• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Antioxidant and antiglycation properties of two mango (Mangifera indica L.) cultivars from Senegal

    2018-07-02 09:24:56SambaFamaNdoyeDidierFraisseBlandineAkendenguMbayeDiawDioumRokhayaSyllaGueyeCheikhSallInsaSeckCatherineFelginesMatarSeckFranoisSenejoux
    關(guān)鍵詞:鹽析酶法輔助

    Samba Fama Ndoye, Didier Fraisse, Blandine Akendengué, Mbaye Diaw Dioum, Rokhaya Sylla Gueye, Cheikh Sall, Insa Seck, Catherine Felgines, Matar Seck, Fran?ois Senejoux?

    1Laboratory of Organic and Therapeutic Chemistry, Faculty of Medicine, Pharmacy and Odontology, Cheikh Anta Diop University. PB 5005 Dakar-Fann, Sénégal

    2Université Clermont Auvergne, INRA, UNH, F-63000 Clermont-Ferrand, France

    3Department of Pharmacology and Toxicology, Faculty of Medicine and Health Sciences (USS). PB 4009 Libreville, Gabon

    4Laboratory of Chemistry, Training and Research Unit of Health, Thiès University. PB 967 Thiès, Sénégal

    1. Introduction

    Mangifera indica(M. indica) L. (Anacardiaceae) is a large tree native from tropical Asia. Its leaves are spirally arranged on branches and its fruit is a popular edible drupe that contains a solitary seed covered by a fibrous endocarp[1]. Of interest, fruits, seeds, pulp, bark,leaves and roots are widely employed as traditional medications. For instance, seeds are employed as astringent to the bowels and leaves are used to treat piles. Besides, the ripe fruit and the bark are respectively used to treat constipation and diarrhea[2]. In African traditional medicine, water infusion ofM. indicaleaves can also be employed forits antiplasmodial and antipyretic properties[3]. Of note, numerous biological activities have been reported for this plant including antidiarrheal[4], immunomodulatory[5], bactericidal[6], antiviral[7] and anti-inflammatory properties[8].

    The chemical composition ofM. indicahas been widely investigated over the past and numerous terpenoid constituents have been reported including sterols, triterpenes and carotenoids. In addition, phytochemical analyses of this species have led to the characterization of a wide diversity of phenolic components including flavonoids, phenolic acids, gallotannins,benzophenones as well as xanthones such as mangiferin[9].

    It is now well established that phenolic constituents are highly implicated in the health benefits of plant food products consumption[10]. Owing to their hydroxyl substituents and aromatic rings, they exert a major role as antioxidants and are capable of protecting human organism against the deleterious effect of reactive oxygen species and free radicals[11].Overproduction of such species can result in oxidative stress which is contributing to the development of numerous degenerative diseases including chronic inflammation and several type of cancers[12]. Increasing attention has been thus directed towards antioxidant capacity of natural phenolics compounds because of their potential nutritional and therapeutic value[13]. It has to be noted that several studies have also highlighted that some phenolic compounds can be regarded as promising agents for the prevention of Advanced Glycation End products (AGEs) formation[14].AGEs can be defined as altered proteins that become non-enzymatically glycated after reaction with aldose sugars[15]. By inducing protein dysfunction and cell damages, AGEs accumulation is involved in the course of ageing. In addition, AGEs are also increased and play a key role in the development of atherosclerosis, neurodegenerative diseases as well as diabetic complications[16]. Inhibition of AGEs formation represents thus an attractive preventive and therapeutic target.

    It has been clearly shown that qualitative and quantitative phenolic composition of mangoes strongly differs among cultivars, parts and environmental conditions[17]. In addition, there is a lack of chemical and biological data about numerous Senegalese varieties ofM. indica.Therefore, the present study aimed at evaluating total phenolics as well as antioxidant and antiglycation activities of four different parts (leaves,stem barks, roots and kernels) of Sewe and Bouka varieties, two major mango cultivars grown in Senegal.

    2. Materials and methods

    2.1. Reagents

    Methanol, Folin-Ciocalteu’s reagent, bovine serum albumin (BSA),D-ribose, aminoguanidine hydrochloride, gallic acid, 1,1-diphenyl-2-picryl-hydrazyl (DPPH), Trolox, fluorescein, 2,2′-azobis(2-methylpropionamidine) dihydrochloride, Iron (II) chloride and ferrozine were bought from Sigma-Aldrich (Saint-Quentin Fallavier,France). Ethylenediaminetetraacetic acid disodium salt (EDTA) was purchased from Fisher Chemical (Illkirch, France).

    2.2. Plant materials

    Leaves, stem barks, roots and kernels of two varieties (Sewe and Bouka) ofM. indicaL. were obtained from cultivated trees at Diender,Senegal, in July 2016. A sample of each part of the investigated plants was deposited in a laboratory herbarium (Laboratory of Pharmacognosy,Faculty of Medicine, Pharmacy and Odontology from University Cheikh Anta Diop of Dakar, Senegal). Plant material was shade dried with ventilation for six weeks, then powdered using a mechanical grinder.

    2.3. Preparation of extracts

    For each extract, 100 g of plant material were extracted twice with methanol (500 mL) for 48 h at room temperature and under magnetic agitation. After filtration, methanol was removed under reduced pressure and the dried extracts were stored at 4 ℃ before analyses.

    2.4. Total phenolic content (TPC)

    TPC was evaluated according to the method of Folin and Ciocalteu[18],with slight modifications as previously reported[19]. A standard curve of gallic acid in the range of 30 μM to 470 μM was performed (R2= 0.997 9,y= 4.393 7x+ 0.021). Total phenolic content was expressed as mg of gallic acid equivalents per g (mg GAE/g) of extract. All analyses were performed in triplicate and results were indicated as means±SEM.

    2.5. Antioxidant activity

    2.5.1. DPPH radical-scavenging activity assay

    DPPH scavenging activity was evaluated as previously described by Medaet al[19]. A standard curve of Trolox in the range of 0.1 mM to 6 mM was constructed (R2= 0.997 8,y= 1 101.1x+ 1.519 6) and results were indicated as μmol of Trolox equivalents per g (μmol TE/g) of extract.

    2.5.2. Oxygen radical absorbance capacity (ORAC) assay

    The assay was done in 96-well plates with a final volume of 200 μL as previously reported[19]. ORAC values were determined using the respective area under the curve (AUC) and the regression equation between Trolox equivalents and the net AUC (concentration of Trolox in the range of 3 μM to 100 μM,R2= 0.990 4,y= 35.63x+ 11.26). The results were presented as μmol TE/g of extract.

    2.5.3. Iron (II) chelating activity

    在單因素試驗(yàn)的基礎(chǔ)上,通過(guò)Plackett-Burman試驗(yàn)確定對(duì)龍牙楤木皂苷提取得率影響顯著的因素,采用中心組合Box-Benhnken Design (BBD)設(shè)計(jì)試驗(yàn)進(jìn)行響應(yīng)面優(yōu)化鹽析輔助酶法提取龍牙楤木皂苷工藝[11]。

    Metal chelating activities were measured following the protocol of Wanget al[20]. A standard curve of EDTA in the range of 8 μM to 135μM was performed (R2= 0.986,y= 6 648x+ 10.252). The results were indicated as μg of EDTA equivalents per g (μg EDTAE/g) of extract.

    2.6. Advanced glycation end products (AGEs) assay

    Inhibition of AGEs formation was evaluated as previously described by Derbréet al[21], with slight adjustments. Reaction solution (100μL) was prepared by mixing 20 μL of each plant extract (0.05 to 1 mg/mL), 40 μL of 25 mg/mL BSA and 40 μL of 120 mM D-(-)-ribose in a phosphate buffer (50 mM, pH = 7.4). This mixture was incubated at 37 ℃ for 24 h in the dark in 96-well microtiter plates before AGEs fluorescence evaluation. AGEs fluorescence was monitored on a microplate reader (TECAN infinite F200 PRO) using 370 and 440 nm as the excitation and emission wavelengths, respectively. Aminoguanidine was employed as positive control and results were presented as IC50values in μg/mL.

    3. Results

    3.1. Total phenolic content

    As shown in Figure 1, substantial TPC was determined for all the studied extracts. With respective values of (546±1) mg GAE/g and (489±3)mg GAE/g of extract, Sewe kernel extract (SKE) and Bouka kernel extract (BKE) were shown to possess the highest phenolic contents,indicating that kernel is the richest source of phenolics for both varieties.

    Figure 1. TPC of different extracts (means±SEM).

    3.2. Antioxidant activity

    3.2.1. DPPH radical-scavenging assay

    As indicated in Table 1, DPPH scavenging activity of the extracts ranged between (1 702±108) and (5 510±6) μmol TE/g. Once again, kernels exhibited the highest activities with values of (4 980±50) μmol TE/g and(5 510±6 μmol) TE/g for SKE and BKE, respectively. Conversely, extracts from leaves and stem bark from Bouka were shown to be the least effective ones with values lower than 2 000 μmol TE/g.

    3.2.2. ORAC assay

    3.2.3. Iron (II) chelating activity

    Iron (II) chelating activity of the different extracts was presented in Table 1. With a value higher than 10 000 μg EDTAE/g, Sewe stem bark extract (SSBE) was shown to possess very potent Fe2+chelating ability [(10 593±4) μg EDTAE/g]. On the contrary, roots from Bouka cultivar were shown to induce only moderate metal chelating effects[(2 617±0.4) μg EDTAE/g].

    3.3. AGEs assay

    In this study, a BSA/D-ribose model was adopted to assess antiglycation effects ofM. indicaextracts. Our data indicated that roots, leaves and stem barks extracts of both varieties exerted noticeable antiglycation effects, with IC50values lower than the standard positive control aminoguanidine [(259±7) μg/mL]. Of interest, SSBE and Sewe root extracts (SRE) displayed the most potent inhibitory activities, with respective IC50values of (145±5) and (147±3) μg/mL. As attested by their respective IC50values of (165±2) and (185±10) μg/mL, leave extracts from Sewe and Bouka cultivars were also shown to strongly inhibit the formation of AGEs. By contrast, with IC50values higher than 500 μg/mL, kernel extracts of the two studied varieties were found to be almost ineffective in blocking AGEs formation.

    4. Discussion

    The present results demonstrate that all parts from the two investigated varieties ofM. indicapossess high contents of phenolic compounds.Phenolic constituents are well known to be main contributors toantioxidant capacities in plant extracts and are considered as the most predominant antioxidant phytochemicals[22]. Owing to their reactivity as electron or hydrogen-donating agents and metal ion chelating activities,these compounds can exert positive effects on oxidative stress[23,24]. The potent antioxidant properties of the studied extracts were highlighted by three different spectrometric assays. For both varieties, kernels were shown to exert the highest DPPH radical scavenging activity.Conversely, leaves, stem barks and roots of the two varieties possessed higher ORAC values. In addition, potent Fe2+chelating effects were observed for all studied parts including stem bark of Sewe cultivars which had remarkable high activity.

    Table 1DPPH radical scavenging activity, ORAC value, iron (II) chelating activity and extraction yield of extracts from Sewe and Bouka cultivars.

    Discrepancies between antioxidant potency of the different organs found with the three methods can be largely explained by the different principle of the assays. DPPH radical scavenging is one of the most widely employed antioxidant method for plant samples. This assay is mainly based on single electron transfer of antioxidants to neutralize DPPH radical[25]. The reaction leads to the discoloration of the purple-colored DPPH radical which is an indicator of the antioxidant efficacy[26]. ORAC assay is regarded as a relevant protocol for evaluating antioxidant activity of biological samples and foodstuffs[27]. By contrast with DPPH assay, deactivation of radical species is considered to be related to a hydrogen atom transfer mechanism[28]. DPPH and ORAC can be thus regarded as distinct and complementary evaluations that reflect the two major mechanisms leading to radical deactivation,single electron transfer and hydrogen atom transfer. Besides these two radical scavenging assays, metal chelating capacity can be also used as an indicator of antioxidant activity. Indeed, Fenton reaction, which involves transition-metal ions such as Fe2+, is an important source of hydroxyl radical, a highly reactive oxygen species[29]. Furthermore,differences in the observed activities can be also explained by disparities in the chemical composition of the organs. Indeed, previous chemical analyses of variousM. indicaparts indicated that benzophenone and xanthone derivatives represent the major phenolics in leaves as well as in bark, iriflophenone 3-C-β-D-glucoside and mangiferin being the two most abundant compounds in the majority of the studied varieties[30].Conversely, it has been reported thatM. indicakernels mostly contain gallotannin derivatives, with penta-O-galloyl-glucoside as the major one. Of interest, this compound has been previously shown to only exert moderate radical scavenging activities when submitted to ORAC evaluation[30] while mangiferin and iriflophenone 3-C-β-D-glucoside are both known to give excellent results with that assay[31]. Taken together, these data tend to explain why, in the present study, kernel extracts possess the lowest ORAC values despite being the richest source of phenolic compounds.

    It is now well established that AGEs have a significant role in ageing process as well as in numerous degenerative diseases[32]. Inhibition of the formation of these harmful products is now regarded as an attractive preventive or therapeutic target[33] and increasing attention is recently being given to the evaluation of plant extracts and phytochemicals as antiglycating agents. Of interest, a substantial number of natural phenolic compounds have been identified as potent inhibitors of AGEs formation[21,34,35]. However, it has to be noted that only limited data are available regarding the antiglycation activity ofM. indica. Flesh and peel extracts of mango[36,37] have been reported to possess significant anti-AGEs properties. In addition, the antiglycation potential of mango leaves has also been recently documented[38]. However, to our knowledge, no data are available concerning kernels, bark and roots.Furthermore, the present study constitutes the first evaluation taking into account intraspecific variability ofM. indica. By using a BSA/D-ribose system, our experiments established that kernels of both cultivars induced only weak inhibitory effect on AGEs formation.Conversely, leaves of Sewe and Bouka cultivars possess strong anti-AGEs activities with IC50values lower than the reference compound aminoguanidine. The present data also demonstrate for the first time the pronounced interest ofM. indicaroots and bark as antiglycating agents, as attested by the particularly low IC50value of Sewe cultivar bark extract. It is important to note that xanthone and benzophenone derivatives have been reported to exert potent anti-glycation effects[38].They might be thus be regarded as important contributors to the anti-AGEs properties of the studied extracts. Such assumption is further supported by the weak effects of kernel extracts. Indeed, several studies have previously shown that this organ only contains traces of such kind of phenolic compounds[30].

    The present study attests that the two investigatedM. indicacultivars are substantially rich in phenolic constituents and exhibit powerful antioxidant effects. In addition, it demonstrates that their roots, leaves and barks also exert potent antiglycation activities. These results thus suggest that Sewe and Bouka cultivars ofM. indicacan be regarded as potential nutraceutical resources to prevent oxidative stress and carbonyl stress related disorders.

    Conflict of interest statement

    The authors declare that there is no conflict of interest.

    Acknowledgments

    The authors would like to express their profound gratitude to the service of cooperation and cultural action of the embassy of France in Dakar for the financial support.

    [1] Shah KA, Patel MB, Patel RJ, Parmar PK.Mangifera indica(Mango).Pharmacogn Rev2010;4(7): 42-48.

    [2] Chowdhury S, Poddar SK, Zaheen S, Noor FA, Ahmed N, Haque S, et al.Phytochemical screening and evaluation of cytotoxic and hypoglycemic properties ofMangifera indicapeels.Asian Pac J Trop Biomed2017;7(1):49-52.

    [3] Adeneye AA, Awodele O, Aiyeola SA, Benebo AS. Modulatory potentials of the aqueous stem bark extract ofMangifera indicaon carbon tetrachlorideinduced hepatotoxicity in rats.J Tradit Complement Med2015;5(2): 106-115.

    [4] Sairam K, Hemalatha S, Kumar A, Srinivasan T, Ganesh J, Shankar M, et al. Evaluation of anti-diarreal activity in seed extracts ofMangifera indica.J Ethnopharmacol2003;84: 11-15.

    [5] Makare N, Bodhankar S, Rangari V. Immunomodulatory activity of alcoholic extract ofMangifera indicaL. in mice.J Ethnopharmacol2001; 78:133-137.

    [6] Nkuo-Akenji T, Ndip R, McThomas A, Fru EC. Anti-Salmonella activity of medicinal plants from Cameroon.Cent Afr J Med2001; 47: 155-158.

    [7] Yoosook C, Bunyapraphatsara N, Boonyakiat Y, Kantasuk C. Antiherpes simplex virus activities of crude water extracts of Thai medicinal plants.Phytomedicine2000; 6(6): 411-419.

    [8] Garrido G, Gonzalez D, Delporte C, Backhouse N, Quintero G, Nunez-Selles AJ, et al. Analgesic and anti-inflammatory effects ofMangifera indicaL. extract (vimang).Phytother Res2001; 15: 18-21.

    [9] Dorta E, Lobo MG, González M. Using drying treatments to stabilize mango peel and seed: effect on antioxidant activity.LWT-Food Sci Technol2012; 45(2): 261-268.

    [10] Pandey KB, Rizvi SI. Plant polyphenols as dietary antioxidants in human health and disease.Oxid Med Cell Longev2009; 2(5): 270-278.

    [11] Halake K, Birajdar M, Lee J. Structural implications of polyphenolic antioxidants.J Ind Eng Chem2016; 35: 1-7.

    [12] Reuter S, Gupta SC, Chaturvedi MM, Aggarwal BB. Oxidative stress,inflammation, and cancer: how are they linked?Free Radic Biol Med2010;49: 1603-1616.

    [13] Ajila CM, Naidu KA, Bhat SG, Rao UJSP. Bioactive compounds and antioxidant potential of mango peel extract.Food Chem2007; 105: 982-988.

    [14] Mildner-Szkudlarz S, Siger A, Szwengiel A, Przygonski K, Wojtowicz E,Zawirska-Wojtasiak R. Phenolic compounds reduce formation of Nεε-(carboxymethyl)lysine and pyrazines formed by Maillard reactions in a model bread system.Food Chem2017; 231: 175-184.

    [15] Yoon SR, Shim SM. Inhibitory effect of polyphenols inHouttuynia cordataon advanced glycation end-products (AGEs) by trapping methylglyoxal.LWTFood Sci Technol2015; 61: 158-163.

    [16] Kaewnarin K, Shank L, Niamsup H, Rakariyatham N. Inhibitory effects of Lamiaceae plants on the formation of advanced glycation end-products(AGEs) in model proteins.J Med Bioeng2013; 2(4): 224-227.

    [17] Dorta E, González M, Lobo MG, Sánchez-Moreno C, Ancos B.Screening of phenolic compounds in by-product extracts from mangoes(Mangifera indicaL.) by HPLC-ESI-QTOF-MS and multivariate analysis for use as a food ingredient.Food Res Int2014; 57: 51-60.

    [18] Folin O, Ciocalteu V. On tyrosine and tryptophane determinations in proteins.J Biol Chem1927; 73(2): 627-650.

    [19] Meda NR, Fraisse D, Gnoula C, Vivier M, Felgines C, Senejoux F.Characterization of antioxidants fromDetarium microcarpumGuill. et Perr.leaves using HPLC-DAD coupled with pre-column DPPH assay.Eur Food Res Technol2017; 243: 1659-1666.

    [20] Wang T, Jónsdóttir R, ólafsdóttir G. Total phenolic compounds, radical scavenging and metal chelation of extracts from Icelandic seaweeds.Food Chem2009; 116: 240-248.

    [21] Derbré S, Gatto J, Pelleray A, Coulon L, Séraphin D, Richomme P.Automating a 96-well microtiter plate assay for identification of AGEs inhibitors or inducers: Application to the screening of a small natural compounds library.Anal Bioanal Chem2010; 398: 1747-1758.

    [22] Tabart J, Kevers C, Pincemail J, Defraigne JO, Dommes J. Comparative antioxidant capacities of phenolic compounds measured by various tests.Food Chem2009; 113: 1226-1233.

    [23] Rice-Evans CA, Miller NJ, Paganga G. Structure antioxidant activity relationship of flavonoids and phenolic acids.Free Radic Biol Med1996;20: 933-936.

    [24] Zhang H, Tsao R. Dietary polyphenols, oxidative stress and antioxidant and anti-inflammatory effects.Curr Opin Food Sci2016; 8: 33-42.

    [25] Magalh?es LM, Segundo MA, Reis S, Lima JLFC. Methodological aspects aboutin vitroevaluation of antioxidant properties.Anal Chim Acta2008;613(1): 1-19.

    [26] Molyneux P. The use of the stable free radical diphenylpicryl- hydrazyl(DPPH) for estimating antioxidant activity.Songklanakarin J Sci Technol2004; 26(2): 211-219.

    [27] Cao G, Alessio HM, Cutler RG. Oxygen-radical absorbance capacity assay for antioxidants.Free Radic Biol Med1993; 14(3): 303-311.

    [28] Prior RL. Oxygen radical absorbance capacity (ORAC): New horizons in relating dietary antioxidants/bioactives and health benefits.J Funct Foods2015; 18: 797-810.

    [29] Andjelkovi? M, Camp JV, Meulenaer BD, Depaemelaere G, Socaciu C,Verloo M, et al. Iron-chelation properties of phenolic acids bearing catechol and galloyl groups.Food Chem2006; 98: 23-31.

    [30] Barreto JC, Trevisan MTS, Hull WE, Erben G, de Brito ES, Pfundstein B, et al.Characterization and quantitation of polyphenolic compounds in bark, kernel,leaves, and peel of mango (Mangifera indicaL.).J Agric Food Chem2008;56(14): 5599-5610.

    [31] Malherbe CJ, Willenburg E, de Beer D, Bonnet SL, van der Westhuizen JH,Joubert E. Iriflophenone-3-C-glucoside fromCyclopia genistoides: Isolation and quantitative comparison of antioxidant capacity with mangiferin and isomangiferin using on-line HPLC antioxidant assays.J Chromatogr B Analyt Technol Biomed Life Sci2014; 951-952(1): 164-171.

    [32] Liping S, Xuejiao S, Yongliang Z. Preparation, characterization and antiglycation activities of the novel polysaccharides fromBoletus snicus.Int J Biol Macromol2016; 92: 607-614.

    [33] Yeh WJ, Hsia SM, Lee WH, Wu CH. Polyphenols with antiglycation activity and mechanisms of action: A review of recent findings.J Food Drug Anal2017; 25: 84-92.

    [34] Chen H, Virk MS, Chen F. Phenolic acids inhibit the formation of advanced glycation end products in food simulation systems depending on their reducing powers and structures.Int J Food Sci Nutr2016; 67(4): 400-411.

    [35] Tan D, Wang Y, Lo CY, Ho CT. Methylglyoxal: Its presence and potential scavengers.Asia Pac J Clin Nutr2008; 17: 261-264.

    [36] Gondi M, Basha SA, Salimath PV, Rao UJSP. Supplementation of mango(Mangifera indicaL.) peel in diet ameliorates cataract in streptozotocininduced diabetic rats: mango peel ameliorates cataract in diabetic rats.J Food Biochem2017; 41(1): 1-13.

    [37] Lauricella M, Emanuele S, Calvaruso G, Giuliano M, D’Anneo A.Multifaceted health benefits ofMangifera indicaL. (mango): The inestimable value of orchards recently planted in Sicilian rural areas.Nutrients2017; 9: 1-14.

    [38] Itoh K, Murata K, Sakaguchi N, Akai K, Yamaji T, Shimizu K, et al.Inhibition of advanced glycation end-products formation byMangifera indicaleaf extract.J Plant Stud2017; 6(2): 102-107.

    猜你喜歡
    鹽析酶法輔助
    小議靈活構(gòu)造輔助函數(shù)
    倒開(kāi)水輔助裝置
    減壓輔助法制備PPDO
    α-生育酚琥珀酸酯的酶法合成研究進(jìn)展
    酶法制備大豆多肽及在醬油發(fā)酵中的應(yīng)用
    Sn-2二十二碳六烯酸甘油單酯的酶法合成
    提高車(chē)輛響應(yīng)的轉(zhuǎn)向輔助控制系統(tǒng)
    鹽析法純化新鮮藍(lán)藻中藻藍(lán)蛋白工藝條件的研究
    酶法降解白及粗多糖
    中成藥(2014年11期)2014-02-28 22:29:50
    聯(lián)堿氯化銨過(guò)程鹽析結(jié)晶器溫升
    美女高潮到喷水免费观看| cao死你这个sao货| 91九色精品人成在线观看| 色播亚洲综合网| 国产精品av久久久久免费| 最好的美女福利视频网| 中出人妻视频一区二区| 亚洲中文av在线| 久久婷婷成人综合色麻豆| 亚洲精品国产一区二区精华液| 久久久水蜜桃国产精品网| 亚洲最大成人中文| 国产又爽黄色视频| 精品久久久久久久末码| 一本一本综合久久| 麻豆成人av在线观看| 中文字幕久久专区| 视频区欧美日本亚洲| 国产成人一区二区三区免费视频网站| 精品国产国语对白av| 精品人妻1区二区| 久久久久国内视频| 丝袜美腿诱惑在线| 婷婷亚洲欧美| 99在线视频只有这里精品首页| 黑丝袜美女国产一区| 老鸭窝网址在线观看| 日韩有码中文字幕| 十分钟在线观看高清视频www| 无人区码免费观看不卡| 在线av久久热| 国内精品久久久久久久电影| 久久久久国内视频| 亚洲精品国产精品久久久不卡| 免费在线观看完整版高清| 亚洲专区字幕在线| 国产欧美日韩一区二区精品| 精品乱码久久久久久99久播| 国产精品爽爽va在线观看网站 | 国产高清激情床上av| www.999成人在线观看| 亚洲九九香蕉| www.www免费av| 国产欧美日韩一区二区三| 一边摸一边做爽爽视频免费| 国产精品永久免费网站| 久久中文字幕人妻熟女| 999精品在线视频| 国产av一区在线观看免费| 久久午夜亚洲精品久久| 特大巨黑吊av在线直播 | 美女免费视频网站| 日韩欧美国产一区二区入口| 亚洲第一av免费看| 成人国产一区最新在线观看| 精品不卡国产一区二区三区| 欧美乱码精品一区二区三区| 一区二区三区精品91| 欧美黑人精品巨大| 欧美 亚洲 国产 日韩一| 桃色一区二区三区在线观看| 18禁黄网站禁片午夜丰满| 久久精品aⅴ一区二区三区四区| www.自偷自拍.com| 久久精品aⅴ一区二区三区四区| 成人免费观看视频高清| 精品久久久久久久末码| 亚洲人成伊人成综合网2020| 亚洲欧洲精品一区二区精品久久久| www.www免费av| 欧美日韩中文字幕国产精品一区二区三区| 日韩欧美 国产精品| 看免费av毛片| 国产麻豆成人av免费视频| 90打野战视频偷拍视频| 成人国产一区最新在线观看| 国产成年人精品一区二区| 丝袜美腿诱惑在线| 国产色视频综合| 精品一区二区三区四区五区乱码| 欧洲精品卡2卡3卡4卡5卡区| 一级毛片女人18水好多| 91大片在线观看| 国产成人av激情在线播放| 啦啦啦观看免费观看视频高清| 午夜久久久久精精品| 老鸭窝网址在线观看| 亚洲片人在线观看| 国产精品99久久99久久久不卡| 女人被狂操c到高潮| 午夜亚洲福利在线播放| 天天躁夜夜躁狠狠躁躁| 精品国产乱子伦一区二区三区| 亚洲va日本ⅴa欧美va伊人久久| 悠悠久久av| 久久精品aⅴ一区二区三区四区| 999久久久精品免费观看国产| 中文字幕高清在线视频| 成年人黄色毛片网站| 免费av毛片视频| 神马国产精品三级电影在线观看 | 中文字幕av电影在线播放| 老熟妇乱子伦视频在线观看| 精华霜和精华液先用哪个| 国产一区二区三区在线臀色熟女| 日韩高清综合在线| 欧美丝袜亚洲另类 | 伦理电影免费视频| 日本三级黄在线观看| 国产亚洲欧美精品永久| 免费看日本二区| 高清毛片免费观看视频网站| 岛国视频午夜一区免费看| 91字幕亚洲| 亚洲av五月六月丁香网| 国产精品一区二区免费欧美| av电影中文网址| 日韩欧美 国产精品| 国产欧美日韩一区二区三| 婷婷六月久久综合丁香| 国产熟女xx| 啪啪无遮挡十八禁网站| 国产精品一区二区精品视频观看| 亚洲欧美精品综合久久99| 久久精品91蜜桃| 欧美人与性动交α欧美精品济南到| 午夜福利视频1000在线观看| 国产成人欧美| 国产国语露脸激情在线看| 久久中文字幕一级| 日韩欧美一区视频在线观看| 嫩草影视91久久| 手机成人av网站| 激情在线观看视频在线高清| 久热爱精品视频在线9| 97碰自拍视频| 搞女人的毛片| 脱女人内裤的视频| 亚洲av电影不卡..在线观看| 男人操女人黄网站| aaaaa片日本免费| 色av中文字幕| 久久国产亚洲av麻豆专区| 好看av亚洲va欧美ⅴa在| 人妻丰满熟妇av一区二区三区| 亚洲人成网站高清观看| 一区二区三区激情视频| 国产野战对白在线观看| 国产成年人精品一区二区| 亚洲国产欧洲综合997久久, | 男人的好看免费观看在线视频 | 丝袜人妻中文字幕| 亚洲av电影不卡..在线观看| 亚洲中文日韩欧美视频| 婷婷亚洲欧美| 国产99白浆流出| 一a级毛片在线观看| 俄罗斯特黄特色一大片| 欧美日韩福利视频一区二区| 精品第一国产精品| 亚洲午夜精品一区,二区,三区| 久久人人精品亚洲av| 变态另类丝袜制服| 99在线视频只有这里精品首页| 国产成人啪精品午夜网站| 看黄色毛片网站| 精品不卡国产一区二区三区| 亚洲自拍偷在线| 美女高潮到喷水免费观看| 18美女黄网站色大片免费观看| 婷婷丁香在线五月| 在线观看舔阴道视频| 日韩欧美 国产精品| 88av欧美| 啪啪无遮挡十八禁网站| 国产精品 国内视频| 色播亚洲综合网| 精品久久久久久久末码| 国产色视频综合| 麻豆成人午夜福利视频| 日韩有码中文字幕| 热99re8久久精品国产| 成人国语在线视频| 亚洲国产欧美网| 亚洲国产精品合色在线| 婷婷亚洲欧美| 亚洲国产日韩欧美精品在线观看 | 久久久精品欧美日韩精品| 免费高清在线观看日韩| 俄罗斯特黄特色一大片| 免费观看人在逋| 亚洲欧美一区二区三区黑人| 51午夜福利影视在线观看| 日日干狠狠操夜夜爽| cao死你这个sao货| 一级片免费观看大全| 十八禁人妻一区二区| 成年人黄色毛片网站| 久久久久久亚洲精品国产蜜桃av| 午夜老司机福利片| 一级a爱视频在线免费观看| 亚洲精品粉嫩美女一区| 黄色丝袜av网址大全| 91字幕亚洲| 母亲3免费完整高清在线观看| 国内精品久久久久精免费| 男女午夜视频在线观看| 中文字幕人妻熟女乱码| 又紧又爽又黄一区二区| 女性生殖器流出的白浆| 国产在线精品亚洲第一网站| 久久国产精品男人的天堂亚洲| 精品欧美国产一区二区三| 免费在线观看视频国产中文字幕亚洲| 免费电影在线观看免费观看| 十分钟在线观看高清视频www| 亚洲熟女毛片儿| 久久久精品欧美日韩精品| 伦理电影免费视频| 国产亚洲精品第一综合不卡| 久9热在线精品视频| 日韩精品中文字幕看吧| av在线天堂中文字幕| 级片在线观看| 亚洲精品在线观看二区| 1024手机看黄色片| 一二三四在线观看免费中文在| 国产精品日韩av在线免费观看| 国产激情久久老熟女| 天天躁夜夜躁狠狠躁躁| 给我免费播放毛片高清在线观看| 亚洲午夜精品一区,二区,三区| 女生性感内裤真人,穿戴方法视频| 欧美另类亚洲清纯唯美| 午夜福利18| 国产精华一区二区三区| 欧美日韩精品网址| 欧美日韩亚洲综合一区二区三区_| 最近最新中文字幕大全电影3 | 后天国语完整版免费观看| 亚洲自偷自拍图片 自拍| 男女床上黄色一级片免费看| 精品日产1卡2卡| 亚洲精品中文字幕在线视频| 一边摸一边抽搐一进一小说| 美女国产高潮福利片在线看| 欧美日韩亚洲综合一区二区三区_| 久久久久久久久免费视频了| 久热这里只有精品99| 国产成人一区二区三区免费视频网站| 999精品在线视频| 欧美zozozo另类| 精品国产乱子伦一区二区三区| www.自偷自拍.com| 美女大奶头视频| 12—13女人毛片做爰片一| 色综合亚洲欧美另类图片| 这个男人来自地球电影免费观看| √禁漫天堂资源中文www| 老司机在亚洲福利影院| 他把我摸到了高潮在线观看| www.www免费av| 精品一区二区三区av网在线观看| 成人av一区二区三区在线看| 在线天堂中文资源库| 亚洲一卡2卡3卡4卡5卡精品中文| 国产激情偷乱视频一区二区| 午夜福利在线在线| 亚洲av第一区精品v没综合| 欧美日韩亚洲国产一区二区在线观看| 不卡av一区二区三区| 搡老岳熟女国产| 欧美黑人巨大hd| 久久久久久久久免费视频了| 欧美+亚洲+日韩+国产| 亚洲国产欧美日韩在线播放| 国产视频一区二区在线看| 男女下面进入的视频免费午夜 | av有码第一页| 亚洲九九香蕉| 69av精品久久久久久| a级毛片在线看网站| 91国产中文字幕| 欧美色欧美亚洲另类二区| 亚洲国产中文字幕在线视频| 啦啦啦韩国在线观看视频| 国产亚洲精品一区二区www| 欧美成人午夜精品| 2021天堂中文幕一二区在线观 | 老司机午夜十八禁免费视频| 伦理电影免费视频| 9191精品国产免费久久| 一边摸一边做爽爽视频免费| 日韩精品青青久久久久久| 天天添夜夜摸| 国内久久婷婷六月综合欲色啪| 久久久久久免费高清国产稀缺| 国产三级黄色录像| 淫妇啪啪啪对白视频| 黄色女人牲交| 国产久久久一区二区三区| 午夜影院日韩av| 国产成人av教育| 黄色 视频免费看| 18禁裸乳无遮挡免费网站照片 | 叶爱在线成人免费视频播放| 在线观看舔阴道视频| 亚洲中文av在线| 久久国产精品人妻蜜桃| 精品国产美女av久久久久小说| x7x7x7水蜜桃| 精品高清国产在线一区| www.熟女人妻精品国产| 国产视频一区二区在线看| 精品乱码久久久久久99久播| 亚洲免费av在线视频| 熟女电影av网| 午夜亚洲福利在线播放| 日本一本二区三区精品| 亚洲 国产 在线| 99久久无色码亚洲精品果冻| 亚洲欧美日韩高清在线视频| 日本免费一区二区三区高清不卡| 久久中文字幕人妻熟女| 黄色丝袜av网址大全| 97碰自拍视频| 最近最新免费中文字幕在线| 午夜日韩欧美国产| 香蕉av资源在线| 国产成人欧美在线观看| 久久精品91蜜桃| 51午夜福利影视在线观看| 精品久久久久久久久久久久久 | 免费看a级黄色片| 色精品久久人妻99蜜桃| 黄片播放在线免费| 91字幕亚洲| 国产高清有码在线观看视频 | 日韩一卡2卡3卡4卡2021年| 操出白浆在线播放| 欧美日本视频| 国产主播在线观看一区二区| 最近在线观看免费完整版| 亚洲一区二区三区不卡视频| 免费av毛片视频| 老司机午夜十八禁免费视频| 亚洲电影在线观看av| 丝袜美腿诱惑在线| 欧美久久黑人一区二区| 国内少妇人妻偷人精品xxx网站 | 一级毛片高清免费大全| 久久国产精品影院| 国产亚洲欧美在线一区二区| 成人三级做爰电影| 亚洲三区欧美一区| 嫩草影院精品99| 日韩欧美国产在线观看| 久久欧美精品欧美久久欧美| 在线观看午夜福利视频| 亚洲av片天天在线观看| 草草在线视频免费看| 在线观看日韩欧美| 亚洲va日本ⅴa欧美va伊人久久| 国产精品一区二区三区四区久久 | 日韩免费av在线播放| 亚洲一卡2卡3卡4卡5卡精品中文| 丝袜在线中文字幕| 日本一区二区免费在线视频| 国产av在哪里看| 国产视频内射| 丁香欧美五月| 美女扒开内裤让男人捅视频| 午夜福利在线在线| a在线观看视频网站| 国产亚洲精品av在线| 久久亚洲精品不卡| 国产精品美女特级片免费视频播放器 | 在线观看免费视频日本深夜| 国产精品爽爽va在线观看网站 | 久久精品91蜜桃| 日本免费a在线| 亚洲在线自拍视频| 亚洲国产毛片av蜜桃av| 黄片大片在线免费观看| 国产精品亚洲美女久久久| 香蕉av资源在线| 女人被狂操c到高潮| 老司机靠b影院| 久久久久国内视频| 欧美亚洲日本最大视频资源| 人人妻人人澡人人看| 97碰自拍视频| 可以免费在线观看a视频的电影网站| 在线视频色国产色| 午夜成年电影在线免费观看| 黄片小视频在线播放| 黄色a级毛片大全视频| 在线天堂中文资源库| 一级毛片高清免费大全| 制服丝袜大香蕉在线| 少妇熟女aⅴ在线视频| 成人午夜高清在线视频 | 一级作爱视频免费观看| 成人国产一区最新在线观看| 狂野欧美激情性xxxx| 中文字幕人成人乱码亚洲影| 国产人伦9x9x在线观看| 哪里可以看免费的av片| 亚洲国产日韩欧美精品在线观看 | 动漫黄色视频在线观看| 久久香蕉激情| 2021天堂中文幕一二区在线观 | 美女高潮喷水抽搐中文字幕| 国产激情偷乱视频一区二区| 91av网站免费观看| 婷婷精品国产亚洲av| 一本久久中文字幕| 一区二区三区高清视频在线| 国内精品久久久久久久电影| 美女大奶头视频| www.精华液| 国产私拍福利视频在线观看| 日日夜夜操网爽| 露出奶头的视频| 久久精品亚洲精品国产色婷小说| 国产精品久久久久久人妻精品电影| 亚洲欧美精品综合一区二区三区| 午夜精品在线福利| 神马国产精品三级电影在线观看 | 天堂影院成人在线观看| av欧美777| 伦理电影免费视频| 一区二区日韩欧美中文字幕| 成熟少妇高潮喷水视频| 一区二区日韩欧美中文字幕| 我的亚洲天堂| 免费高清在线观看日韩| 日韩精品中文字幕看吧| 免费看十八禁软件| 老熟妇仑乱视频hdxx| 97超级碰碰碰精品色视频在线观看| 亚洲第一av免费看| 最近最新中文字幕大全电影3 | 成人18禁高潮啪啪吃奶动态图| 亚洲成av片中文字幕在线观看| 看片在线看免费视频| 国产精品自产拍在线观看55亚洲| 久久久久国产精品人妻aⅴ院| 视频在线观看一区二区三区| 999精品在线视频| 99热6这里只有精品| 一级a爱片免费观看的视频| 国产精品永久免费网站| 啦啦啦 在线观看视频| а√天堂www在线а√下载| 免费在线观看视频国产中文字幕亚洲| 视频在线观看一区二区三区| 成年版毛片免费区| 欧美成人性av电影在线观看| 一区二区三区国产精品乱码| 亚洲久久久国产精品| 亚洲欧洲精品一区二区精品久久久| 精品国产一区二区三区四区第35| 夜夜夜夜夜久久久久| 国产午夜福利久久久久久| 免费人成视频x8x8入口观看| 韩国av一区二区三区四区| 啦啦啦 在线观看视频| 中文在线观看免费www的网站 | 婷婷精品国产亚洲av在线| 国产精华一区二区三区| 国产精品免费视频内射| 满18在线观看网站| 又黄又粗又硬又大视频| 欧美性猛交╳xxx乱大交人| 国产成人精品久久二区二区免费| 国产黄a三级三级三级人| 精品久久久久久久久久免费视频| 91麻豆精品激情在线观看国产| 法律面前人人平等表现在哪些方面| 国产在线观看jvid| 十分钟在线观看高清视频www| 久久欧美精品欧美久久欧美| 国产精品美女特级片免费视频播放器 | 国产成人精品久久二区二区91| 欧美 亚洲 国产 日韩一| 日本免费a在线| 好看av亚洲va欧美ⅴa在| 丝袜美腿诱惑在线| 国产成+人综合+亚洲专区| 国产伦人伦偷精品视频| 不卡av一区二区三区| svipshipincom国产片| www.999成人在线观看| 好看av亚洲va欧美ⅴa在| 中亚洲国语对白在线视频| 一区二区三区高清视频在线| 精品午夜福利视频在线观看一区| 99精品欧美一区二区三区四区| 一级毛片高清免费大全| 一个人观看的视频www高清免费观看 | 一本一本综合久久| 亚洲精品国产区一区二| 精品欧美国产一区二区三| 国产精品免费视频内射| 欧美成人性av电影在线观看| 韩国av一区二区三区四区| 久久久国产精品麻豆| 国产精品野战在线观看| 国产精品免费一区二区三区在线| 老司机午夜福利在线观看视频| 色在线成人网| 美女扒开内裤让男人捅视频| 日韩三级视频一区二区三区| 国产精品国产高清国产av| 真人一进一出gif抽搐免费| 此物有八面人人有两片| 亚洲第一电影网av| 亚洲人成77777在线视频| 一二三四在线观看免费中文在| 女警被强在线播放| 日韩欧美一区视频在线观看| 一区二区三区国产精品乱码| 亚洲精华国产精华精| 精品一区二区三区视频在线观看免费| 夜夜夜夜夜久久久久| 国产一卡二卡三卡精品| 国产亚洲精品一区二区www| 十八禁人妻一区二区| 亚洲精品一区av在线观看| 级片在线观看| 亚洲九九香蕉| 精品国产超薄肉色丝袜足j| 国产精品亚洲av一区麻豆| 欧美黄色片欧美黄色片| 老司机深夜福利视频在线观看| 桃红色精品国产亚洲av| 精品久久久久久,| 精品久久久久久久久久免费视频| 一夜夜www| 国产成人欧美| 亚洲avbb在线观看| 变态另类丝袜制服| 亚洲av成人一区二区三| 国产精品av久久久久免费| 国产亚洲精品一区二区www| 叶爱在线成人免费视频播放| 搡老熟女国产l中国老女人| 久久中文字幕人妻熟女| 两性午夜刺激爽爽歪歪视频在线观看 | 女人高潮潮喷娇喘18禁视频| 少妇的丰满在线观看| 欧美在线黄色| 亚洲男人的天堂狠狠| 日韩欧美一区视频在线观看| 免费人成视频x8x8入口观看| 一级a爱视频在线免费观看| 亚洲五月婷婷丁香| 12—13女人毛片做爰片一| 美女 人体艺术 gogo| 男女午夜视频在线观看| 成人三级做爰电影| 久久天堂一区二区三区四区| 人妻丰满熟妇av一区二区三区| 久久久久久大精品| 免费在线观看视频国产中文字幕亚洲| cao死你这个sao货| 黑人巨大精品欧美一区二区mp4| 制服诱惑二区| 伊人久久大香线蕉亚洲五| 国产片内射在线| 免费看美女性在线毛片视频| 老汉色∧v一级毛片| 亚洲男人的天堂狠狠| 亚洲av电影在线进入| 日本黄色视频三级网站网址| 91麻豆av在线| 成人亚洲精品一区在线观看| 中文亚洲av片在线观看爽| 久久草成人影院| 女生性感内裤真人,穿戴方法视频| 黄色成人免费大全| 欧美黄色淫秽网站| 99在线人妻在线中文字幕| 黄色成人免费大全| 欧美黄色淫秽网站| 日韩三级视频一区二区三区| 婷婷精品国产亚洲av| 成年免费大片在线观看| 长腿黑丝高跟| 一级a爱视频在线免费观看| 国产97色在线日韩免费| 亚洲久久久国产精品| 老司机在亚洲福利影院| 97超级碰碰碰精品色视频在线观看| 中文字幕人妻丝袜一区二区| 亚洲色图av天堂| 99久久精品国产亚洲精品| 波多野结衣高清作品| 国产精品99久久99久久久不卡| 国产亚洲欧美98| 国产黄a三级三级三级人| 精品少妇一区二区三区视频日本电影| www国产在线视频色| 国产一区二区激情短视频| 一边摸一边做爽爽视频免费| 久久久久国产一级毛片高清牌| 久久久国产精品麻豆| 动漫黄色视频在线观看| 午夜久久久在线观看| 99国产综合亚洲精品| 每晚都被弄得嗷嗷叫到高潮| 国产高清videossex| 搡老妇女老女人老熟妇| 嫩草影视91久久|