精品久久久| 日韩免费av在线播放| 69精品国产乱码久久久| 老熟妇仑乱视频hdxx| 成人黄色视频免费在线看| 黑人巨大精品欧美一区二区mp4| 肉色欧美久久久久久久蜜桃| 一本久久精品| 国内毛片毛片毛片毛片毛片| 亚洲自偷自拍图片 自拍| 精品国产一区二区三区久久久樱花| 一区二区三区国产精品乱码| 成人免费观看视频高清| 精品卡一卡二卡四卡免费| 黄色视频不卡| 真人做人爱边吃奶动态| 女性生殖器流出的白浆| 亚洲av成人一区二区三| 国产精品一区二区在线观看99| 久久久久久久久免费视频了| 捣出白浆h1v1| 国产精品电影一区二区三区 | 操出白浆在线播放| 亚洲专区中文字幕在线| 精品一区二区三区四区五区乱码| 免费看a级黄色片| 国产成人av教育| 亚洲 国产 在线| 日本一区二区免费在线视频| 亚洲伊人色综图| 午夜老司机福利片| 97在线人人人人妻| 中文字幕色久视频| 欧美在线黄色| 免费久久久久久久精品成人欧美视频| 国产免费av片在线观看野外av| 成人18禁在线播放| 80岁老熟妇乱子伦牲交| 国产成人啪精品午夜网站| 午夜精品国产一区二区电影| 亚洲av国产av综合av卡| 丰满少妇做爰视频| 考比视频在线观看| 色婷婷av一区二区三区视频| 日本黄色视频三级网站网址 | 成人18禁高潮啪啪吃奶动态图| 国产一卡二卡三卡精品| 人人妻人人添人人爽欧美一区卜| 国产欧美亚洲国产| 99九九在线精品视频| 精品久久久久久久毛片微露脸| 国产成人免费无遮挡视频| 在线天堂中文资源库| 久久 成人 亚洲| 成人亚洲精品一区在线观看| 黑人操中国人逼视频| 久久中文字幕人妻熟女| 色婷婷久久久亚洲欧美| 麻豆av在线久日| 麻豆乱淫一区二区| 国产熟女午夜一区二区三区| 久久精品国产a三级三级三级| 极品人妻少妇av视频| 国产亚洲精品第一综合不卡| 久久久国产一区二区| 精品人妻在线不人妻| www.精华液| 久久毛片免费看一区二区三区| 丰满人妻熟妇乱又伦精品不卡| 欧美午夜高清在线| 人人妻人人添人人爽欧美一区卜| 欧美日韩中文字幕国产精品一区二区三区 | 国产精品久久久久久精品古装| 青草久久国产| 大型黄色视频在线免费观看| 桃花免费在线播放| 丁香欧美五月| 欧美国产精品一级二级三级| 亚洲男人天堂网一区| 青青草视频在线视频观看| 成年人免费黄色播放视频| 美女福利国产在线| 一夜夜www| 成年版毛片免费区| 免费人妻精品一区二区三区视频| 国产成人欧美| 免费不卡黄色视频| 久久精品熟女亚洲av麻豆精品| 午夜久久久在线观看| 人妻 亚洲 视频| 久久久久精品国产欧美久久久| 国产精品国产av在线观看| 久久久久久久久免费视频了| 久久精品人人爽人人爽视色| 我要看黄色一级片免费的| 国产成人精品久久二区二区91| 国产精品免费视频内射| 青草久久国产| 黑人巨大精品欧美一区二区蜜桃| 国产成人欧美在线观看 | 国产欧美日韩精品亚洲av| xxxhd国产人妻xxx| 老司机影院毛片| 不卡av一区二区三区| 国产精品 国内视频| 一区二区三区激情视频| 午夜老司机福利片| 99re在线观看精品视频| 久久人妻av系列| 99re6热这里在线精品视频| 亚洲色图综合在线观看| 91av网站免费观看| 一级a爱视频在线免费观看| 欧美日韩成人在线一区二区| 自线自在国产av| 久久久久视频综合| 91麻豆精品激情在线观看国产 | www.精华液| 久久av网站| 日日爽夜夜爽网站| 亚洲九九香蕉| 一级a爱视频在线免费观看| 欧美乱妇无乱码| 嫩草影视91久久| 精品久久蜜臀av无| 另类亚洲欧美激情| 国产免费视频播放在线视频| 日韩欧美免费精品| 一级a爱视频在线免费观看| 亚洲熟女精品中文字幕| 91成人精品电影| 国产亚洲欧美精品永久| 久久中文看片网| 啦啦啦视频在线资源免费观看| 99国产综合亚洲精品| 9热在线视频观看99| 欧美精品一区二区免费开放| 亚洲少妇的诱惑av| 色尼玛亚洲综合影院| 十八禁网站网址无遮挡| 亚洲午夜理论影院| 人成视频在线观看免费观看| 老汉色∧v一级毛片| 色婷婷av一区二区三区视频| 午夜福利一区二区在线看| 怎么达到女性高潮| 中文字幕人妻丝袜制服| 在线观看66精品国产| 国产熟女午夜一区二区三区| 亚洲国产毛片av蜜桃av| 亚洲欧洲精品一区二区精品久久久| 亚洲熟妇熟女久久| 高清欧美精品videossex| 麻豆av在线久日| 久久久久久久大尺度免费视频| 在线av久久热| 国产精品免费一区二区三区在线 | 手机成人av网站| 久久性视频一级片| videos熟女内射| 男女高潮啪啪啪动态图| 国产精品九九99| 欧美国产精品va在线观看不卡| 嫁个100分男人电影在线观看| 欧美+亚洲+日韩+国产| 午夜激情久久久久久久| 捣出白浆h1v1| 欧美性长视频在线观看| 亚洲人成电影观看| 97在线人人人人妻| 欧美精品av麻豆av| 日韩熟女老妇一区二区性免费视频| 五月天丁香电影| 在线观看免费日韩欧美大片| 国产野战对白在线观看| 国产aⅴ精品一区二区三区波| 国产午夜精品久久久久久| 欧美性长视频在线观看| 久久午夜亚洲精品久久| 欧美精品高潮呻吟av久久| 国产日韩一区二区三区精品不卡| 大陆偷拍与自拍| 黑人巨大精品欧美一区二区mp4| 女警被强在线播放| 精品一区二区三卡| 久久青草综合色| 狠狠婷婷综合久久久久久88av| 亚洲熟女毛片儿| 日韩一卡2卡3卡4卡2021年| 午夜福利一区二区在线看| 国产成人免费无遮挡视频| 欧美在线一区亚洲| 久久久久久久大尺度免费视频| 777米奇影视久久| 亚洲精品美女久久久久99蜜臀| 国产精品久久久久成人av| 久久性视频一级片| 少妇精品久久久久久久| 色视频在线一区二区三区| 欧美激情高清一区二区三区| 亚洲成人免费电影在线观看| 久久久久久亚洲精品国产蜜桃av| 免费在线观看完整版高清| 久久精品熟女亚洲av麻豆精品| 亚洲精品久久午夜乱码| 男女免费视频国产| 国产高清视频在线播放一区| 美女扒开内裤让男人捅视频| 女性生殖器流出的白浆| 亚洲专区国产一区二区| 国产一区二区在线观看av| 热99久久久久精品小说推荐| 黑人操中国人逼视频| 99riav亚洲国产免费| 极品少妇高潮喷水抽搐| 91大片在线观看| 欧美日韩亚洲综合一区二区三区_| 中文亚洲av片在线观看爽 | 免费在线观看视频国产中文字幕亚洲| 免费人妻精品一区二区三区视频| tube8黄色片| 怎么达到女性高潮| 69av精品久久久久久 | 高清av免费在线| 欧美日本中文国产一区发布| 9热在线视频观看99| 99久久国产精品久久久| 欧美午夜高清在线| 国产在视频线精品| 制服诱惑二区| av在线播放免费不卡| 99国产精品99久久久久| 又大又爽又粗| 亚洲成人免费av在线播放| 久久国产精品人妻蜜桃| 天堂中文最新版在线下载| 999精品在线视频| 亚洲精品国产一区二区精华液| videosex国产| 亚洲精品成人av观看孕妇| 久久久久久亚洲精品国产蜜桃av| 亚洲久久久国产精品| 五月天丁香电影| bbb黄色大片| 亚洲视频免费观看视频| 中文字幕精品免费在线观看视频| 久久久国产成人免费| 国产主播在线观看一区二区| 国产成人精品久久二区二区免费| 欧美日韩成人在线一区二区| 天天影视国产精品| 青青草视频在线视频观看| 国产成人精品久久二区二区91| 好男人电影高清在线观看| 欧美大码av| 亚洲av日韩精品久久久久久密| 欧美人与性动交α欧美软件| 最近最新免费中文字幕在线| 一区二区三区激情视频| 国产熟女午夜一区二区三区| 欧美 日韩 精品 国产| 国产精品秋霞免费鲁丝片| 久久狼人影院| 精品少妇内射三级| 亚洲精品自拍成人| 欧美av亚洲av综合av国产av| 啦啦啦在线免费观看视频4| 亚洲国产欧美一区二区综合| 国产日韩欧美亚洲二区| 免费在线观看日本一区| 男女边摸边吃奶| 天天躁狠狠躁夜夜躁狠狠躁| 中文字幕av电影在线播放| 丝袜人妻中文字幕| 国产在线观看jvid| 中文字幕高清在线视频| 久久精品亚洲av国产电影网| 日韩精品免费视频一区二区三区| netflix在线观看网站| 成人黄色视频免费在线看| 国产免费av片在线观看野外av| 欧美人与性动交α欧美软件| 女警被强在线播放| 亚洲,欧美精品.|