張南南,牛良,崔國(guó)朝,潘磊,曾文芳,王志強(qiáng),魯振華
?
一種高通量提取桃DNA方法的建立與應(yīng)用
張南南,牛良,崔國(guó)朝,潘磊,曾文芳,王志強(qiáng),魯振華
(中國(guó)農(nóng)業(yè)科學(xué)院鄭州果樹研究所/國(guó)家桃葡萄品種改良中心/農(nóng)業(yè)部果樹育種技術(shù)重點(diǎn)實(shí)驗(yàn)室,鄭州 450009)
【目的】DNA制備是大規(guī)?;蛐秃Y選和分子標(biāo)記輔助選種的重要前提,本研究采用一種1.2 mL八聯(lián)排管代替單個(gè)離心管,探索一種操作簡(jiǎn)便、節(jié)約時(shí)間、成本低的桃DNA快速提取方法,以滿足高通量遺傳研究的需求,提高工作效率?!痉椒ā恳云胀ㄉL(zhǎng)型桃(standard type,ST)‘中油桃8號(hào)’為母本,溫度敏感半矮生型桃(temperature-sensitive semi-dwarf in,)‘09-1-112’為父本,雜交獲得F1代分離群體500株實(shí)生苗為載體,包括溫度敏感半矮生型246株,普通生長(zhǎng)型254株,建立一種高通量、低成本桃DNA提取方法。利用1.2 mL八聯(lián)排管結(jié)合八通道移液器,簡(jiǎn)化提取步驟,提取桃幼嫩葉片中的基因組DNA;通過紫外分光光度計(jì)和瓊脂糖凝膠電泳對(duì)所提取的DNA濃度、純度和完整性進(jìn)行檢測(cè)。基于高分辨率熔解曲線(high resolution melting,HRM),采用96孔板對(duì)溫度敏感半矮生型桃和普通生長(zhǎng)型桃共500個(gè)F1分離后代單株進(jìn)行PCR擴(kuò)增和基因分型,區(qū)分基因型與基因型?;陔p親表型與基因型一致,開發(fā)InDel位點(diǎn),PCR擴(kuò)增后,采用SDS-PAGE在F1群體中進(jìn)行驗(yàn)證,確定利用分離的DNA是否正確區(qū)分不同基因型?!窘Y(jié)果】分離的DNA經(jīng)紫外分光光度計(jì)檢測(cè),濃度范圍約為25—200 ng·μL-1,OD260nm/OD280nm約為1.81—1.98,DNA純度較高;瓊脂糖凝膠電泳條帶清晰、單一,DNA完整度較高。參考桃基因組(Version 2.0),根據(jù)雙親深度測(cè)序數(shù)據(jù),開發(fā)獲得SNP標(biāo)記SNP_Pp03_3758620,應(yīng)用于高分辨率熔解曲線基因分型,發(fā)現(xiàn)溫度敏感半矮生型和普通生長(zhǎng)型呈現(xiàn)明顯不同的峰型,證明提取的DNA模板可應(yīng)用于HRM基因分型?;陔p親基因型與表型一致,開發(fā)InDel標(biāo)記InDel_Pp03_3829009,聚丙烯酰胺凝膠電泳的驗(yàn)證結(jié)果顯示PCR擴(kuò)增具有較高的強(qiáng)度,獲得與目的片段大小一致的特異性條帶,且在兩種不同生長(zhǎng)型單株中具有明顯的多態(tài)性,表明PCR擴(kuò)增穩(wěn)定,提取的DNA可用于基于InDel標(biāo)記的多態(tài)性分析。使用該提取方法,每人每天可以完成1 000個(gè)樣品的DNA提取,成本較低,且不會(huì)對(duì)幼苗早期生長(zhǎng)造成影響?!窘Y(jié)論】建立了一種簡(jiǎn)便、有效、低成本的桃基因組DNA提取方法,可以滿足基因分型、品種鑒定及遺傳分析等分子生物學(xué)研究,實(shí)現(xiàn)了大批量不同樣本基因組DNA的同時(shí)提取,具有較高應(yīng)用價(jià)值。
桃;高通量;DNA提取方法
【研究意義】桃()原產(chǎn)中國(guó),是我國(guó)栽培最為廣泛的落葉果樹之一,僅次于蘋果、梨和葡萄[1]。桃基因組較小,染色體數(shù)量少,單基因控制性狀較多,被認(rèn)為是多年生果樹研究的模式植物[2]。隨著分子標(biāo)記技術(shù)在桃育種工作中的應(yīng)用,大規(guī)模樣本DNA提取操作過程復(fù)雜、耗時(shí)長(zhǎng)、成本高等問題突出,而基因分型、分子標(biāo)記輔助選擇、品種鑒定等工作對(duì)DNA的濃度和產(chǎn)量要求不高[3],不需要DNA樣品長(zhǎng)時(shí)間保存。因此,尋找一種簡(jiǎn)單、快速、高通量、成本低的DNA提取方法非常必要?!厩叭搜芯窟M(jìn)展】全基因組測(cè)序的完成為桃優(yōu)良性狀基因定位、遺傳多樣性分析、資源評(píng)價(jià)及分子輔助選種體系的建立等奠定了基礎(chǔ)[4-7]。隨著植物科學(xué)向分子水平進(jìn)一步發(fā)展,利用分子標(biāo)記進(jìn)行定位和克隆控制桃優(yōu)良性狀的基因、分子標(biāo)記選擇育種、大規(guī)模雜交后代單株基因型鑒定等成為桃分子育種的重要環(huán)節(jié)[8],而該類分子生物學(xué)和遺傳學(xué)研究都需大批量DNA以應(yīng)用于下游生物學(xué)反應(yīng)[9-11]。目前,快速高通量提取DNA的方法在作物中的應(yīng)用已有許多報(bào)道,Randhawa等[12]將小麥DNA高通量提取方法成功應(yīng)用于分子標(biāo)記輔助選擇育種;Xin等[13]結(jié)合CTAB與DNA提取試劑盒的方法提取高粱葉片與種子中的基因組DNA;Devi等[14]報(bào)道了適用于PCR擴(kuò)增等下游生物學(xué)研究的生姜基因組DNA快速提取方法。在木本果樹中高通量提取DNA的研究與應(yīng)用較少,Kim等[15]最先通過改良已有的4種DNA提取方法,報(bào)道了蘋果、梨、葡萄及柿子的DNA快速提取方法,可獲得高質(zhì)量的DNA;Cheng等[16]以柑橘為研究材料,報(bào)道了可應(yīng)用于20多種熱帶和亞熱帶果樹作物基因組DNA快速提取的方法。關(guān)于桃DNA快速DNA提取的研究雖已有報(bào)道,但僅提高DNA提取過程中的研磨速度,操作過程復(fù)雜,無法滿足高通量的需求[17]?!颈狙芯壳腥朦c(diǎn)】實(shí)驗(yàn)室中常用的傳統(tǒng)DNA提取方法,如CTAB或SDS等,操作步驟復(fù)雜,耗時(shí)耗力,難以適應(yīng)科研快速發(fā)展的需求[18]。雖然已經(jīng)有專用的設(shè)備可以實(shí)現(xiàn)高通量大規(guī)模的DNA提取,但是對(duì)于普通實(shí)驗(yàn)室而言,構(gòu)建一種簡(jiǎn)單、快速且低成本的中小通量的植物基因組DNA提取方法很有必要?!緮M解決的關(guān)鍵問題】采用改良CTAB法,以1.2 mL八聯(lián)排管代替2 mL離心管,建立一種高通量提取桃基因組DNA的有效方法,成功應(yīng)用于基因分型,提高桃大群體基因型篩選和分子標(biāo)記輔助選種的效率。
試驗(yàn)于2017年在農(nóng)業(yè)部果樹育種技術(shù)重點(diǎn)實(shí)驗(yàn)室進(jìn)行。
以‘中油桃8號(hào)’(standard type,ST)為母本,基因型為;‘09-1-112’(temperature-sensitive semi-dwarf in,)為父本,來源于‘SD9238’,基因型為。手工去雄后人工授粉,獲得F1雜交后代500株實(shí)生苗,其中型246株,普通生長(zhǎng)型254株,=0.800,2=0.064,比例約為1﹕1,符合孟德爾遺傳規(guī)律,采集各單株幼嫩葉片用于DNA提取。
采用CTAB[19]法提取桃葉片基因組DNA,略作修改(圖1),具體如下:(1)取桃幼嫩葉片約30 mg,用鑷子放入1.2 mL八聯(lián)排離心管底部,每孔各加入1個(gè)5 mm鋼珠(圖1-A),放入96孔底座,為防止液氮進(jìn)入離心管,確保離心管蓋高于液氮液面,并充分冷凍;(2)手動(dòng)搖晃數(shù)次,保證鋼珠充分打碎樣品,DNA自動(dòng)研磨儀(上海領(lǐng)成生物科技有限公司)進(jìn)行研磨,頻率30 Hz,時(shí)間90 s(圖1-B);(3)立即用鑷子輕輕敲打離心管蓋,使附著在管蓋內(nèi)壁的樣品掉落,待離心管蓋充分解凍后,于通風(fēng)櫥中開蓋,各離心管蓋朝上分別放于干凈實(shí)驗(yàn)紙上;(4)用300 mL量程8通道移液器加入配制好的CTAB液600 μL(圖1-C),放入60℃電熱恒溫鼓風(fēng)干燥箱加熱30 min,其間約每10 min輕搖勻;(4)稱量配平,放入冷凍離心機(jī)(Eppendorf 5810 R)4℃條件下,4 000 r/min瞬時(shí)離心,將管蓋及內(nèi)壁液體離心至底部;加入氯仿和異戊醇混合液,體積比為24﹕1,直至1.2 mL的八聯(lián)排離心管滿載線,后緩慢顛倒混勻5 min,配平后,放入冷凍離心機(jī)(Eppendorf 5810 R)4℃條件下,4 000 r/min,離心10 min;(5)分別吸取上清液100 μL于兩個(gè)200 μL PCR板中,其中一板加入等體積的無水乙醇,于-20℃冰箱1 h,稱量配平,4℃條件下,4 000 r/min,離心10 min,板孔朝下,迅速棄上清液;另一板放入4℃冰箱,保存?zhèn)溆?;?)在帶有沉淀的96孔PCR板中加入150 μL的70%的乙醇,4 000 r/min瞬時(shí)離心,洗滌沉淀兩次,加入無水乙醇洗滌沉淀一次,用100 μL的8通道移液器(Eppendorf)吸除離心管底部剩余無水乙醇,更換吸頭,自然晾干;(7)在室溫下自然風(fēng)干沉淀后,加入150 μL的0.1×TE溶解,同時(shí)加入0.5 μL的RNase(圖1-D),37℃放置1 h,祛除RNA污染(長(zhǎng)期保存在-20℃冰箱,常用則存于4℃冰箱),以用于后續(xù)研究。
A:取幼嫩葉片放入1.2 ml八聯(lián)排管Young leaves sampled into 1.2 mL thin-wall 8 strip polypropylene PCR tubes;B:研磨后的DNA樣品Samples after grinding;C:加入預(yù)熱的CTAB DNA samples with preheated extraction buffer;D:150 μL TE溶解DNA沉淀DNA dissolved in 150 μL TE
用1%瓊脂糖凝膠電泳對(duì)提取的DNA片段大小和完整度進(jìn)行檢測(cè),在紫外凝膠成像儀上觀察并拍照。吸取1 μL DNA樣品,采用NanoDrop 1000 spectrophotometer(Themo)紫外分光光度計(jì)檢測(cè)DNA濃度和純度(OD260mm/OD280mm),稀釋成工作液濃度(約25 ng·μL-1),以用于后續(xù)研究。
基于重測(cè)序數(shù)據(jù)開發(fā)與雙親基因型和表型緊密連鎖的SNP標(biāo)記,采用Primer 3.0軟件(http://primer3. ut.ee/)設(shè)計(jì)引物,設(shè)置引物的退火溫度60—63℃,擴(kuò)增片段長(zhǎng)度100—200 bp。采用HRM master mix(Roche)進(jìn)行PCR擴(kuò)增,反應(yīng)總體積為15 μL,利用LightCycler 480II定量PCR儀(Roche)進(jìn)行PCR擴(kuò)增和HRM分析[20]。
參考桃基因組(Version 2.0)數(shù)據(jù)在親本(‘中油桃8號(hào)’ב09-1-112’)中開發(fā)InDel標(biāo)記。采用Primer 3.0軟件(http://primer3. ut.ee/)設(shè)計(jì)引物,引物的退火溫度60℃左右,擴(kuò)增片段長(zhǎng)度150—200 bp。采用TaKaRa EX在F1群體中進(jìn)行PCR擴(kuò)增,反應(yīng)總體積為15 μL,其中含DNA模板1 μL、酶0.075 μL、dNTP 1.2 μL、10×buffer(含Mg2+)1.5 μL、正/反向引物和ddH2O。擴(kuò)增程序?yàn)?5℃ 2 min;94℃ 15 s,56.5℃ 15 s,72℃ 20 s,30個(gè)循環(huán);72℃ 4 min,4℃冷卻10 min。取1.2 μL PCR產(chǎn)物進(jìn)行8%聚丙烯酰胺凝膠電泳檢測(cè),硝酸銀染色,氫氧化鈉脫色后觀察。
經(jīng)紫外分光光度計(jì)檢測(cè)提取的DNA濃度和純度,部分結(jié)果見表1。由表1 可知,OD260mm/OD280mm介于1.81—1.98,濃度介于25—200 ng·μL-1。RNA酶處理后,經(jīng)瓊脂糖凝膠電泳檢測(cè)(圖2),結(jié)果表明條帶明亮清晰,整齊單一,DNA較完整。說明所提取的DNA 較純,符合進(jìn)一步研究分析要求。
參考桃基因組(Version 2.0),基于雙親重測(cè)序數(shù)據(jù)獲得引物SNP_Pp03_3758620,正向引物5′-GTGAA GTCCCACCAGTGCAG-3′,反向引物5′-TGGAGTCA GAGAGGATCGTCAA-3′,擴(kuò)增片段長(zhǎng)度171 bp;型在該位點(diǎn)的基因型為A/G,普通生長(zhǎng)型的基因型為G/G。基于HRM的基因分型結(jié)果發(fā)現(xiàn),96個(gè)樣品全部擴(kuò)增成功,經(jīng)計(jì)算后,型與普通生長(zhǎng)型呈現(xiàn)明顯不同的峰型曲線(圖3)。表明該方法提取的桃基因組DNA質(zhì)量好、純度高,適用于HRM基因分型。
M: DNA Marker
表1 部分樣品DNA純度和濃度
基于雙親‘中油桃8號(hào)’ב09-1-112’基因型開發(fā)InDel標(biāo)記InDel_Pp03_3829009,缺失大小4 bp,采用Primer 3.0軟件(http://primer3. ut.ee/)設(shè)計(jì)引物,正向引物:5′-AGCCCTGTATTGGTTCCATCCT-3′, 反向引物5′-AGAAGGTAGCGACTCCTTTTCCT-3′,擴(kuò)增片段大小201 bp。從聚丙烯凝膠電泳分析圖譜結(jié)果顯示(圖4),目的條帶整齊清晰、分辨率高,PCR擴(kuò)增結(jié)果良好,型與ST型具有明顯的多態(tài)性,基因型與表型相符,證明PCR擴(kuò)增穩(wěn)定,提取的DNA可用于基于InDel標(biāo)記的基因型分析。
目前,已報(bào)道的植物DNA提取方法有幾十種,如CTAB法、堿裂解法、高低鹽pH法、苯酚法、試劑盒提取DNA法等。傳統(tǒng)的DNA提取方法經(jīng)過改良后,分離的DNA質(zhì)量與純度較高,滿足了一般分子生物學(xué)實(shí)驗(yàn)所需DNA的質(zhì)量要求[21],但其操作步驟繁瑣,且需消耗大量人力和時(shí)間,達(dá)不到高通量的要求。一些簡(jiǎn)易DNA提取方法,雖簡(jiǎn)化了提取步驟,提取速度快,但分離DNA純度不高,且擴(kuò)增效果不穩(wěn)定[22-24];許多DNA提取試劑盒雖然操作簡(jiǎn)單,但其成本較高,產(chǎn)量低,不適宜大規(guī)模高通量DNA制備[25-28]。本研究采用1.2 mL的八聯(lián)排管結(jié)合改良CTAB法快速提取大批量桃葉片基因組DNA的方法,可以在3 min之內(nèi)研磨192個(gè)樣品,八聯(lián)排管與8通道移液槍相結(jié)合,操作簡(jiǎn)便,每人每天可提取1 000個(gè)樣品,節(jié)約時(shí)間,每個(gè)樣品提取成本約為DNA提取試劑盒的1/10,極大提高了工作效率;分離的DNA產(chǎn)率大、純度高,經(jīng)檢測(cè)可以滿足InDel分析、PCR擴(kuò)增及SNP基因分型等大規(guī)模高通量分子生物學(xué)研究。
圖3 基于HRM分析PpTssd型A/G(藍(lán)色)和普通型G/G(紅色)位點(diǎn)的SNP鑒定
圖4 PCR擴(kuò)增片段聚丙烯酰胺凝膠電泳圖
DNA提取過程中,首先應(yīng)對(duì)1.2 mL的八聯(lián)排離心管和管蓋進(jìn)行位置和方向標(biāo)記,防止打亂樣品順序。用20 cm槍狀鑷子取幼嫩葉片,利于將葉片放入離心管底部,取樣完成后,每個(gè)1.2 ml八聯(lián)排深孔管中各放一個(gè)5 mm鋼珠,液氮冷凍后,研磨前手工搖動(dòng)96孔板,保證鋼珠充分晃動(dòng),研磨時(shí)間僅需90 s,避免樣品研磨不充分或在研磨過程中組織褐變;研磨后立即用鑷子輕輕敲打離心管蓋,使附著在內(nèi)壁的樣品掉落,待管蓋充分解凍后,再開蓋,防止因液氮揮發(fā)造成樣品濺飛,造成交叉污染;另外,實(shí)驗(yàn)過程中每次開蓋前,稱量配平,瞬時(shí)離心,八通道移液槍懸空加樣,吸頭污染時(shí)及時(shí)更換可有效防止樣品間交叉污染。傳統(tǒng)CTAB法所需的樣品量約為0.5 g,且需要研缽手動(dòng)研磨,采用磨樣儀磨樣時(shí)一次只能磨幾十個(gè)樣品,且磨樣時(shí)間較長(zhǎng),本研究所需樣品組織量?jī)H為30 mg,不會(huì)影響幼苗的生長(zhǎng)及試驗(yàn)材料的其他研究工作,且幼嫩葉片DNA含量多,糖類、酚類、蛋白質(zhì)等次生代謝產(chǎn)物積累少[11,29],有利于高質(zhì)量DNA的分離。實(shí)驗(yàn)中采用氯仿、異戊醇混合液僅抽提一次,簡(jiǎn)化了實(shí)驗(yàn)步驟,但獲得的DNA樣品OD260mm/OD280mm仍介于1.81—1.98,與普通提取方法所獲得的DNA純度幾乎無差異。DNA沉淀采用150 μL的0.1×TE溶解,樣品濃度最低約為25 ng·μL-1,雖無法達(dá)到CTAB法或高成本試劑盒高濃度要求,但類似于普通DNA提取試劑盒濃度,產(chǎn)量和濃度均可充分保證PCR檢測(cè)、HRM分型、聚丙烯酰胺凝膠電泳等基礎(chǔ)研究的進(jìn)行。
利用提取的DNA進(jìn)行HRM基因分型和聚丙烯酰胺凝膠電泳分析,兩種研究方法靈敏度高,能夠準(zhǔn)確直觀反應(yīng)DNA模板的質(zhì)量,有效對(duì)不同基因型進(jìn)行分析;且所需模板量約為1 μL,一次提取的DNA量可進(jìn)行100次SNP基因分型、InDel標(biāo)記分析等生物學(xué)研究,可保證后續(xù)研究進(jìn)行。
本研究提出的DNA提取方法快速高效,節(jié)約時(shí)間和成本,應(yīng)用于大規(guī)模群體樣本DNA的制備,PCR效果和重復(fù)性好,雖簡(jiǎn)化了提取步驟,但兼具CTAB法提取DNA的高質(zhì)量[30]和簡(jiǎn)易提取DNA高通量的優(yōu)點(diǎn),克服了傳統(tǒng)DNA提取方法程序復(fù)雜、耗時(shí)長(zhǎng)的缺點(diǎn),適用于大規(guī)模的基因型檢測(cè)、自交系和品種純度檢測(cè)等研究工作。
建立了一種簡(jiǎn)便、有效、低成本的桃基因組DNA提取方法,可以滿足基因分型、品種鑒定及遺傳分析等分子生物學(xué)研究,實(shí)現(xiàn)了大批量不同樣本基因組DNA的同時(shí)提取,具有較高的應(yīng)用價(jià)值。
[1] 俞明亮, 馬瑞娟, 沈志軍, 蔡志翔.中國(guó)桃種質(zhì)資源研究進(jìn)展. 江蘇農(nóng)業(yè)學(xué)報(bào), 2010, 26(6): 1418-1423.
Yu m l, ma r j, shen z j, cai z x. Research advances in peach germplasm in china., 2010, 26(6): 1418-1423. (in Chinese)
[2] Aranzana M J, Abbassi E K, Howad W, Arús P. Genetic variation, population structure and linkage disequilibrium in peach commercial varieties., 2010, 11(1): 69.
[3] 陳平華, 王恒波, 許莉萍, 陳由強(qiáng), 陳如凱.堿裂解葉片兩步快速制備PCR模板技術(shù)研究. 熱帶作物學(xué)報(bào), 2010, 31(3): 422-429.
CHEN H P, WANG H B, XU L P, CHEN Y Q, CHEN R K. Alkali lysis of leaves by two-step handling for preparation of PCR templates.,2010, 31(3): 422-429. (in Chinese)
[4] Testolin R, Marrazzo T, Cipriani G, Quarta R, Verde I, Dettori M T, Sansavini S. Microsatellite DNA in peach (L. Batsch) and its use in fingerprinting and testing the genetic origin of cultivars., 2000, 43(3): 512-520.
[5] Li X W, Meng X Q, Jia H J, Yu M L, Ma R J, Wang L R, Cao K, Shen Z J, Niu L, Tian J B, Chen M J, Xie M, Arus P, Gao Z S, Aranzana M J. Peach genetic resources: diversity, population structure and linkage disequilibrium., 2013, 14(1): 84.
[6] Cao K, Zheng Z, Wang L, Liu X, Zhu G, Fang W, ChengS, ZengP, ChenC, WangX, XieM, ZhongX, WangX, ZhaoP, BianC, ZhuY, ZhangJ, MaG, ChenC, LiY, HaoF, LiY, HuangG, LiY, LiH, GuoJ, XuX, WangJ. Comparative population genomics reveals the domestication history of the peach,, and human influences on perennial fruit crops., 2014, 15(7): 415.
[7] Aranzana M J, Illa E, Howad W, Arús P. A first insight into peach [(L.) Batsch] SNP variability., 2012, 8(6): 1359-1369.
[8] Martínez-García P J, Peace C P, Parfitt D E, OGUNDIWIN E A, FRESNEDO-RAMíREZ J, DANDEKAR A M, GRADZIEL T M, CRISOSTO C H. Influence of year and genetic factors on chilling injury susceptibility in peach ((L.) Batsch)., 2012, 185(2): 267-280.
[9] Irfan M, ZHANG T T, Wang Y, ZHANG C y, MIAO Q, ZHANG L j, LIN F. Modification of CTAB protocol for maize genomic DNA extraction., 2013, 8(1): 41-45.
[10] Gupta P K, Varshney R K. The development and use of microsatellite markers for genetic analysis and plant breeding with emphasis on bread wheat., 2000, 113(3): 163-185.
[11] Springer N M. Isolation of plant DNA for PCR and genotyping using organic extraction and CTAB., 2010, 2010(11): pdb.prot5515.
[12] Randhawa H S, Mutti J S, Kidwell K, Morris C F, Chen X, Gill K S. Rapid and targeted introgression of genes into popular wheat cultivars using marker-assisted background selection., 2009, 4(6): e5752.
[13] Xin Z, Chen J. A high throughput DNA extraction method with high yield and quality., 2012, 8(1): 26.
[14] Devi K D, Punyarani K, Singh N S, devi h s. An efficient protocol for total DNA extraction from the members of order Zingiberales-suitable for diverse PCR based downstream applications., 2013, 2: 669.
[15] Kim C S, Lee C H, Shin J S, Chung Y S, Hyung N I. A simple and rapid method for isolation of high quality genomic DNA from fruit trees and conifers using PVP., 1997, 25(5): 1085-1086.
[16] CHENG Y J, GUO W W, YI H L, PANG X M, DENG X x. An efficient protocol for genomic DNA extraction fromspecies., 2003, 21(2): 177-178.
[17] 劉航空, 王安柱, 趙彩平, 韓明玉, 李金金, 李芳. 高通量提取桃樹葉片組織基因組DNA的研究. 北方園藝, 2015(13): 120-125.
LIU H K, WANG A Z, ZHAO C P, HAN M Y, LI J J, LI F. Study on extracting DNA from peach leaves efficiently., 2015(13): 120-125. (in Chinese)
[18] DILWORTH E, FREY J E. A rapid method for high throughput DNA extraction from plant material for PCR amplification., 2000, 18(1): 61-64.
[19] DOYLE J J, DOYLE J L. A rapid DNA isolation procedure for small quantities of fresh leaf tissue., 1987, 19: 11-15.
[20] 魯振華, 牛良, 張南南, 崔國(guó)朝, 潘磊, 曾文芳, 王志強(qiáng). 基于HRM獲得與桃緊密連鎖的SNP標(biāo)記. 中國(guó)農(nóng)業(yè)科學(xué), 2017, 50(8): 1505-1513.
LU Z H, NIU L, ZHANG N N, CUI G C, PAN L, ZENG W F, WANG Z Q. SNP marker tightly linked tofor peach using high resolution melting analysis., 2017, 50(8): 1505-1513. (in Chinese)
[21] TEL-ZUR N, ABBO S, MYSLABODSKI D, MIZRAHI Y. Modified CTAB procedure for DNA isolation from epiphytic cacti of the generaand(Cactaceae)., 1999, 17(3): 249-254.
[22] MINAS K, MCEWAN N R, NEWBOLD C J, SCOTT K P. Optimization of a high-throughput CTAB based protocol for the extraction of qPCR-grade DNA from rumen fluid, plant and bacterial pure cultures., 2011, 325(2): 162-169.
[23] HANDAYANI F, WULANDARI R A, MURTI R H. Genomic DNA extraction method from mature leaf of lai (Becc.)., 2016, 38(1): 73-79.
[24] ABDEL-LATIF A, OSMAN G. Comparison of three genomic DNA extraction methods to obtain high DNA quality from maize., 2017, 13: 1.
[25] XIN Z, CHEN J. A high throughput DNA extraction method with high yield and quality., 2012, 8(1): 26.
[26] VON POST R, VON POST L, DAYTEG C, NILSSON M, FORSTER B P, TUVESSON S. A high-throughput DNA extraction method for barley seed., 2003, 130(2): 255-260.
[27] NAEEM R, MIRZA B. High-throughput DNA extraction and optimization of PCR efficiency for barley SSRs genotyping., 2018, 43(1): 143-154.
[28] WANG S, KNOX R E, DEPAUW R M, CLARKE J M, WANG B L. A simple DNA preparation method for PCR amplifications in marker-assisted selection of wheat., 2005, 4(7): 481-485.
[29] HEALEY A, FURTADO A, COOPER T, HENRY R J. Protocol: a simple method for extracting next-generation sequencing quality genomic DNA from recalcitrant plant species., 2014, 10(1): 21.
[30] FANG G, HAMMAR S, GRUMET R. A quick and inexpensive method for removing polysaccharides from plant genomic DNA., 1992, 13(1): 52-54, 56.
(責(zé)任編輯 岳梅)
Establishment and application of a high-throughout protocol for Peach () DNA extraction
ZHANG NanNan, NIU Liang, CUI GuoChao, PAN Lei, ZENG WenFang, WANG ZhiQiang, LU ZhenHua
(Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences/National Peach and Grape Improvement Center/Key Laboratory of Fruit Breeding Technology of Ministry of Agriculture, Zhengzhou 450009)
【Objective】Preparation of large quantity and high-quality DNA is an important prerequisite for large-scale genotypic screening and molecular marker-assisted of plant breeding. The objective of this study is to present a low-cost, high-throughput peach (L. Batsch) genomic DNA extraction method, meet the needs of high-throughput genetic researches and improve the working efficiency.【Method】The population were obtained from a cross between female parent ‘CN8’ (standard type, ST) and male parent ‘09-1-112’ (temperature-sensitive semi-dwarf in,type) to establish a high-throughout protocol for peach DNA extraction. The F1segregating population were generated to assess the phenotype characteristics, resulting in observed 1﹕1 (254 standard type and 246 semi-dwarf type individuals). Subsequently, DNA extraction was carried out on the young leaves of two parents and 500 progenies by procedure using 1.2 mL thin-wall 8 strip polypropylene PCR tubes instead of a single centrifuge tube. After extraction, the quality of DNA samples was examined with ultraviolet spectrophotometry and 1% agarose gel electrophoresis, respectively. Referencing the peach genome (version 2.0) and using re-sequencing data, single nucleotide polymorphism (SNP) markers were developed and the HRM analysis was employed on F1population to conduct SNP genotyping. Ultimately, the extracted DNA samples were validated by using an InDel marker to verify the genotype of 500 individuals.【Result】The concentrations of DNA were in a range between 25 to 200 ng·μL-1and the UV absorbance ratios values (1.81-1.98) to determine DNA quality were acceptable and with high-purity. The result of agarose gel electrophoresis proved that DNA bands were clear, single with a high degree of DNA integrity.Referencing the peach genome and using whole genome re-sequencing data of two parents, SNP_Pp03_3758620 was developed in female and male parents, and the HRM analysis was employed to conduct SNP genotyping and divided temperature-sensitive semi-dwarf and standard type individuals into two groups, respectively, which proved DNA templates extracted from this DNA isolation procedure could be employed for HRM genotyping. Based on the genotype and phenotype of two parents, InDel_Pp03_3829009 was developed and the results of polyacrylamide gel electrophoresis showed that PCR amplification products showed desired fragment size, and were polymorphic intype and ST type with bright and clear target fragment. It concluded that the extracted DNA samples could be used for indel analysis. Using this method, 1 000 samples of DNA could be extracted per day with low cost and no effect on the early growth of seedlings.【Conclusion】A simple, effective and low-cost method for extracting genomic DNA from peach was established, which can be used for molecular biology, such as genotyping, variety identification and genetic analysis. Simultaneous extraction of genomic DNA from large quantities of different samples was realized. It has high application value.
peach (); high-throughout; DNA extractionmethod
2018-01-19;
2018-04-02
國(guó)家自然科學(xué)基金(31500558)、河南省重點(diǎn)研發(fā)專項(xiàng)(182102110134)、中國(guó)農(nóng)業(yè)科學(xué)院科技創(chuàng)新工程專項(xiàng)經(jīng)費(fèi)(CAAS-ASTIP-2018-ZFRI)
張南南,E-mail:18763895031@163.com。
魯振華,E-mail:luzhenhua@caas.cn。通信作者王志強(qiáng),E-mail:wangzhiqiang@caas.cn
10.3864/j.issn.0578-1752.2018.13.016