• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Network Modeling of Inflammatory Dynamics Induced by Biomass Smoke Leading to Chronic Obstructive Pulmonary Disease

    2018-06-27 06:48:32HaishanYuZhichaoPanJielouLiao
    CHINESE JOURNAL OF CHEMICAL PHYSICS 2018年3期

    Hai-shan Yu,Zhi-chao Pan,Jie-lou Liao

    Department of Chemical Physics,University of Science and Technology of China,Hefei 230026,China

    I.INTRODUCTION

    Chronic obstructive pulmonary disease(COPD)is a progressive inflammatory condition characterized by air flow limitation due to small airway obstruction(bronchitis)and destruction of the lung parenchyma(emphysema)[1,2].COPD has currently become the third leading cause of death globally[2].There is no cure available for COPD and the present drug treatments are mainly effective in the improvement of symptoms and exacerbation but generally do not slow down the disease progression[3].The disease poses a huge public health burden worldwide.Thus,it is of great importance to elucidate the detailed mechanism of the disease for the development of effective therapies.

    Although inhalation of cigarette smoke(CS)is the primary cause of COPD(CS-COPD),a growing number of other risk factors such as exposure to air pollution particulate matter(PM)contribute to the pathology of the disease[4].In particular,PM2.5,defined as fine particulate matter with an aerodynamic diameter less than 2.5μm,plays a detrimental role in the pathogenesis of COPD,as it can readily penetrate into the small airway and alveoli of the lung[5].There are several sources including biomass smoke(BS),a major contributor to PM2.5[6],as more than 3 billion people use biomass fuel for cooking and heating worldwide[7].Exposure to BS has been widely recognized as a significant risk factor for COPD[1,8].BS-induced COPD(BS-COPD)has been considered mainly in developing regions of the world,but biomass burning is also recognized as a significant cause of the disease in industrialized countries[8].

    BS contains many compounds similar to those in CS[9].Both BS and CS activate inflammatory responses of the lung.The BS-and CS-induced inflammatory responses involve both innate and adaptive immunity,which are mediated through a complex network consisting of multiple immune cell types,molecular mediators,and lung tissues[1].It would be expected that BS induces an inflammatory pattern similar to that of CS[1,9].Recent studies,however,have shown that immune response caused by exposure to BS[10]appears to be different from that induced by CS in COPD patients[11].Clinical data have demonstrated that a set of patients with BS-COPD have higher levels of IL4-producing Th2 cells,which predominate over Th1 and Th17[10],while subjects with CS-COPD develop a proinflammatory Th17-type immune profile,in which the Th17 population is significantly higher than that of Th2[11].However,a more recent study showed that another set of patients with BS-COPD exhibited higher levels of proinflammatory biomarkers than healthy subjects similar to those with CS-COPD,and there was no predominant Th2-type inflammation observed in BSCOPD subjects[8].Although the discrepancies between these studies[8,10]might be attributable to the high heterogeneity of COPD and a different distribution of males and females in each COPD group selected[8],the underlying mechanism is not completely clear.

    FIG.1 Network model for BS-induced inflammatory response.The interactions between various nodes that represent immune cells,cytokines and tissues(TD)are depicted(see the main text for details).For clarity,only a few inhibitory interactions of IL-10 are shown(see details in Ref.[12]).

    In our previous study[12,13],a network model was proposed to describe the dynamics of CS-induced immune responses in COPD progression.This network model is then extended to study the immune response dynamics in the progression of ulcerative colitis[14].Our network model studies have identified several positive feedback loops(PFLs),activation of which plays a determinant role in several different mechanisms(endotypes)in COPD developments[12–14].Inhibition of key elements in the activated PFLs could provide a possible therapeutic approach for COPD treatment.Moreover,lessons learned from our previous study are that a similar clinical phenotype of COPD patients may originate from different endotypes.Therefore,it is suggested that personalized medicine is required for an effective treatment of COPD[12,13].Our previous modeling predictions[13]were in good agreement with the clinical data for CS-induced COPD,in which Th17 predominates over Th2[12].As COPD is essentially proinflammatory[1,12,13],how an inflammatory profile of a Th2-type,which is anti-inflammatory,is achieved in a subset of patients with BS-COPD has not been addressed in our previous study[12]and remains largely unclear so far.In the present work,the network model developed in our previous study[12]is applied to elucidate BS-induced inflammatory dynamics leading to COPD to address the above issue.

    II.MATERIALS AND METHO DS

    A.Network model

    The immune system associated with COPD is highly complex,involving many molecular mediators,immune cells,and lung tissues.For the sake of simplicity,a network model is developed by treating important components as network nodes[12].In this network model,there exist two types of inputs initiated from a node.A positive or an up-regulation input(denoted by→)represents that an increasing of the concentration of the tail node will result in an increasing of the head node or an up-regulation of the process when the input arrow ends at an edge between two nodes,and vice versa for a negative or a down-regulation(inhibition)input(denoted by?).

    The network model(FIG.1)used in this work is based on that presented in our previous study[12].Upon exposure to external stimuli such as BS,imma-ture macrophages(M0)are polarized to the inflammatory type,M1 macrophages,and initiate an inflammatory cascade[7].M1 produces inflammatory cytokines such as tumor necrosis factor-α(TNF-α),which activates M1 conversely,IL-6 and IL-12[15].M1 can cause tissue damage(TD)in the lung by releasing reactive oxygen species(ROS)leading to oxidative stress,proteases such as macrophage elastase and metalloproteases(MMPs)to ingest pathogens and apoptotic cells,and chemokines including IL-8 to recruit neutrophils into the lung[16–18].Neutrophils,which are short-lived and subsequently cleared by macrophages[19],contribute to TD in a manner similar to M1 macrophages[17].In addition,the inflammation in COPD is often described as neutrophilic[1].Furthermore,the tissues damaged by M1 can produce elastin fragments(EFs)as strong attractors to recruit monocytes(precursors of macrophages,M0)into the lung from circulation[19].Subsequently,these M0 cells are differentiated into M1,thus forming a positive feedback loop,M1→TD→M1.

    Lung tissue damage triggers an early wounding healing process by producing IL-4 that alternatively activates macrophages(M2)[18,20,21].M2 secretes IL-10,which activates M2 inversely,and transforming growth factor,TGF-β[22].While IL-10 is a potent antiinflammatory cytokine that down-regulates almost all important proinflammatory and TD-related processes,TGF-β is a multi-functional growth factor.In the lung parenchyma,TGF-β down-regulates tissue damage through inhibition of MMP-12 and MMP-9,whereas in small airways,TGF-β is a potent inducer for extracellular matrix target genes such as collagens,and fibroblast proliferation and activation which both are key events in the fibrogenic process[23].

    Dendritic cells(DCs)are antigen-presenting,playing a critical role in linking the innate to the adaptive immune response[24].Immature dendritic cells(DC0)near the epithelial surface are activated directly by BS or dangerous signals generated from TD[1,11].DC undergoes a maturation process and migrates towards the local lymph nodes.Na?ve,quiescent T cells cannot enter the lung parenchyma.But once activated by matured DC[25,26],they can move into the lung and differentiate into Th1,Th2,Th17,T-regulatory(Treg)and CD8+T cells in their corresponding cytokine environments,e.g.,in the presence of IL-12 secreted by M1(as well as DC),na?ve CD4+T cells(Th0)differentiate into T helper 1(Th1)cells[27–29].Th1 secretes interferon-γ(IFN-γ)to up-regulate the polarization process from M0 to M1[30].A multi-node positive feedback loop,M1→IL12→Th1→IFN→γ→M1,is thus created.In contrast to Th1,Th2 is polarized from Th0 in the presence of IL-4.Release of IL-4 further enhances the production of IL-10 and TGF-β by M2(FIG.1).

    In the presence of TGF-β,Th0 cells differentiate into Treg,which secretes IL-10[31].TGF-β and IL-6 together induce Th17 differentiation,leading to the production of IL-17[32–35].While IL-17 acts on epithelial cells to recruit neutrophils to cause TD further,the activated epithelial cells in TD secrete IL-6,forming another positive feedback loop,IL-6→Th17→IL-17→TD→IL-6[27,35].Th17 cells also produce IL-21 for the differentiation of CD8+T cells from na?ve CD8+cytotoxic T lymphocytes(T0)[27,36].While CD8+T cells produce IFN-γ to enhance the M1 inflammatory activities,they also release granzyme B and perforins,causing apoptosis/necrosis of targeted cells and leading to TD further[27].In addition,IL-6 can downregulate the activation of Treg that secretes IL-10 inhibiting Th17[37].Consequently,a positive feedback loop,IL-6?Treg→IL-10?Th17→IL-17→TD→IL-6,is generated.The aforementioned molecular mediators,immune cells,and TD are then treated as nodes,and are integrated into the network model presented in FIG.1.

    In this network model M1,DC,Th1,Th17,and CD8+T with their associated cytokines,TNF-α,IL-6,IL-12,IFN-γ,and IL-17 form multiple proinflammatory pathways,whereas M2,Th2,and Treg with the related cytokines,IL-4,TGF-β,and IL-10,form antiinflammatory/regulatory pathways.The inflammatory and anti-inflammatory/regulatory pathways are interlinked with each other through several nodes representing molecular mediators such as IL-6,TGF-β,IL-10,IL-4,and IFN-γ(FIG.1).These pathways eventually converge at the TD node.As we focus on the immunologic aspects of BS-COPD,the TD node of the network is highly coarse-grained,involving neutrophil-induced tissue damage,epithelial cell injury and extracellular matrix degradation etc.[12].For example,epithelial cell injury in lung tissue(TD)can release molecular mediators including IL-4,IL-33 and thymic stromal lymphopoitin(TSLP)to up-regulate Th2 and type II innate lymphoid cells(ILCs),both of which secrete IL-4,IL-5,and IL-13[1,38].Dysregulated expressions of these cytokines in the airway smooth muscle are associated with asthma[1].For simplicity,ILCs and TSLP,IL-5,and IL-13 are not included in the present network model.

    B.Network dynamics

    FIG.2 Population dynamics of M1,M2and DCover a time period of(a)6000 days and(b)180 days(the dashed square region in(a))in BS-COPD progression.

    FIG.3 Population dynamics of Iα,I6,I12,I17,Iγ,I4,I10and Iβover a time period of(a)6000 days and(b)180 days(the dashed square region in(a))in BS-COPD progression.

    The above constructed network has a multiple timescale nature.For example,while cytokine regulation of cellular function via signal transduction usually takes place on a sub-second timescale,cell production of cytokines takes minutes to hours[39].Therefore,the cytokine regulation activity can be considered to be at steady state in the equation that describes the slow timescale activities of the cells.Thereby,a positive or a negative input can be modeled using an increasing or decreasing Hill function[12].In this work,we use a set of ordinary differential equations(ODEs),which are similar to those in our previous study[12],to describe the dynamics of the above network components(see text in Supplementary materials).These ODEs involve 18 variables,i.e.,M1,M2,DC,T1,T2,T8,T17,and Tgrepresent the densities of M1,M2,DC,Th1,Th2,CD8+,Th17,and Treg cells(in units of cell numbers in a cubic millimeter of tissue),respectively,whereas I4,I6,I10,I12,I17,I21,Iα,Iγ,and Iβdenote concentrations of the cytokines,IL-4,IL-6,IL-10,IL-12,IL-17,IL-21,TNF-α,IFN-γ,and TGF-β.The variable,TD,represents the tissue damage(in terms of a percentage)[12].Given the network model(FIG.1)as well as the ODEs(see text in the Supplementary materials),the values of the parameters in the ODEs determine the immune response dynamics and inflammatory profile of a subject exposed to BS.In the following discussion,the values of the parameters(Table S1 in the Supplementary materials)in the ODEs(see text in the Supplementary materials)were adopted or estimated from experimental data(Table S2 in the Supplementary materials).A subset of the parameters including k9(3.36×104/day),k26(8.00 pmol/(cell day))and k27(2.00 pmol/(cell day)),which govern the dynamics of Th2 and IL-4,respectively,have different values from their counterparts,k8(0.41×104/day),kI4,TD(1.56 pmol/(cell day))and kI4,T2(0.83 pmol/(cell day))in Table S1 in Ref.[12]for patients with CS-COPD studied previously.

    As mentioned above,18 ODEs,which involve 18 variables,M1,M2,DC,T1,T2,T8,T17,Tg,I4,I6,I10,I12,I17,I21,Iα,Iγ,Iβ,and TD,are used to describe the network dynamics.These ODEs are listed in Supplementary materials.The system of ODEs is solved numerically using MATLAB(version R2013a Mathworks)with a variable order and multistep solver,ode15s,and the parameters used in the simulations are listed in Table S1.MATLAB is also used to plot the simulation data to generate the figures presented below.

    III.RESULTS

    A.Dynamics of BS-induced immune response and inflammatory profile

    FIG.4 Population dynamics of T1,T2,T8,T17,and Tgover a time period of(a)6000 days and(b)180 days(the dashed square region in(a))in BS-COPD progression.

    FIG.5 (a)TD dynamics.(b)Calculated results(red)for Th1,Th2,Th17,and Treg compared with clinical data(black)for BS-COPD.The clinical data are taken from Ref.[12].

    FIGs.2?4 present the population dynamics of the immune cells and cytokines in response to BS,respectively.The M1 population(FIG.2(b))along with TNF-α,IL-6,and IL-12(FIG.3(b))ascends to a peak after BS exposure for~13 days,and then goes downuntil day 20 due to the down-regulation of IL-10 mainly produced by M2(FIG.1(a)),exhibiting an acute inflammatory response to BS exposure.As discussed in the previous study,this time period is referred to as phase I in COPD progression[14].Thereafter,the IL-10 inhibitory effect on M1 is countervailed by the M1 production up-regulated by TNF-α,TD and IFN-γ(see FIG.1).M1 is then raised again up to day of 180.This time of period is referred to as phase II,which bridges the innate and adaptive immunity in the progression of COPD[14].During phase II,DC along with IL-12,IL-6,and TGF-β(FIG.3(b)),and IL-21(data not shown)increases slowly and gradually,leading to the slow productions of Th1,Th17,and CD8+,respectively.After phase II,TD(FIG.5(a))along with the immune cells and molecular mediators eventually reaches a steady state(stable COPD,see results in Table S2).Our modeling results are consistent with laboratory and clinical experiments(see Table S2 in the Supplementary materials).

    Our simulation results show that overall,BS-induced dynamic behaviors of the innate immune cells,M1 and DC(FIG.2)are similar to those induced by CS in COPD progression[12].However,there exist significant differences in the dynamics of some important network components including IL-4 and Th2 between these two cases.As shown in FIG.3 IL-4(I4)is increased dramatically compared to that in CS-COPD[14].Th2 is also significantly enhanced,predominating over Th1 and Th17,respectively,during the COPD progression(FIG.4).The BS-COPD patients,which were all female[12],studied in this work have an inflammatory profile in which the Th2 level is higher than that of Th17(FIG.5(b)),different from that of CSCOPD in which Th17 predominates over Th2[13,14](see FIG.S1 in this work).Here,our simulations results are in good agreement with the clinical data[12],as shown in FIG.5(b).Nevertheless,M1 still remains at a high level(FIG.2)similar to that of CS-COPD[14]as the host is persistently exposed to BS and the M1-involved PFLs are constantly activated.As a result,our modeling study has identified a subset of COPD patients whose immune dynamics is dominated by a mixed M1-and Th2-type response.

    FIG.6 Simulations of TD dynamics for in silico knockout of(a)an immune cell,M1(red),T1(green),T2(blue),T17(cyan),or T8(pink)and(b)a cytokine,Iα(red slashed line),I6(cyan),I17(pink),Iγ(green),or I4(blue).WT(wild-type)is represented by black solid line.

    B.Knockout simulations

    In the following discussion,in silico knockout simulations are performed to identify important network components for BS-COPD through deletion of a node by setting all parameters of the component and the rate to zero.The results for knockouts of the immune cells,M1,Th1,Th2,Th17,CD8+,and the cytokines,TNF-α,IL-6,IL-17,IFN-γ,and IL-4 are presented in FIG.6(a)and(b),respectively.

    FIG.6(a)shows that M1 knockout leads to a significant reduction in TD in spite of persistent exposure to BS.As discussed earlier,M1 not only produces proinflammatory cytokines such as IL-6 and IL-12 to activate the adaptive immune responses,but also induces TD by producing chemokines such as IL-8 to recruit neutrophils into the lung,ROS leading to oxidative stress,and elastolytic enzymes including MMPs.The M1 knockout result along with that shown in FIG.3 demonstrates that M1 predominates in the immune response,consistent with experiments in which M1 has a determinant role for BS-COPD[1]similar to the case of CS-COPD[40].While deletion of Th1 leads to a small change in BS-induced TD,knockouts of Th17 and CD8+result in a large amount of reduction in TD,respectively.Interestingly,deleting Th2 leads to an increase in TD(FIG.6(a)),which is consistent with knockout of Th2-produicng IL-4(FIG.6(b)).These results are not surprising as Th2 and IL-4 execute their anti-inflammatory and wound healing effects on TD.Our modeling study indicates that anti-IL-4/Th2 strategy may not be effective in the treatment of BSCOPD,although both Th2 and IL-4 are significantly enhanced that might be associated with coexisting asthma[41,42],in line with clinical experiments[38].

    Although the TNF-α level(FIG.3)is significantly increased in BS-COPD,no significant reduction in TD is found in the TNF-α knockout simulation(FIG.6(a)).This result is consistent with clinical data showing that TNF-targeted therapy is ineffective in COPD treatment[3,43].As shown in FIG.6(b),the deletions of IL-17 and IFN-γ lead to a relatively small decrease(<~10%)in TD,respectively.These low-level reductions are not contradictory to the effects of CD8+and Th17 knockouts,as the latter effects come from both cytokine deletion and elimination of the cytotoxicity of CD8+that produce granzyme B and perforins to cause TD further as discussed earlier.Despite a relatively low level of IL-6 in BS-COPD,the IL-6 knockout still results in a large reduction of TD at the steady state,demonstrating an important role of IL-6 in bridging the innate and adaptive immunity.Our knockout simulations indicate that IL-6 is a promising anti-inflammatory target for an effective treatment of COPD[3].

    IV.DISCUSSION

    COPD is associated with chronic inflammation that affects predominantly the lung parenchyma and airways leading to airway limitation.This inflammation is amplified in patients with COPD and persists even after exposure to smoke is stopped[1].However,the precise mechanisms for the inflammatory amplification and persistence are not clear[1].Recently,we proposed a network model to probe the cellular and molecular mechanisms of CS-induced COPD[12].Our modeling study has identified several positive feedback loops,activations of which are responsible for such inflammatory amplification and persistence in COPD patients and have an important role in several distinct mechanisms(endotypes)by which clinical COPD phenotypes are developed[12].Our previous modeling results indicate that similar clinical phenotypes of COPD patients can come from different endotypes,suggesting that personalized medicine is required for COPD treatment.

    Recent clinical data have shown that a set of patients with BS-COPD have a Th2-type inflammatory profile,in which the levels of Th2 are higher than those of Th1 and Th17,respectively[10],significantly different from that with CS-COPD where Th17 predominates over Th2[11].As the immune response dynamics of CSCOPD was extensively studied in our previous work[12],the underlying mechanism by which BS-COPD patients develop a Th2-type inflammatory profile has remained elusive[1,9–11].In the present work,we employed the network model developedin our previous study[12]to investigate BS-induced inflammatory response in COPD progression.Our modeling study has identified a subset of patients with BS-COPD,whose immune response is of mixed M1-and Th2-type,in which M1 dominates M2,whereas Th2 predominates over Th1 and Th17,respectively,in good agreement with clinical data(FIG.5(b))[10].In silico knockout simulations in this work have demonstrated several important network components that have an important role in BS-COPD.

    It is of interest to note that BS-COPD occurs mostly in women[10]and while female BS-COPD patients have a Th2-type inflammatory profile[10],male patients with BS-COPD have an immune response similar to that of CS-COPD[8].This modeling study has identified a subset of COPD patients(i.e.,females)who are likely more sensitive to tissue damage in the lung and have developed a protective mechanism by which IL-4 is significantly enhanced in response to the signal from TD(see FIG.1)in the early phase as shown in FIG.3(b)[12].The positive feedback loop,IL-4→Th2→IL-4(FIG.1),is then activated so that the Th2 level is significantly enhanced,predominating over Th1 and Th17,respectively(see FIG.4).IL-4 also alternatively activates M2 that secretes TGF-β and IL-10.While TGF-β promotes tissue repair in the lung parenchyma as mentioned above,IL-10 attenuates the proinflammatory responses and reduces tissue damage.Intriguingly,in silico knockout of IL-4 or Th2 in this study leads to an increase of TD although IL-4 and Th2 are both significantly enhanced in patients with BS-COPD,implicating that anti-IL-4/Th2 therapy may not be effective in the treatment of BS-COPD.Our modeling study provides novel insight into the cellular and molecular mechanism of BS-COPD with a Th2 profile,providing a rationale for targeted therapy and the personalized medicine treatment of COPD in future.

    Supplementary materials:Equations(S1)?(S7)are given for the population dynamics of cytokines,Iα(TNF-α),I12(IL-12),Iγ(IFN-γ),I17(IL-17),I21(IL-21),I4(IL-4),and Iβ(TGF-β).FIG.S1 shows calculated results(red)for Th1,Th2,Th17,and Treg compared with clinical data(black)for CS-induced COPD.TABLE S1 lists parameters for the equations describing network dynamics of BS-induced immune response.TABLE S2 lists cell density and cytokine concentrations at the steady state from the simulations compared to experiments.

    V.ACKNOWLEDGMENTS

    This work was supported by the National Natural Science Foundation of China(No.21273209).

    [1]P.J.Barnes,J.Allergy Clin.Immuno.138,16(2016).

    [2]S.I.Rennard and M.B.Drummond,Lancet 385,1778(2015).

    [3]P.J.Barnes,Nat.Rev.Drug Discov.12,543(2013).

    [4]F.He,B.Liao,J.Pu,C.Li,M.Zheng,L.Huang,Y.Zhou,D.Zhao,B.Li,and P.Ran,Sci.Rep.7,45666(2016).

    [5]S.L.Hwang,S.E.Guo,M.C.Chi,C.T.Chou,Y.C.Lin,C.M.Lin,and Y.L.Chou,Int.J.Environ.Res.13,366(2016).

    [6]J.L.Lopez-Campos,E.Marquez-Martin,and J.B.Soriano,Expert.Rev.Respir.Med.9,1(2016).

    [7]J.Olloquequi and R.O.Silva,Innate Immun.22,373(2016).

    [8]R.Golpe,I.Martín-Robles,P.Sanjuán-López,L.Pérezde-Llano,C.González-Juanatey,J.L.López-Campos,and E.Arellano-Orden,Int.J.COPD 12,2639(2017).

    [9]R.Silva,M.Oyarzún,and J.Olloquequi,Arch.Bronconeumol.51,285(2015).

    [10]H.Solleiro-Villavicencio,R.Quintana-Carrillo,R.Falfán-Valencia,and M.I.Vargas-Rojas,Clin.Immunol.161,150(2015).

    [11]M.I.Vargas-Rojas,A.Ramirez-Venegas,L.Limón-Camacho,L.Ochoa,R.Hernández-Zenteno,and R.H.Sansores,Respir.Med.105,1648(2011).

    [12]Z.Pan,H.Yu,and J.L.Liao,PLoS One 11,e0163192(2016).

    [13](a)J.L.Liao,J.Immuno.Biol.2,119(2017).(b)J.L.Liao,Immunotherapy 3,107(2017).

    [14]D.Wu,H.Shan,and J.L.Liao,Chin.J.Chem.Phys.2018(in press).

    [15]C.E.Boorsma,C.Draijer,and B.N.Melgert,Mediators Inflamm.2013,1(2013).

    [16]R.D.Hautamaki,D.K.Kobayashi,R.M.Senior,and S.D.Shapiro,Science 277,2002(1997).

    [17]A.F.Ofulue and M.Ko,Am.J.Physiol.277,L97(1999).

    [18]D.M.Mosser and J.P.Edwards,Nat.Rev.Immunol.8,958(2008).

    [19]R.A.Holloway and L.E.Donnelly,Curr.Opin.Pulm.Med.19,95(2013).

    [20]P.Loke,I.Gallagher,M.G.Nair,X.Zang,F.Brombacher,M.Mohrs,J.P.Allison,and J.E.Allen,J.Immunol.179,3926(2007).

    [21]E.Brandt,G.Woerly,A.B.Younes,S.Loiseau,and M.Capron,J.Leukoc.Biol.68,125(2000).

    [22]R.Faner,T.Cruz,and A.Agusti,Expert Rev.Clin.Immunol.9,821(2013).

    [23]M.K?nigsho ff,N.Kneidinger,and O.Eickelberg,Swiss Med.WKLY 139,554(2009).

    [24]P.Stoll,M.Ulrich,K.Bratke,K.Garbe,J.C.Virchow,and M.Lommatzsch,Respir.Res.16,19(2015).

    [25]G.R.Van Pottelberge,K.R.Bracke,I.K.Demedts,K.D.Rijck,S.M.Reinartz,C.M.van Drunen,G.M.Verleden,F.E.Vermassen,G.F.Joos,and G.G.Brusselle,Respir.Res.11,35(2010).

    [26]H.Torres-Aguilar,M.Blank,L.J.Jara,and Y.Shoenfeld,Autoimmun.Rev.10,8(2010).

    [27]P.J.Barnes,Nat.Rev.Immunol.8,183(2008).

    [28]G.Trinchieri,S.Pflanz,and R.A.Kastelein,Immunity 19,641(2003).

    [29]D.R.Milich,S.F.Wolf,J.L.Hughes,and J.E.Jones,Natl.Acad.Sci.USA 92,6847(1995).

    [30]P.J.Barnes,Am.J.Respir.Cell Mol.Biol.41,631(2009).

    [31]Y.Y.Wan and R.A.Flavell,Proc.Am.Thorac.Soc.4,271(2007).

    [32]A.Kimura and T.Kishimoto,Eur.J.Immunol.40,2830(2010).

    [33]E.Bettelli,Y.Carrier,W.Gao,T.Korn,T.B.Strom,M.Oukka,H.L.Weiner,and V.K.Kuchroo,Nature 441,235(2006).

    [34]P.R.Mangan,L.E.Harrington,D.B.O’Quinn,W.S.Helms,D.C.Bullard,C.O.Elson,R.D.Hatton,S.M.Wahl,T.R.Schoeb,and C.T.Weaver,Nature 441,231(2006).

    [35]H.Ogura,M.Murakami,Y.Okuyama,M.Tsuruoka,C.Kitabayashi,M.Kanamoto,M.Nishihara,Y.Iwakura,and T.Hirano,Immunity 29,628(2008).

    [36]M.C.Duan,Y.Huang,X.N.Zhong,and H.J.Tang,Mediators Inflamm.2012,1(2012).

    [37]M.Fujimoto,M.Nakano,F.Terabe,H.Kawahata,T.Ohkawara,Y.Han,B.Ripley,S.Serada,T.Nishikawa,A.Kimura,S.Nomura,T.Kishimoto,and T.Naka,J.Immunol.186,32(2011).

    [38]K.F.Chung,Lancet 386,1086(2015).

    [39]U.Alon,Math.Biosci.215,193(2008).

    [40]R.D.Hautamaki,D.K.Kobayashi,R.M.Senior,and S.D.Shapiro,Science 277,2002(1997).

    [41]R.Golpe,P.Sanjuán-López,E.Cano-Jiménez,O.Castro-A?nón,and L.A.Pérez-de-Llano,Arch.Bronconeumol.50,318(2014).

    [42]B.G.Cosio,J.B.Soriano,J.L.Lopez-Campos,M.Calle-Rubio,J.J.Soler-Cataluna,J.P.de-Torres,J.M.Marín,C.Martínez-Gonzalez,P.de Lucas,I.Mir,G.Peces-Barba,N.Feu-Collado,I.Solanes,I.Alfageme,and C.Casanova,Chest 149,45(2016).

    [43]M.A.Dentener,E.C.Creutzberg,H.J.Pennings,G.T.Rijkers,E.Mercken,and E.F.Wouters,Respiration 76,275(2008).

    国产单亲对白刺激| 欧美成人午夜免费资源| 一级av片app| av专区在线播放| 欧美高清成人免费视频www| 国产精品一区二区性色av| 九九久久精品国产亚洲av麻豆| 日韩欧美精品v在线| 九九热线精品视视频播放| 美女内射精品一级片tv| 国产精品熟女久久久久浪| 高清在线视频一区二区三区 | 国产爱豆传媒在线观看| 亚洲av免费在线观看| 美女内射精品一级片tv| 国产av一区在线观看免费| 成年版毛片免费区| 日本-黄色视频高清免费观看| 亚洲怡红院男人天堂| 精品一区二区免费观看| 久久久久久大精品| 久久久久网色| 一级毛片aaaaaa免费看小| 国产熟女欧美一区二区| 亚洲一级一片aⅴ在线观看| 久久综合国产亚洲精品| 国产精品久久视频播放| 如何舔出高潮| 在线免费十八禁| 日韩 亚洲 欧美在线| 久久久久久久亚洲中文字幕| 人体艺术视频欧美日本| 在线免费观看的www视频| 亚洲av福利一区| 最近手机中文字幕大全| 99热这里只有是精品50| 成年女人看的毛片在线观看| 国产成人91sexporn| 日韩av在线大香蕉| 免费黄网站久久成人精品| 亚洲欧美日韩东京热| 村上凉子中文字幕在线| 日本爱情动作片www.在线观看| 青春草国产在线视频| a级一级毛片免费在线观看| av在线蜜桃| 国产成年人精品一区二区| 久久久久九九精品影院| 一级爰片在线观看| 纵有疾风起免费观看全集完整版 | 久久久精品94久久精品| 国产中年淑女户外野战色| 天堂av国产一区二区熟女人妻| av在线蜜桃| 欧美精品国产亚洲| 国产黄色视频一区二区在线观看 | 日韩成人av中文字幕在线观看| 久久久久性生活片| 国产精品99久久久久久久久| 精华霜和精华液先用哪个| 综合色丁香网| 午夜精品国产一区二区电影 | 免费看av在线观看网站| 人妻制服诱惑在线中文字幕| 男女下面进入的视频免费午夜| 日本av手机在线免费观看| 久久久国产成人精品二区| 国产伦在线观看视频一区| 汤姆久久久久久久影院中文字幕 | 欧美zozozo另类| 亚洲av不卡在线观看| 欧美日韩在线观看h| 国国产精品蜜臀av免费| 久久精品国产亚洲网站| 日本熟妇午夜| 久久这里只有精品中国| 亚洲欧美清纯卡通| 国产欧美日韩精品一区二区| 久久久亚洲精品成人影院| 小说图片视频综合网站| 99久久精品热视频| 2021少妇久久久久久久久久久| 一级爰片在线观看| 91久久精品电影网| 激情 狠狠 欧美| 国产视频内射| 色5月婷婷丁香| 亚洲欧美日韩无卡精品| 色播亚洲综合网| 午夜福利成人在线免费观看| 波野结衣二区三区在线| 丰满人妻一区二区三区视频av| 美女cb高潮喷水在线观看| 日本一本二区三区精品| 成人毛片60女人毛片免费| 国产成人福利小说| 秋霞在线观看毛片| 国产精品乱码一区二三区的特点| 成人国产麻豆网| 精品久久久久久久末码| 男女那种视频在线观看| 22中文网久久字幕| 日本免费a在线| 久久草成人影院| 99久久九九国产精品国产免费| 日韩制服骚丝袜av| 1024手机看黄色片| 中文资源天堂在线| 免费观看a级毛片全部| 亚洲欧美日韩卡通动漫| 国产 一区 欧美 日韩| 寂寞人妻少妇视频99o| 国产成人福利小说| 一级av片app| 免费无遮挡裸体视频| 日韩制服骚丝袜av| 亚洲欧美日韩高清专用| 国产亚洲精品av在线| 国产精品无大码| 99国产精品一区二区蜜桃av| 亚洲人成网站高清观看| 亚洲精品自拍成人| 国产高清有码在线观看视频| 国产久久久一区二区三区| 国产老妇女一区| 亚洲18禁久久av| 国产成人aa在线观看| 亚洲性久久影院| 欧美日韩在线观看h| 久久韩国三级中文字幕| 国产免费又黄又爽又色| 中文字幕av成人在线电影| 嫩草影院精品99| 国产单亲对白刺激| 亚洲电影在线观看av| 色哟哟·www| 99热这里只有是精品在线观看| 国产探花极品一区二区| 日韩亚洲欧美综合| 国产又色又爽无遮挡免| 免费观看a级毛片全部| 91精品伊人久久大香线蕉| 观看免费一级毛片| 2022亚洲国产成人精品| 亚洲精品影视一区二区三区av| 久久人妻av系列| 成人毛片a级毛片在线播放| or卡值多少钱| 亚洲不卡免费看| 日本免费在线观看一区| 亚洲av电影在线观看一区二区三区 | 国语自产精品视频在线第100页| 亚洲av成人精品一二三区| 久久国内精品自在自线图片| 亚洲无线观看免费| 国产精品,欧美在线| 国产片特级美女逼逼视频| kizo精华| 亚洲av男天堂| 亚洲成人久久爱视频| 尾随美女入室| 99久久中文字幕三级久久日本| 欧美色视频一区免费| 人人妻人人看人人澡| 国产一区二区三区av在线| av国产久精品久网站免费入址| 成人美女网站在线观看视频| 亚洲乱码一区二区免费版| 少妇猛男粗大的猛烈进出视频 | 免费看日本二区| 国内精品一区二区在线观看| 国产一区亚洲一区在线观看| 午夜激情福利司机影院| 在线观看66精品国产| 床上黄色一级片| 成年免费大片在线观看| 国产午夜福利久久久久久| 国产亚洲最大av| 欧美成人精品欧美一级黄| 在线a可以看的网站| 少妇的逼好多水| 久久久国产成人精品二区| 岛国毛片在线播放| 国产精品三级大全| 亚洲图色成人| 国产精品国产三级专区第一集| 狠狠狠狠99中文字幕| videos熟女内射| 男人舔奶头视频| 狠狠狠狠99中文字幕| 久久久久久久亚洲中文字幕| www日本黄色视频网| 男插女下体视频免费在线播放| 少妇的逼水好多| 久久久久精品久久久久真实原创| 能在线免费观看的黄片| 免费av不卡在线播放| АⅤ资源中文在线天堂| 国产精品伦人一区二区| 成年女人看的毛片在线观看| 一夜夜www| 国产一区有黄有色的免费视频 | 男人舔女人下体高潮全视频| 午夜爱爱视频在线播放| av福利片在线观看| 久久综合国产亚洲精品| 大又大粗又爽又黄少妇毛片口| 国产午夜精品久久久久久一区二区三区| 欧美xxxx黑人xx丫x性爽| av专区在线播放| 26uuu在线亚洲综合色| 好男人在线观看高清免费视频| 国产成人一区二区在线| 少妇的逼好多水| 成人亚洲精品av一区二区| 麻豆久久精品国产亚洲av| 观看美女的网站| 丝袜喷水一区| 久久精品国产自在天天线| 国产淫片久久久久久久久| 看免费成人av毛片| 国产亚洲91精品色在线| 欧美极品一区二区三区四区| 婷婷色麻豆天堂久久 | 永久免费av网站大全| 日本爱情动作片www.在线观看| 天堂网av新在线| 五月伊人婷婷丁香| 精品欧美国产一区二区三| 亚洲在久久综合| 五月玫瑰六月丁香| 99久久人妻综合| 神马国产精品三级电影在线观看| 春色校园在线视频观看| 岛国毛片在线播放| 深爱激情五月婷婷| 日韩一区二区视频免费看| 亚洲欧洲国产日韩| 免费看av在线观看网站| 久久精品人妻少妇| 亚洲最大成人手机在线| 国语自产精品视频在线第100页| 久久久久久久午夜电影| 国产成人精品一,二区| 深夜a级毛片| 1024手机看黄色片| 熟女电影av网| 超碰av人人做人人爽久久| 十八禁国产超污无遮挡网站| 免费播放大片免费观看视频在线观看 | 国产在视频线在精品| 亚洲真实伦在线观看| 国产精华一区二区三区| 国产精品一区二区在线观看99 | 女人十人毛片免费观看3o分钟| 国产精品电影一区二区三区| 黑人高潮一二区| 中文字幕亚洲精品专区| 久久99蜜桃精品久久| 国产精品熟女久久久久浪| 99久久九九国产精品国产免费| 十八禁国产超污无遮挡网站| 美女大奶头视频| 能在线免费观看的黄片| 国内精品美女久久久久久| 69人妻影院| 国产伦精品一区二区三区四那| 国产伦精品一区二区三区视频9| a级毛色黄片| 成年女人看的毛片在线观看| 一边摸一边抽搐一进一小说| 伦理电影大哥的女人| 亚洲欧洲日产国产| 观看免费一级毛片| 免费av毛片视频| 国产精品久久久久久久久免| 亚洲乱码一区二区免费版| 久久久国产成人免费| 人人妻人人澡人人爽人人夜夜 | 日韩成人av中文字幕在线观看| 一级毛片aaaaaa免费看小| 精品一区二区免费观看| 女人被狂操c到高潮| 国产高潮美女av| 久久午夜福利片| 欧美人与善性xxx| 国产精品三级大全| 国产高清三级在线| 最新中文字幕久久久久| 一级黄片播放器| 寂寞人妻少妇视频99o| 欧美成人a在线观看| 亚洲性久久影院| 亚洲国产欧美人成| 日韩视频在线欧美| 亚洲国产欧美在线一区| 久久人妻av系列| 日韩精品有码人妻一区| 干丝袜人妻中文字幕| 国产精品综合久久久久久久免费| 日韩高清综合在线| 一级黄色大片毛片| 国产精品久久久久久av不卡| 国产精品.久久久| 久久综合国产亚洲精品| 日韩欧美在线乱码| 91久久精品国产一区二区三区| 老师上课跳d突然被开到最大视频| 日本色播在线视频| 少妇人妻精品综合一区二区| 天天躁夜夜躁狠狠久久av| 18禁裸乳无遮挡免费网站照片| 欧美激情久久久久久爽电影| 久久99热这里只频精品6学生 | 日韩大片免费观看网站 | 国产av在哪里看| 国产精品一区www在线观看| 你懂的网址亚洲精品在线观看 | 天堂中文最新版在线下载 | 欧美bdsm另类| 特大巨黑吊av在线直播| av免费观看日本| 久久精品久久久久久久性| 男女啪啪激烈高潮av片| 亚洲欧美中文字幕日韩二区| 永久免费av网站大全| 国产亚洲av嫩草精品影院| 在线观看66精品国产| 丝袜美腿在线中文| 免费无遮挡裸体视频| 69人妻影院| 国产成人一区二区在线| 一个人免费在线观看电影| 午夜视频国产福利| or卡值多少钱| 中文资源天堂在线| 在线观看美女被高潮喷水网站| 午夜免费男女啪啪视频观看| 成人特级av手机在线观看| 久久久国产成人精品二区| 天堂中文最新版在线下载 | 男女下面进入的视频免费午夜| 婷婷色av中文字幕| 亚洲国产精品sss在线观看| 青春草国产在线视频| 国产三级中文精品| 中文字幕精品亚洲无线码一区| 国产精品综合久久久久久久免费| 日韩 亚洲 欧美在线| 中文天堂在线官网| 国产黄色视频一区二区在线观看 | 麻豆av噜噜一区二区三区| 日韩一本色道免费dvd| 老司机影院成人| 亚洲国产高清在线一区二区三| 午夜老司机福利剧场| 夫妻性生交免费视频一级片| 日韩欧美精品免费久久| 中文亚洲av片在线观看爽| 国产免费视频播放在线视频 | 免费观看a级毛片全部| 啦啦啦啦在线视频资源| 亚洲精品成人久久久久久| 美女高潮的动态| 日本与韩国留学比较| 99热全是精品| 日本与韩国留学比较| 色视频www国产| 婷婷色麻豆天堂久久 | 少妇丰满av| 特大巨黑吊av在线直播| 亚洲av成人精品一二三区| 免费黄网站久久成人精品| 最新中文字幕久久久久| 尤物成人国产欧美一区二区三区| 亚洲综合色惰| 尤物成人国产欧美一区二区三区| 免费不卡的大黄色大毛片视频在线观看 | av在线老鸭窝| 亚洲国产欧洲综合997久久,| 国产精品电影一区二区三区| 色哟哟·www| 欧美潮喷喷水| 淫秽高清视频在线观看| 国产成人一区二区在线| 亚洲av熟女| 久久久久国产网址| 欧美xxxx黑人xx丫x性爽| 色网站视频免费| 能在线免费看毛片的网站| 人体艺术视频欧美日本| 一本一本综合久久| 日韩一本色道免费dvd| 免费黄色在线免费观看| 国产午夜精品久久久久久一区二区三区| 国产亚洲一区二区精品| 国产 一区精品| 国产精品蜜桃在线观看| 日本wwww免费看| 亚洲精品一区蜜桃| 亚洲18禁久久av| 精品国内亚洲2022精品成人| 综合色av麻豆| 内射极品少妇av片p| 日日干狠狠操夜夜爽| 少妇高潮的动态图| 欧美xxxx黑人xx丫x性爽| 精品国产露脸久久av麻豆 | 乱系列少妇在线播放| 男女啪啪激烈高潮av片| 又爽又黄无遮挡网站| 精华霜和精华液先用哪个| 精品99又大又爽又粗少妇毛片| 久久久久精品久久久久真实原创| 国产亚洲av片在线观看秒播厂 | 久久久精品94久久精品| 国产伦一二天堂av在线观看| 一夜夜www| 伦理电影大哥的女人| 一区二区三区免费毛片| 三级国产精品欧美在线观看| 久99久视频精品免费| 亚洲精品亚洲一区二区| 欧美丝袜亚洲另类| 日韩中字成人| 亚洲天堂国产精品一区在线| 亚洲av成人av| 日韩在线高清观看一区二区三区| 69人妻影院| 国语自产精品视频在线第100页| 一级毛片我不卡| 亚洲国产高清在线一区二区三| 国产老妇伦熟女老妇高清| 欧美精品一区二区大全| 国产精品一二三区在线看| av免费观看日本| 日本三级黄在线观看| 久久久久久久久大av| 国产综合懂色| 久久精品综合一区二区三区| 国产免费男女视频| 精品久久久久久久末码| 国产女主播在线喷水免费视频网站 | 人妻少妇偷人精品九色| 国产三级在线视频| 亚洲精品乱码久久久v下载方式| 最近最新中文字幕免费大全7| 国产色婷婷99| 国产视频首页在线观看| 日韩,欧美,国产一区二区三区 | 一区二区三区高清视频在线| 99热这里只有是精品在线观看| 精品久久久久久久久亚洲| 尤物成人国产欧美一区二区三区| 亚洲内射少妇av| 91精品一卡2卡3卡4卡| av在线播放精品| 欧美区成人在线视频| 亚洲欧美日韩高清专用| 2021天堂中文幕一二区在线观| 成人美女网站在线观看视频| 九色成人免费人妻av| 亚洲国产日韩欧美精品在线观看| 久久综合国产亚洲精品| 夫妻性生交免费视频一级片| 国产精品久久久久久精品电影小说 | 国产黄色小视频在线观看| 伦理电影大哥的女人| 99久久精品国产国产毛片| 日韩av在线免费看完整版不卡| 啦啦啦啦在线视频资源| 美女国产视频在线观看| 麻豆一二三区av精品| 综合色丁香网| 国产av码专区亚洲av| 人妻少妇偷人精品九色| 精华霜和精华液先用哪个| 中文在线观看免费www的网站| 日本猛色少妇xxxxx猛交久久| 亚洲成av人片在线播放无| 成人午夜高清在线视频| 国产免费福利视频在线观看| 色视频www国产| 国产伦精品一区二区三区视频9| 欧美一级a爱片免费观看看| 最近视频中文字幕2019在线8| 精品酒店卫生间| 亚洲精品国产av成人精品| 日本免费一区二区三区高清不卡| 蜜桃亚洲精品一区二区三区| 色吧在线观看| 亚洲精华国产精华液的使用体验| 久久韩国三级中文字幕| 一区二区三区高清视频在线| 蜜桃亚洲精品一区二区三区| 免费不卡的大黄色大毛片视频在线观看 | 欧美高清成人免费视频www| 69av精品久久久久久| 亚洲电影在线观看av| 久久人人爽人人片av| 少妇丰满av| 久久久精品大字幕| 国产精品女同一区二区软件| 小说图片视频综合网站| 非洲黑人性xxxx精品又粗又长| 在线观看一区二区三区| 国产成人a区在线观看| 国产亚洲最大av| 久久久久久久久久久免费av| 国产淫片久久久久久久久| 深夜a级毛片| 观看免费一级毛片| 欧美性猛交╳xxx乱大交人| 亚洲av二区三区四区| 国产人妻一区二区三区在| 97人妻精品一区二区三区麻豆| 丝袜喷水一区| 偷拍熟女少妇极品色| 在线观看66精品国产| 亚洲人与动物交配视频| 热99在线观看视频| 美女被艹到高潮喷水动态| 两个人视频免费观看高清| 寂寞人妻少妇视频99o| 免费看av在线观看网站| 久久久久久久久久黄片| 麻豆成人av视频| 亚洲欧美清纯卡通| 亚洲成人精品中文字幕电影| 天堂影院成人在线观看| 乱人视频在线观看| 欧美日韩综合久久久久久| 99热6这里只有精品| 日本wwww免费看| 欧美变态另类bdsm刘玥| 精品久久久久久久末码| 日韩精品青青久久久久久| 亚洲图色成人| 国产精品爽爽va在线观看网站| .国产精品久久| 亚洲欧美一区二区三区国产| 在线观看一区二区三区| 国产精品野战在线观看| 嫩草影院入口| 欧美又色又爽又黄视频| videos熟女内射| 最近视频中文字幕2019在线8| 色网站视频免费| 久久精品国产亚洲网站| 我的女老师完整版在线观看| 欧美日韩国产亚洲二区| 日韩欧美精品免费久久| 自拍偷自拍亚洲精品老妇| 最近最新中文字幕大全电影3| 深爱激情五月婷婷| 午夜福利在线观看免费完整高清在| 美女高潮的动态| 国产一区亚洲一区在线观看| 日韩,欧美,国产一区二区三区 | 亚洲国产精品sss在线观看| 天堂网av新在线| av在线播放精品| 亚洲精品aⅴ在线观看| 亚洲av不卡在线观看| 国产精品三级大全| 欧美最新免费一区二区三区| 精品无人区乱码1区二区| 亚洲伊人久久精品综合 | 亚洲av福利一区| 亚洲国产精品合色在线| 最近2019中文字幕mv第一页| 亚洲综合色惰| 欧美人与善性xxx| 国产老妇伦熟女老妇高清| 久久精品久久久久久噜噜老黄 | 搡老妇女老女人老熟妇| 成人毛片60女人毛片免费| 精品久久久久久成人av| 九九热线精品视视频播放| 99视频精品全部免费 在线| 久久99热6这里只有精品| 免费不卡的大黄色大毛片视频在线观看 | 黄色一级大片看看| 日韩 亚洲 欧美在线| 99热网站在线观看| 欧美激情国产日韩精品一区| 国产真实乱freesex| 99久久精品热视频| 久久久久免费精品人妻一区二区| 亚洲av免费高清在线观看| 少妇丰满av| 欧美高清成人免费视频www| 禁无遮挡网站| 少妇被粗大猛烈的视频| 午夜视频国产福利| 亚洲综合精品二区| 精华霜和精华液先用哪个| 九九在线视频观看精品| 一级av片app| 亚洲国产欧美人成| 美女脱内裤让男人舔精品视频| 又爽又黄无遮挡网站| 日本猛色少妇xxxxx猛交久久| av福利片在线观看| 免费看av在线观看网站| 国产成人福利小说| 人体艺术视频欧美日本| 91精品国产九色| 色哟哟·www| 九九在线视频观看精品| 99久国产av精品| 国产精品日韩av在线免费观看| 熟女电影av网| 国产精品蜜桃在线观看| 噜噜噜噜噜久久久久久91|