• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Electronic Structures and Optical Properties of Ga Doped Single-Layer Indium Nitride

    2018-06-27 06:48:20ZhiweiLiDepingGuoGungyiHungWngliToMnyiDun
    CHINESE JOURNAL OF CHEMICAL PHYSICS 2018年3期

    Zhi-wei Li,De-ping Guo,Gung-yi Hung,Wng-li To,Mn-yi Dun,b?

    a.College of Physics and Electronic Engineering,Sichuan Normal University,Chengdu 610101,China

    b.Division of Interfacial Water and Key Laboratory of Interfacial Physics and Technology,Shanghai Institute of Applied Physics,Chinese Academy of Sciences,Shanghai 201800,China

    I.INTRODUCTION

    Since graphene was discovered by Novoselov et al.in 2004[1],many researchers have been attracted by the excellent electronic structure and optical properties of single-layer materials.Group-III nitrides,such as GaN,AlN and InN,have been explored for many years,and the InN material had been proved that it can be applied in making microelectronic and photoelectric devices[2?4],tunnel junctions[5],single photon emitters[6]and polarization-driven topological insulators[7],because it has the highest mobility[8],peak rate,electron drift rate[9,10],and the smallest effective electron mass[11].These discoveries open a new door to further explore the properties of InN materials.However,compared to three-dimensional materials,two-dimensional materials have more excellent physical and optical properties.Single-layer materials are more sensitive to external regulation and many researchers have predicted the potential applications in the fields of modern nanotechnologies[12?15].

    In 2006,Kang et al.used metal organic chemical vapor deposition(MOCVD)technique to obtain high quality hexagonal symmetrical indium nitride nanoflower structure for the first time by means of hydrogeninduced“autocatalysis”[16,17].In 2009,Komissarova et al.generated a layered InN via MOCVD Technology[18].The studies demonstrate that physics at atomic scale thickness endows the single-layer materials with attractive electrical and optical properties in contrast with those of their bulk counterparts,which may bring new breakthroughs in condensed matter physics.In 2011,some researches demonstrate InN semiconductor as the best material for high performance solar cells,ultrafast optical switching devices,and optical limiting devices[19?21].In 2016,Balushi et al.demonstrated the synthesis of single-layer GaN formation via a migration-enhanced encapsulated growth(MEEG)[22],and it is also proved that the single-layer materials are relatively stable.We have discussed the electronic structure and optical properties of Group-III nitride materials based on density functional theory(DFT)[23?25],As is known to all,the optical properties are not accurate enough under the DFT framework due to the underestimation of the band gap.Therefore,it would be very meaningful for us to further explore the electronic structure and optical properties of Ga doped single-layer InN materials by employing Heyd-Scuseria-Ernzerh(HSE)method based on the first-principles,which proves to be more accurate than DFT method.Furthermore,it is indicated that the band gap is adjustable by varying the ratio x,the result may be useful to application in the fields of modern nanotechnologies for doped single-layer materials.

    FIG.1 (a)Bulk InN,(b)single-layer InN,(c)single layer In0.75Ga0.25N,and(d)side view of single-layer In0.75Ga0.25N.

    II.COMPUTATIONAL METHODS

    In this work,we first test the band gap of bulk InN,and then mainly study the electronic structure and the optical properties of single-layer In1?xGaxN materials.Calculations are employed by the Vienna ab initio simulation package(VASP)[26,27]based on DFT,and the electron-ionic core interaction is represented by the projected augmented wave(PAW)potentials[28].The calculations on bulk InN and single-layer In1?xGaxN are performed using conventional Perdew Burke Ernzerhof(PBE)formulation of generalized gradient approximation(GGA)[29].However,the GGA underestimates the band gap value.Therefore,HSE functional is further performed to study both electronic and optical properties of bulk InN and single-layer In1?xGaxN,which is more accurate than GGA.Besides,the 5s24d105p1,4s24d104p1and 2s22p3states are considered as valence electrons for In,Ga and N atoms respectively.

    In our work,the cutoff energy for the plane-waves is chosen to be 500 eV.For the test calculation of the bulk InN,the Brillouin zone is sampled using grids of 5×5×2 k-points[30],fast Fourier transformation(FFT)mesh value is 24×24×40,the iterative convergence accuracy is set to 1×10?5eV/atom.To deal with single-layer In1?xGaxN,we create the model of 2×2×1 supercell which contains 8 atoms,and a periodic boundary condition is applied to the supercell,the Brillouin zone is sampled by a set of 3×3×1,FFT mesh value is 48×48×125,and the supercell is large enough to ensure the vacuum space of 15?A in order to eliminate the interaction between periodic images.The structures have been relaxed until the forces on each atom are smaller than 0.03 eV/?A,and the convergence criteria for energies have been set to be 1.0×10?5eV.

    FIG.2 (a)Band structure and(b)DOS of single-layer InN.

    III.RESULTS AND DISCUSSION

    Our calculation models are shown in FIG.1,the lattice constants of single-layer InN are a=b=7.16?A,c=15?A and the N?In bond length is 2.073?A,which is similar to the previous result[31].And the N?In bond length of single-layer InN is smaller than that of bulk InN(2.16?A).In single-layer InN each N atom bonds with three In(sp2hybridization),but in the bulk InN each N atom bonds with four In atoms(sp3hybridization),and sp2bonds are stronger than the sp3bonds.When Ga doped single-layer InN,shown in FIG.1(c)and(d),the average bond length of N?In is 2.097?A,and the average bond length of N?Ga is 1.888?A due to the different electronegativity between In and Ga.Then we calculated the band structure of bulk InN with AEXX=0.3,which shows the band gap is 0.79 eV.Our result is very consistent with the experimental value,so we fix AEXX=0.3 for the following calculations.

    FIG.3 (a)DOS of In0.75Ga0.25N and(b)In1?xGaxN.

    The band structure and DOS of single-layer InN are shown in FIG.2(a)and(b),respectively.The singlelayer InN shows semiconductivity with a direct band gap of 1.8 eV,which is bigger than the result of Nour et al.(1.66 eV)[31].According to FIG.2(b),the DOS of single-layer InN can be divided into 3 groups.The lowest energy group of valence band around?6 eV to?4 eV is mainly contributed by 5s-In and 2p-N states,and we can see that there is an overlap between 5s-In and 2p-N.The second group of valence band from?4 eV up to the Fermi level,the DOS is mainly originated from 5p-In,4d-In,2p-N states.These is a strong overlap between the 5p-In states and 2p-N states.It indicates that the bond between N and In is covalent.The third group from 0 eV to 6.3 eV is the unoccupied states,the DOS is mainly composed of 2p-N and 5s,5p-In states.

    In order to further explore the effect of Ga doped concentration on the electronic properties and optical properties of single-layer InN monolayer nanosheets,we have calculated the DOS for different Ga doped concentration(In0.75Ga0.25N,In0.5Ga0.5N,In0.25Ga0.75N,and GaN),and we can clearly see from FIG.3 that for different Ga doping concentrations,the electronic structures have similar characteristics.For In0.75Ga0.25N(see FIG.3(a)),it can be seen that the DOS in the energy region(?6 eV to 0 eV)mainly consists of 2p-N and 5p states,4d-In states have a little contribution.Because of the low concentration of Ga atoms,the 4p,4d-Ga states also have a minimal contribution.From partial density of states(PDOS)of In,Ga and N,the 2p-N state is partially overlapped with the 5p-In state,which forms a hybrid effect and a stable covalent bond.Similarly,the p-state overlaps with 4p,4d-Ga states and also forms covalent bonds.

    FIG.4 Band gap values of single-layer In1?xGaxN.

    Compared with single-layer InN,the same point is that the valence band maximum of DOS of In0.75Ga0.25N is mainly contributed by the 2p-N and the 5p-In states,the difference is that there is part of the 4p-Ga involved in the contribution.With the increasing concentration of Ga doping(followed by 50%,75%,100%),as shown in FIG.3(b),when the concentration increases from 50%to 100%,the conduction band moves toward the high-energy part,resulting in a larger width of the optical band gap.The statistics of band gap values are shown in FIG.4.The result indicated that single-layer In1?xGaxN hybrid compounds can open considerable electronic gaps with the increase of Ga concentration.

    Because the single-layer materials have huge application prospects in solar cells and optical devices[33,34],optical properties have attracted much attention for the single-layer materials.Complex dielectric function is the best physical quantity to understand the optical properties and it is a bridge between the micro-physical process and the solid electron structure of the band transition[35].Here,optical properties calculations are performed in the HSE using VASP code,and the polarized electric field is parallel to single-layer In1?xGaxN(E||x).The real and imaginary parts of dielectric function ε(ω)=ε1(ω)+iε2(ω)are calculated.By combining the dielectric peaks in the imaginary part of the dielectric function with the state density of the corresponding system,we can get the electron transition rules between the energy levels.

    FIG.5(a)depicts the imaginary part of the dielectric element of the single-layer In1?xGaxN.All the peaks values in both directions are summarized in Table I.For single-layer InN from FIG.5(a)we can see four peaks,these peaks originate from transitions between occupied and unoccupied states,one locates around 1.8 eV that may be the transition of 5s-In states into 2p-N,another locates around 4 eV that could be the transition of 2p-N states into 5p-In states.When the concentration of Ga increases from 25%to 100%,the position of the main peaks moves in the direction of high energy without any notable shape changes,which is in good agreement with the increase of the band gap.Besides,from FIG.5(b),one can see that there has been a steep decline of ε1(ω)spectrum for single-layer In1?xGaxN when the frequency is in the range of 5?7 eV.

    FIG.5 (a)The imaginary part of single-layer In1?xGaxN and(b)the real part of single-layer In1?xGaxN.

    FIG.6(a)shows the refractive index of singlelayer In1?xGaxN.It can be seen from the figure that the static refractive index of pure single-layer InN is n0=1.69.When the photon energy increases,the refraction line shows a gentle trend.Moreover,with the increasing concentration of Ga doping,the n0of In1?xGaxN decreased from 1.69 to 1.32.FIG.6(b)shows the absorption coefficient of single-layer In1?xGaxN,we can see two main peaks at around 6.3 eV to 7.0 eV and 9.0 eV to 10.0 eV for the single-layer In1?xGaxN,and the peak intensity at around 6.3 eV is stronger than that at 9.0 eV.When the ratio x increases,both the refractive index and the absorption coefficient shift toward the higher-energy region.

    IV.CONCLUSION

    FIG.6 (a)The refractive index of single-layer In1?xGaxN and(b)the absorption coefficient of single-layer In1?xGaxN.

    TABLE I The positions of main peaks of imaginary part of dielectric function of single-layer In1?xGaxN.

    In summary,we studied the electronic and optical properties of single-layer In1?xGaxN.By using the first principles PAW potential under HSE method.The calculated InN band gap values are consistent with the experimental ones,and the results of band structure and DOS show that the In1?xGaxN nanosheet is a wide band gap semiconductor.Furthermore,with the increasing concentration of Ga doping,the band gap increases from 1.8 eV to 3.8 eV.Besides,the optical properties of In1?xGaxN monolayer nanosheets have been investigated,and the results show that the optical properties have a remarkable blue-shift as the concentration of Ga increases,which confirms that In1?xGaxN monolayer nanosheets have an excellent optical characteristics.

    V.ACKNOWLEDGMENTS

    This work was supported by the National Natural Science Foundation of China(No.11404230),Foundation of Science and Technology Bureau of Sichuan Province(No.2013JY0085).

    [1]K.S.Novoselov,A.K.Geim,S.V.Morozov,D.Jiang,Y.Zhang,S.V.Dubonos,I.V.Grigorieva,and A.A.Firsov,Science 306,666(2004).

    [2]F.X.Wang,C.S.Xue,H.Z.Zhuang,Y.J.Ai,L.F.Sun,Z.Z.Yang,and X.Zhang,Rare Metal.Mat.Eng.36,2020(2007).

    [3]S.Strite and H.Morkoc,J.Vac.Sci.Technol.10,1237(1992).

    [4]S.Nakamura,M.Senoh,N.Iwasa,and S.Nagahama,Appl.Phys.Lett.67,1868(1995).

    [5]J.Simon,Z.Zhang,K.Goodman,H.Xing,T.Kosel,P.Fay,and D.Jena,Phys.Rev.Lett.103,026801(2009).

    [6]S.Kako,C.Santori,K.Hoshino,S.G?tzinger,Y.Yamamoto,and Y.Arakawa,Nat.Mater.5,887(2006).

    [7]M.S.Miao,Q.Yan,C.G.Van de Walle,W.K.Lou,L.L.Li,and K.Chang,Phys.Rev.Lett.109,186803(2012).

    [8]V.M.Polyakov and F.Schwierz,Appl.Phys.Lett.88,032101(2006).

    [9]S.K.O.Leary,B.E.Foutz,M.S.Shur,U.V.Bhapkar,and L.F.Eastman,J.Appl.Phys.83,826(1998).

    [10]B.E.Foutz,S.K.O’Leary,M.S.Shur,and L.F.Eastman,J.Appl.Phys.85,7727(1999).

    [11]S.P.Fu and Y.F.Chen,Appl.Phys.Lett.85,1523(2004).

    [12]D.Golberg,Y.Bando,Y.Huang,T.Terao,M.Mitome,C.Tang,and C.Zhi,ACS Nano 4,2979(2010).

    [13]Y.H.Lee,X.Q.Zhang,W.Zhang,M.T.Chang,C.T.Lin,K.D.Chang,Y.C.Yu,J.T.W.Wang,C.S.Chang,L.J.Li,and T.W.Lin,Adv.Mater.24,2320(2012).

    [14]J.Zhang,X.Liang,P.Zhang,K.Wu,G.Liu,and J.Sun,Acta Mater.66,302(2014).

    [15]P.Tsipas,S.Kassavetis,D.Tsoutsou,E.Xenogiannopoulou,E.Golias,S.A.Giamini,C.Grazianetti,D.Chiappe,A.Molle,M.Fanciulli,and A.Dimoulas,Appl.Phys.Lett.103,666(2013).

    [16]A.Sandhu,Nat.Phys.111,76(2006).

    [17]T.T.Kang,X.Liu,R.Q.Zhang,W.G.Hu,G.Cong,F.A.Zhao,and Q.Zhu,Appl.Phys.Lett.89,2779(2006).

    [18]E.Tiras,M.Gunes,N.Balkan,R.Airey,and W.J.Schaff,Appl.Phys.Lett.94,142108(2009).

    [19]L.F.J.Piper,T.D.Veal,C.F.McConville,H.Lu,and W.J.Schaff,Appl.Phys.Lett.88,252109(2006).

    [20]N.Miller,J.W.Ager III,H.M.Smith III,M.A.Mayer,K.M.Yu,E.E.Haller,W.Walukiewicz,W.J.Schaff,C.Gallinat,G.Koblmüller,and J.S.Speck,J.Appl.Phys.107,113712(2010).

    [21]M.Kumar,T.N.Bhat,M.K.Rajpalke,B.Roul,N.Sinha,A.T.Kalghatgi,and S.B.Krupanidhi,Surf.Sci.605,L33(2011).

    [22]Z.Y.Al Balushi,K.Wang,R.K.Ghosh,R.A.Vilá,S.M.Eichfeld,J.D.Caldwell,X.Qin,Y.C.Lin,P.A.DeSario,G.Stone,S.Subramanian,D.F.Paul,R.M.Wallace,S.Datta,J.M.Redwing,and J.A.Robinson,Nat.Mater.15,1166(2016).

    [23]M.Y.Duan,L.He,M.Xu,M.Y.Xu,S.Xu,and K.Ostrikov,Phys.Rev.B 81,1718(2010).

    [24]Q.Chen,M.Xu,H.Zhou,M.Duan,W.Zhu,and H.He,Phys.B 403,1666(2008).

    [25]M.Y.Xu,M.Xu,M.Y.Duan,and Q.P.Hu,Chin.J.Chem.Phys.23,293(2010).

    [26]G.Kresse and J.Furthmüller,Phys.Rev.B 54,11169(1996).

    [27]G.Kresse and J.Hafner,Phys.Rev.B 49,14251(1994).

    [28]G.Kresse and D.Joubert,Phys.Rev.B 59,1758(1999)

    [29]J.P.Perdew,K.Burke,and M.Ernzerhof,Phys.Rev.Lett.77,3865(1996).

    [30]H.J.Monkhorst and J.D.Pack,Phys.Rev.B 13,5188(1976).

    [31]M.Ren,M.Li,C.Zhang,M.Yuan,P.Li,F.Li,W.Ji,and X.Liu,Phys.E 67,1(2014).

    [32]N.Nouri and G.Rashedi,Phys.E 85,324(2017).

    [33]H.Zheng,X.B.Li,N.K.Chen,S.Y.Xie,W.Q.Tian,Y.Chen,H.Xia,S.B.Zhang,and H.B.Sun,Phys.Rev.B 92,115307(2015).

    [34]S.Nakamura,Science 281,956(1998).

    [35]U.R?ssler,Phys.Rev.184,733(1969).

    一级二级三级毛片免费看| 亚洲欧洲日产国产| 在线观看一区二区三区| 国产乱人视频| 人体艺术视频欧美日本| 看免费成人av毛片| 特大巨黑吊av在线直播| 国产亚洲av嫩草精品影院| 91精品伊人久久大香线蕉| 淫秽高清视频在线观看| 久久久精品94久久精品| 午夜福利视频精品| 亚洲四区av| av女优亚洲男人天堂| 国产片特级美女逼逼视频| 国产亚洲一区二区精品| 美女高潮的动态| 久久久久久久久久久丰满| 久久久久久久亚洲中文字幕| 免费av观看视频| 国产白丝娇喘喷水9色精品| 熟女电影av网| 一个人看的www免费观看视频| 夫妻性生交免费视频一级片| 不卡视频在线观看欧美| 91精品一卡2卡3卡4卡| 嘟嘟电影网在线观看| 麻豆精品久久久久久蜜桃| 熟女人妻精品中文字幕| 一级毛片我不卡| 亚洲精品影视一区二区三区av| 国产av国产精品国产| 嫩草影院精品99| 2018国产大陆天天弄谢| 精品国产三级普通话版| 国产真实伦视频高清在线观看| 欧美区成人在线视频| 亚洲经典国产精华液单| 又爽又黄a免费视频| 日韩欧美国产在线观看| 色尼玛亚洲综合影院| 女的被弄到高潮叫床怎么办| 亚洲精品456在线播放app| 亚洲精品第二区| 99热这里只有是精品在线观看| 夫妻午夜视频| 777米奇影视久久| 亚洲欧美日韩无卡精品| 亚洲自拍偷在线| 日韩欧美精品v在线| 国产一级毛片七仙女欲春2| av.在线天堂| 国产免费福利视频在线观看| 日本免费在线观看一区| 亚洲av日韩在线播放| 日韩精品青青久久久久久| 一区二区三区高清视频在线| freevideosex欧美| 寂寞人妻少妇视频99o| 亚洲三级黄色毛片| 又爽又黄无遮挡网站| 国产高清有码在线观看视频| 国产黄a三级三级三级人| 精品久久久久久电影网| 97超视频在线观看视频| 青春草亚洲视频在线观看| 婷婷色综合www| 国产精品国产三级国产专区5o| 久久久久久久久久久丰满| 老女人水多毛片| 久久久a久久爽久久v久久| 蜜桃久久精品国产亚洲av| 国产成人a∨麻豆精品| 欧美日韩精品成人综合77777| www.av在线官网国产| 久久精品久久久久久久性| 婷婷色av中文字幕| 亚洲aⅴ乱码一区二区在线播放| 国产成人a∨麻豆精品| 毛片一级片免费看久久久久| 欧美日韩视频高清一区二区三区二| 欧美xxxx黑人xx丫x性爽| 国产精品一二三区在线看| 午夜免费观看性视频| 国产高清不卡午夜福利| 亚洲国产精品sss在线观看| 一级毛片 在线播放| 久久久精品欧美日韩精品| 国模一区二区三区四区视频| 精品久久久久久久末码| 视频中文字幕在线观看| 超碰av人人做人人爽久久| 国产乱人视频| 国内精品美女久久久久久| h日本视频在线播放| 精品人妻一区二区三区麻豆| 亚洲美女搞黄在线观看| 18禁在线无遮挡免费观看视频| 午夜老司机福利剧场| 啦啦啦中文免费视频观看日本| 欧美性感艳星| 国产精品精品国产色婷婷| 91久久精品国产一区二区三区| 人人妻人人澡欧美一区二区| 永久网站在线| 久久久亚洲精品成人影院| 永久网站在线| 亚洲av国产av综合av卡| 久久久久久久久久久免费av| 18禁动态无遮挡网站| videossex国产| 噜噜噜噜噜久久久久久91| 一区二区三区四区激情视频| 性插视频无遮挡在线免费观看| 久久精品人妻少妇| 午夜福利在线在线| 亚洲欧美一区二区三区黑人 | 国产女主播在线喷水免费视频网站 | 最近2019中文字幕mv第一页| 91精品国产九色| 能在线免费观看的黄片| 别揉我奶头 嗯啊视频| 久久亚洲国产成人精品v| 免费观看在线日韩| 精品人妻视频免费看| 免费电影在线观看免费观看| 超碰av人人做人人爽久久| 日韩亚洲欧美综合| 又爽又黄无遮挡网站| 啦啦啦韩国在线观看视频| 国产伦理片在线播放av一区| 精品熟女少妇av免费看| 又大又黄又爽视频免费| 国产成人福利小说| 亚洲aⅴ乱码一区二区在线播放| 久99久视频精品免费| 欧美 日韩 精品 国产| 日韩电影二区| 黄色配什么色好看| 日本黄大片高清| 亚洲真实伦在线观看| 国产成人精品久久久久久| 久久久午夜欧美精品| 国产一区二区在线观看日韩| 亚洲怡红院男人天堂| 有码 亚洲区| 一级a做视频免费观看| 天天一区二区日本电影三级| 亚洲精华国产精华液的使用体验| 日韩,欧美,国产一区二区三区| 亚洲欧美日韩东京热| 九草在线视频观看| 日韩在线高清观看一区二区三区| 日韩视频在线欧美| 亚洲美女搞黄在线观看| 国产高清三级在线| 久久久久免费精品人妻一区二区| 欧美日韩综合久久久久久| 寂寞人妻少妇视频99o| 亚洲精品日韩av片在线观看| 午夜激情久久久久久久| 在线观看美女被高潮喷水网站| 午夜老司机福利剧场| 成人鲁丝片一二三区免费| 精品一区二区三卡| 久久久久国产网址| 亚洲av中文av极速乱| 午夜激情久久久久久久| 插阴视频在线观看视频| 伊人久久国产一区二区| 亚洲成色77777| 美女主播在线视频| 免费大片18禁| 精品欧美国产一区二区三| 熟妇人妻不卡中文字幕| 亚洲人成网站在线观看播放| 亚洲第一区二区三区不卡| eeuss影院久久| av在线天堂中文字幕| 国产人妻一区二区三区在| 精品久久久久久久久久久久久| 人人妻人人看人人澡| 大话2 男鬼变身卡| 九九久久精品国产亚洲av麻豆| 日日干狠狠操夜夜爽| 蜜桃亚洲精品一区二区三区| 尾随美女入室| 久久精品人妻少妇| 丰满乱子伦码专区| 三级毛片av免费| 日韩视频在线欧美| 麻豆久久精品国产亚洲av| 美女黄网站色视频| 欧美zozozo另类| 成年人午夜在线观看视频 | 淫秽高清视频在线观看| ponron亚洲| 黄片wwwwww| 欧美日韩视频高清一区二区三区二| 久久久久性生活片| 国产淫语在线视频| 永久免费av网站大全| 三级国产精品欧美在线观看| 国产色爽女视频免费观看| 国产色爽女视频免费观看| 尾随美女入室| 成人美女网站在线观看视频| 中文资源天堂在线| 久久精品国产亚洲av涩爱| 亚洲欧美一区二区三区黑人 | 网址你懂的国产日韩在线| 亚洲成人av在线免费| 中文字幕av成人在线电影| 丰满人妻一区二区三区视频av| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 2022亚洲国产成人精品| 日韩欧美国产在线观看| 小蜜桃在线观看免费完整版高清| 午夜福利在线观看免费完整高清在| 日本与韩国留学比较| 国产精品一区二区三区四区久久| 国精品久久久久久国模美| 一级黄片播放器| 极品少妇高潮喷水抽搐| 国产成人精品久久久久久| 精品一区二区三区人妻视频| 国产精品久久久久久久电影| 久久久久久久久久久免费av| 精品熟女少妇av免费看| 熟女电影av网| av在线蜜桃| 麻豆久久精品国产亚洲av| 日日啪夜夜撸| 国产极品天堂在线| 蜜臀久久99精品久久宅男| 91午夜精品亚洲一区二区三区| 街头女战士在线观看网站| 亚洲乱码一区二区免费版| 亚洲精品亚洲一区二区| 婷婷色综合大香蕉| 亚洲成人中文字幕在线播放| 国产黄频视频在线观看| 五月伊人婷婷丁香| 边亲边吃奶的免费视频| 亚洲av中文av极速乱| 免费观看a级毛片全部| 成人国产麻豆网| 亚洲精品乱久久久久久| 国产成人aa在线观看| 亚洲av免费高清在线观看| 亚洲美女搞黄在线观看| 三级男女做爰猛烈吃奶摸视频| 日本色播在线视频| 在线观看美女被高潮喷水网站| 国产视频内射| 黄色欧美视频在线观看| 在线天堂最新版资源| 久久久久久伊人网av| 国语对白做爰xxxⅹ性视频网站| 特大巨黑吊av在线直播| 国产精品99久久久久久久久| 亚洲精品久久久久久婷婷小说| 日韩强制内射视频| 精品人妻熟女av久视频| 国产色婷婷99| 男的添女的下面高潮视频| 国产精品国产三级国产av玫瑰| 男女视频在线观看网站免费| 观看免费一级毛片| 免费观看在线日韩| 亚洲精品乱久久久久久| 最近手机中文字幕大全| 欧美一级a爱片免费观看看| 全区人妻精品视频| 亚洲国产精品专区欧美| 欧美成人a在线观看| videos熟女内射| 国产成人精品久久久久久| 免费电影在线观看免费观看| 日本欧美国产在线视频| 免费黄网站久久成人精品| 91狼人影院| 日日啪夜夜撸| 国产高清有码在线观看视频| 亚洲精品第二区| 天堂网av新在线| 成人美女网站在线观看视频| 国产成人一区二区在线| 熟妇人妻久久中文字幕3abv| 日本熟妇午夜| 99热全是精品| 淫秽高清视频在线观看| 激情五月婷婷亚洲| 深爱激情五月婷婷| 国产在视频线精品| 国精品久久久久久国模美| 国产伦理片在线播放av一区| 欧美激情久久久久久爽电影| 亚洲最大成人中文| 欧美最新免费一区二区三区| 人妻夜夜爽99麻豆av| 欧美日韩精品成人综合77777| 国产精品一及| 精品久久久精品久久久| 欧美极品一区二区三区四区| 午夜精品国产一区二区电影 | 777米奇影视久久| 中文字幕制服av| 国产伦理片在线播放av一区| 亚洲精品日韩av片在线观看| 18禁在线播放成人免费| 免费黄频网站在线观看国产| 2021天堂中文幕一二区在线观| 免费看美女性在线毛片视频| 亚洲丝袜综合中文字幕| 亚洲欧美精品专区久久| 国产亚洲av嫩草精品影院| av在线老鸭窝| 男人舔女人下体高潮全视频| 男人爽女人下面视频在线观看| 亚洲欧美日韩东京热| 日本wwww免费看| 水蜜桃什么品种好| 精品酒店卫生间| 国产精品一区二区三区四区久久| 特大巨黑吊av在线直播| 人人妻人人澡欧美一区二区| 中文乱码字字幕精品一区二区三区 | 亚洲在线观看片| 日韩av在线大香蕉| 色哟哟·www| 最近2019中文字幕mv第一页| 精品国产露脸久久av麻豆 | av线在线观看网站| 尤物成人国产欧美一区二区三区| 亚洲av中文字字幕乱码综合| 久久久久久久亚洲中文字幕| 国产激情偷乱视频一区二区| 成年版毛片免费区| 午夜福利高清视频| 高清日韩中文字幕在线| 99九九线精品视频在线观看视频| 国语对白做爰xxxⅹ性视频网站| 女人被狂操c到高潮| 久久久久久久亚洲中文字幕| av福利片在线观看| 国产av在哪里看| 亚洲国产欧美人成| 亚洲va在线va天堂va国产| 狂野欧美白嫩少妇大欣赏| 亚洲av成人精品一区久久| 久久久久久久久久久免费av| 中文欧美无线码| 精品久久久久久久久av| 亚洲婷婷狠狠爱综合网| 成年免费大片在线观看| 久久久精品免费免费高清| 大话2 男鬼变身卡| 在线免费观看的www视频| 国语对白做爰xxxⅹ性视频网站| 日本一本二区三区精品| 国产精品一区二区在线观看99 | 26uuu在线亚洲综合色| 偷拍熟女少妇极品色| 最近手机中文字幕大全| 乱码一卡2卡4卡精品| 99视频精品全部免费 在线| 七月丁香在线播放| 麻豆成人午夜福利视频| 国产久久久一区二区三区| 高清视频免费观看一区二区 | 一级毛片我不卡| 午夜精品一区二区三区免费看| 两个人的视频大全免费| 国产男人的电影天堂91| 国模一区二区三区四区视频| 老女人水多毛片| 久久久久国产网址| 亚洲国产av新网站| 我要看日韩黄色一级片| 久久国内精品自在自线图片| 久久久久久久亚洲中文字幕| 精品不卡国产一区二区三区| 国产精品国产三级国产av玫瑰| 搡老乐熟女国产| 国产乱来视频区| 看免费成人av毛片| 久久久久久久久大av| 日韩亚洲欧美综合| 国产激情偷乱视频一区二区| 我的老师免费观看完整版| 一级片'在线观看视频| 国产老妇伦熟女老妇高清| 直男gayav资源| 你懂的网址亚洲精品在线观看| 中文精品一卡2卡3卡4更新| 亚洲精品第二区| 色综合色国产| 国产成人精品婷婷| 老女人水多毛片| 神马国产精品三级电影在线观看| 亚洲精品成人久久久久久| 久久久国产一区二区| 最近手机中文字幕大全| 亚洲美女搞黄在线观看| 久久久久久久久久人人人人人人| 亚洲自偷自拍三级| 在线免费十八禁| 不卡视频在线观看欧美| 一级毛片 在线播放| 久99久视频精品免费| 亚洲最大成人中文| 亚洲怡红院男人天堂| 亚洲av电影在线观看一区二区三区 | 亚洲成人一二三区av| www.av在线官网国产| 97超视频在线观看视频| 亚洲国产最新在线播放| 内地一区二区视频在线| 国产熟女欧美一区二区| 亚洲国产欧美人成| 啦啦啦啦在线视频资源| 少妇高潮的动态图| 九九久久精品国产亚洲av麻豆| 午夜福利视频1000在线观看| 中文字幕久久专区| 中文欧美无线码| 成人无遮挡网站| 国产色婷婷99| 中文欧美无线码| 日韩av在线大香蕉| 亚洲丝袜综合中文字幕| 亚洲欧洲国产日韩| 亚洲四区av| 18+在线观看网站| 日本午夜av视频| 18禁裸乳无遮挡免费网站照片| 国产成人a区在线观看| 男人舔奶头视频| 69av精品久久久久久| 久久精品国产鲁丝片午夜精品| 国产精品久久久久久久电影| 亚洲欧洲日产国产| 欧美 日韩 精品 国产| 精品国产一区二区三区久久久樱花 | 日韩av在线免费看完整版不卡| 一二三四中文在线观看免费高清| 免费黄网站久久成人精品| 国产亚洲午夜精品一区二区久久 | av一本久久久久| 欧美日韩亚洲高清精品| 男的添女的下面高潮视频| 在线观看美女被高潮喷水网站| 伊人久久国产一区二区| 久久久午夜欧美精品| 欧美成人a在线观看| 成人美女网站在线观看视频| 亚洲自拍偷在线| 亚洲人与动物交配视频| 久久久久久久久久人人人人人人| 免费看美女性在线毛片视频| 午夜精品一区二区三区免费看| 又大又黄又爽视频免费| 51国产日韩欧美| 免费av不卡在线播放| 亚洲欧洲日产国产| 国产乱人偷精品视频| 日韩欧美精品v在线| 久久久色成人| 十八禁网站网址无遮挡 | 国产黄a三级三级三级人| 亚洲人成网站在线播| av在线观看视频网站免费| 一本一本综合久久| 国产伦一二天堂av在线观看| 美女黄网站色视频| 成人性生交大片免费视频hd| 岛国毛片在线播放| 成人特级av手机在线观看| 国产乱人偷精品视频| 91aial.com中文字幕在线观看| 99久国产av精品国产电影| 国产毛片a区久久久久| 最近最新中文字幕免费大全7| 97精品久久久久久久久久精品| 看十八女毛片水多多多| 亚洲国产欧美人成| 九九爱精品视频在线观看| 日日啪夜夜撸| 亚洲va在线va天堂va国产| 一个人看视频在线观看www免费| 亚洲内射少妇av| 国产乱人偷精品视频| 国产午夜精品久久久久久一区二区三区| 美女cb高潮喷水在线观看| 搞女人的毛片| 亚洲国产欧美人成| 成人一区二区视频在线观看| 天堂√8在线中文| 国产乱人偷精品视频| av国产免费在线观看| 一级黄片播放器| 亚洲电影在线观看av| 亚洲高清免费不卡视频| 日韩欧美一区视频在线观看 | 2021天堂中文幕一二区在线观| 一级毛片我不卡| 尾随美女入室| 成人国产麻豆网| 国产黄色视频一区二区在线观看| 日本熟妇午夜| 一级a做视频免费观看| 久久精品国产鲁丝片午夜精品| 2021天堂中文幕一二区在线观| 午夜精品在线福利| 看十八女毛片水多多多| 乱人视频在线观看| 秋霞伦理黄片| 免费不卡的大黄色大毛片视频在线观看 | 亚洲最大成人av| 天堂影院成人在线观看| 精品久久久久久久久亚洲| 国产精品国产三级国产专区5o| av网站免费在线观看视频 | 久热久热在线精品观看| 亚洲电影在线观看av| 69人妻影院| 国产久久久一区二区三区| 永久免费av网站大全| 国语对白做爰xxxⅹ性视频网站| 少妇熟女aⅴ在线视频| 久久综合国产亚洲精品| 国产亚洲av片在线观看秒播厂 | 婷婷色综合大香蕉| 在线观看美女被高潮喷水网站| 亚洲三级黄色毛片| 七月丁香在线播放| 亚洲图色成人| 91av网一区二区| 成人鲁丝片一二三区免费| 久久久午夜欧美精品| 亚洲国产色片| 插逼视频在线观看| 免费观看性生交大片5| 精品久久久久久久人妻蜜臀av| 久久久久久久久大av| 如何舔出高潮| 婷婷色麻豆天堂久久| 国产黄色视频一区二区在线观看| 1000部很黄的大片| 日本欧美国产在线视频| 免费观看在线日韩| 国产亚洲av嫩草精品影院| 高清午夜精品一区二区三区| 日本免费a在线| 欧美日本视频| 久久人人爽人人爽人人片va| 成人美女网站在线观看视频| 国产精品国产三级国产av玫瑰| 高清在线视频一区二区三区| 日本色播在线视频| 国产69精品久久久久777片| 国产亚洲5aaaaa淫片| 亚洲成人久久爱视频| 久久热精品热| 久久久久精品性色| 久久热精品热| 人妻系列 视频| 2022亚洲国产成人精品| 在线免费观看不下载黄p国产| 天天躁夜夜躁狠狠久久av| 好男人在线观看高清免费视频| 最近中文字幕2019免费版| videossex国产| 欧美最新免费一区二区三区| 国产成人a∨麻豆精品| 国产成人一区二区在线| 久久精品综合一区二区三区| 久久精品熟女亚洲av麻豆精品 | 亚洲精品影视一区二区三区av| 少妇熟女aⅴ在线视频| 色播亚洲综合网| 日韩国内少妇激情av| 日韩成人av中文字幕在线观看| 欧美+日韩+精品| 久久久精品欧美日韩精品| 十八禁国产超污无遮挡网站| 我的女老师完整版在线观看| 男女那种视频在线观看| 丰满人妻一区二区三区视频av| 在线观看人妻少妇| 久久久久久久久久黄片| 国产亚洲av片在线观看秒播厂 | 一区二区三区四区激情视频| 国产伦理片在线播放av一区| 亚洲av一区综合| 91狼人影院| 久久精品久久精品一区二区三区| 十八禁网站网址无遮挡 | 色播亚洲综合网| 在线a可以看的网站| 免费观看性生交大片5| 少妇高潮的动态图| 国模一区二区三区四区视频| 插逼视频在线观看| 春色校园在线视频观看| 欧美xxⅹ黑人| 精品人妻熟女av久视频| 亚洲精品aⅴ在线观看| 久久久久网色| 欧美精品一区二区大全| 51国产日韩欧美| 国产精品国产三级专区第一集| 免费在线观看成人毛片| 日本与韩国留学比较|