• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    有效解決不規(guī)則多面體外接球問題的策略

    2018-07-12 02:39:38周迎富
    數(shù)理化解題研究 2018年16期
    關(guān)鍵詞:外心球心三棱錐

    周迎富

    (福建省晉江市子江中學(xué) 362261)

    一、直三棱柱及其補(bǔ)形體

    直三棱柱外接球的球心在上下底面外心連線的中點(diǎn)處;??疾槿悊栴}:底面分別是銳角、直角、鈍角三角形.直三棱錐可補(bǔ)形成直三棱柱,其外接球球心與對應(yīng)的直三棱柱相同.

    例1(2009全國Ⅰ卷理科) 已知直三棱柱ABC-A1B1C1的各頂點(diǎn)都在同一球面上,若AB=AC=AA1=2,∠BAC=120°,則此球的表面積等于____.

    題源變式可變?yōu)橹比忮FA1-ABC,側(cè)棱AA1⊥底面ABC,∠CAB=60°或90°或120°,求外接球表面積;

    二、直四棱柱及其補(bǔ)形體

    在實(shí)際解題中,通常還考查正方體、長方體及其補(bǔ)形體的外接球問題,常見的有四類幾何體可通過補(bǔ)形成正方體、長方體,來便捷地確定它們的球心和半徑.

    第①類直角四面體(三條側(cè)棱或三個側(cè)面兩兩垂直)、直角三棱柱;

    第②類四個面都是直角三角形的四面體;

    第③類等腰四面體(三組對棱分別相等,AB=CD=a,AC=BD=b,AD=BC=c).

    設(shè)補(bǔ)形后的長方體長寬高分別為x,y,z,則:

    x2+y2=a2,z2+y2=b2,x2+z2=c2

    第④類正四面體(各面都是正三角形,設(shè)棱長為a)

    三、特殊組合型斜三棱錐

    在命題中,還有一類考查對象是由等邊、等腰、直角三角形構(gòu)成特殊二面角組合的斜三棱錐,這類斜三棱錐外接球問題的解決步驟是:①通過計(jì)算確定三棱錐各個面的特征;②確定特殊三角形的外心;③分別過兩個特殊三角形的外心作所在平面的垂線,即得直徑所在直線,兩直徑交點(diǎn)即為球心.

    1.直角三角形組合成的三棱錐

    解析法一過Rt△PAB,Rt△ABC的外心分別作垂線,交于點(diǎn)O,點(diǎn)O即球心,AC即直徑,故答案:3π.

    法三通過驗(yàn)證,易得該三棱錐是以AP或BC為高的直三棱錐,可補(bǔ)形成對應(yīng)的直三棱柱來求解.

    法四通過計(jì)算,存在共斜邊的兩個直角三角形△PAC、△BAC,則斜邊AC即外接球直徑.

    2.等邊+直角三角形組合成特殊二面角的三棱錐

    3.等腰+直角三角形組合成特殊二面角的三棱錐

    定理得:

    外接球的表面積S=18π.

    四、其他不規(guī)則三棱錐的外接球問題

    對于沒有存在特殊三角形組合的情況,先確定球心,后利用球心到頂點(diǎn)的距離等于半徑、或球心與某個面外心的連線垂直于該面等性質(zhì)求解.

    例5(2017福建質(zhì)檢理數(shù))空間四邊形ABCD的四個頂點(diǎn)都在同一個球面上,E,F分別是AB,CD的中點(diǎn),且EF⊥AB,EF⊥CD,若AB=8,CD=EF=4,則該球的半徑等于____.

    綜上幾種類型,解決與球的外接問題重點(diǎn)是確定球心位置和半徑,關(guān)鍵是抓住球心到多面體頂點(diǎn)的距離等于半徑.掌握好基本的作圖能力和平面幾何基本知識,發(fā)揮好空間想象力,借助于數(shù)形結(jié)合進(jìn)行轉(zhuǎn)化,那么問題即可得解.

    猜你喜歡
    外心球心三棱錐
    怎樣用補(bǔ)形法求三棱錐的外接球半徑
    怎樣用補(bǔ)形法求三棱錐的外接球半徑
    直擊多面體的外接球的球心及半徑
    用向量法證明三角形的外心、內(nèi)心和垂心
    值得加味的三角形的“四心”
    復(fù)平面上三角形的外心公式的一種特殊形式
    三棱錐中的一個不等式
    ?如何我解決幾何體的外接球問題
    例析確定球心位置的策略
    對三角形外心和內(nèi)心的向量表示的探究
    清河县| 志丹县| 师宗县| 阜南县| 游戏| 镇赉县| 阿拉善左旗| 新津县| 梁山县| 江门市| 石泉县| 邮箱| 什邡市| 贵州省| SHOW| 临湘市| 芜湖县| 尼勒克县| 安福县| 保亭| 虹口区| 神木县| 寻甸| 肇源县| 耒阳市| 盈江县| 景谷| 宁蒗| 灵川县| 兴城市| 延津县| 沅陵县| 偏关县| 黑河市| 眉山市| 奉新县| 长海县| 永年县| 阆中市| 黄陵县| 南皮县|