• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Statistical Properties of a System Consisting of a Superconducting Qubit Coupled to an Optical Field Inside a Transmission Line

    2018-06-15 07:32:48ClodoaldoValverdeGabrielaRodriguesVazVitorTelesdeOliveiraandBaslioBaseia
    Communications in Theoretical Physics 2018年6期

    Clodoaldo Valverde? Gabriela Rodrigues VazVitor Teles de Oliveiraand Bas′?lio Baseia

    1Campus de Ciencias Exatas e Tecnologicas,Universidade Estadual de Goias,BR 153,km 98,75.132-903 Anapolis,GO,Brazil

    2Universidade Paulista(UNIP)-74.845-090,Goiania,Goias,Brazil

    3Instituto de F′?sica,Universidade Federal de Goias-74.001-970,Goiania,Goias,Brazil

    4Departamento de F′?sica,Universidade Federal da Para′?ba-58.051-970,Jo?ao Pessoa,Para′?ba,Brazil

    1 Introduction

    The processing of quantum information in hybrid systems has gained great interest in the last years.[1?2]These systems combine with advantages atoms,spins,and solidstate devices with various applications,e.g.,quantum computation and quantum information.[3?4]They are also advantageous in view of their compatibilities with individual subsystems and may offer potential opportunities to overcome obstacles in quantum states engineering.[5?8]One important example of hybrid systems is given by the arrangement of a Cooper pair box(CPB)qubit interaction with a circuit quantum electrodynamics(CQED)device.[9?11]The CQED opens a new frontier to study the ultra-strong coupling between “atoms” and individual microwave photons,[12]being also a potentially powerful architecture for quantum information and construction of the quantum computer.[13]Similar systems exhist,as one that employs a quantum optomechanical cavity,[14]which allows the manipulation and detection of mechanical movements in the quantum regime,as creation of non classical states using light.All these approaches form a basis for applications in quantum information,where optomechanical devices can serve as interfaces between radiation and matter.It is also possible to construct hybrid quantum devices that combine in finite degrees of freedom from different physical systems.All these systems offer an alternative to fundamental tests of quantum mechanics in a regime of inaccessible parameters of size and mass.[14?17]

    Hybrid systems have been explored in several works,e.g.:in the study of Bose-Einstein condensates,[18]photon blockade,[19?20]propagating phonons,[21]atomic physics and quantum optics,[22?23]quantum dynamics,[24]and quantum circuits combined with electronic spins.[25]Among the many concerning works,[23,26?29]few of them treat the in fluences of time dependent parameters,as frequency and amplitude,upon the properties of the system.[30?31]According to Refs.[32–33]these in fluences upon the coupling rate of the subsystems can be determined by the optical mass detection technique;a recent review on cavity- field coupled to optomechanics is given in Ref.[17].

    In thiswork wehaveemployed the(intensitydependent)Buck-Sukumar model(BS)[34]to treat this coupled system where a superconducting CPB works as qubit interacting with a transmission line working as a CQED[35?36]in presence of losses[37]and under the action of a time dependent external field.The BS model was proposed in attention to a result obtained by Eberlyet al.[38]using the original Jaynes-Cummings model(JC)to treat the coupled CPB system with the CQED,thefirst assumed in its ground state and the second in a coherent state:it was found that,for large times,the oscillations of the CPB excitation inversion could only be obtained combining numerical techniques with analytical approximations;the scenario became even more complicated for fields(CQED)starting from a thermal state,with no solution in the original JC model.Contrarily,the BS offered exact solutions.[34,38]As one should expect from Eq.(3)below,the results using BS and JC models coincide when the CQED has low intensity,which corresponds to small values of number averages??n?<10.According to Ref.[39],although its experimental realization seems to be not feasible in the domain of quantum optics,it may be simulated in arrays of coupled waveguides.[40]This new model was used by many authors in different scenarios,e.g.,Ref.[41],including an interpolation between it and the JC model.[39]In both situations the BS model offered an exact solution.Another such interpolation was considered recently.[42]

    In the present CPB-CQED con figuration Fig.1 we investigate the evolution of the CPB excitation inversion and statistical properties of both subsystems.The in fluence caused by losses and external forces upon these two properties is also considered.The relationship between the entropy and the degree of state mixing that occurs during the system evolution is also discussed.The paper is outlined as follows.In Sec.2 we present the physical arrangement and the hamiltonian for our coupled system,including the basic theoretical procedures.In Sec.3 we describe the evolution of CPB excitation inversion and entropy of the system.Section 4 contains the results and discussion and Sec.5 includes the comments and conclusion.

    2 Model of the COPB-CQED System

    The CQED is implemented through a transmission line resonator whose electric field is coupled to a superconducting CPB,as shown in Fig.1.The scheme is inspired by the works in Refs.[36,43–44].The CPB is positioned at the antinodes of the first harmonic standing wave electric field.The transition frequency between the ground|g?and first excited state|e?of CPB is approximately given by,

    Here we consider}=1 and assume the two Josephson junctions of the CPB with the same energyEJ;Φ is the external flux;EJandECstand respectively for the energy of each Josephson junction and the charge energy of a single-electronEC=e2/(C1+2CJ);EJmaxstands for the maximum Josephson energy at flux Φ=0 whereas Φ0=h/2eis the magnetic quantum flux.The parametersC1andCJstand for the input capacitance and the capacitance of each Josephson tunnel,respectively.[36,43?44]

    Thus,we can write the Hamiltonian of the total system in the form,

    where ?a?(?a)stands for the creation(annihilation)operator of the field with frequencyω;?σ+(?σ?)is the rasing(lowering)operators acting opon the CPB,?σzis a Pauli operator given below,ωcis the CPB frequency,andλ0stands for the coupling strength between CPB and CQED.We use the Pauli’s matrices to describe the action of operators on the two-level CPB system.As mentioned above we have,

    where the state|g?(|e?)stands for the ground(excited)state of the CPB.Here we will consider a more general scenario replacingω→ω(t)=ω0+f(t)andλ0→ζ(t)=λ(1+f(t)/ω0)1/2,withω0being the natural frequency of the CQED andf(t)is an external agent coupled to CQED.In this context we also consider the presence of losses in the system,as follows,

    whereω(t)is a time dependent frequency,γandδstand for the CPB decay constant and the loss of the CQED,respectively.

    The state|Ψ(t)?describing the time evolution of the entire system can be written as,

    where|g?(|e?)represents the CPB in its ground(excited)state andnstands for the number of excitation in the CQED.Throughout this study we will assume the CPB initially prepared in the excited state|e?and the CQED in a superposition of two coherent states,initial conditionCg,n(0)=0.As usually,we assume the subsystems CQED and CPB decoupled att=0.

    The evolution of the wave function described by Eq.(6)is obtained via the solution of the Schr¨odinger equation,

    Solving this coupled system by the 4-th order Runge-Kutta numerical method,we obtain the coefficientsCe,n(t)andCg,n+1(t).This allows us to determine the dynamic properties of the system,e.g.,those related to the CPB excitation inversion and the entropies of both subsystems.

    Fig.1 (Color online)Schematic of the arrangement to investigate the system.In it a superconducting qubit(green)interacts with the electric field(pink),both inside a transmission line(blue);the latter consists of a central conductor and two ground planes on either side.

    3 Evolution of CPB Excitation Inversion and Entropy

    The CPB excitation inversion,I(t),here is given by the form,

    The effect concerns the population transition between the fundamental and excited levels of CPB.On the other hand,the von Neumann’s entropy offers a quantitative measure of the disorder of a system as well as its degree of impurity,as shown by Phoenix and Knight.[45]This kind of entropy,defined in the formSQC=?Tr(ρQCln(ρQC))is a measure of the entanglement of two(or more)subsystems.Here the term entanglement is used with the meaning of mixed state,whose measure is given by Tr(?ρ2),instead of the more usual meaning of correlated quantum states in the EPR sense.[46]The density operatorρQCdescribing the entire system can be defined as?ρQC=|Ψ(t)??Ψ(t)|;thus the entropy takes the form,

    The entropySQC(ρQC)is zero whenρQCrepresents a pure state and is maximum and equal to ln(N)for a state of maximum mixing,whereNis the dimension of the Hilbert space.However,here our state is pure only att=0;fort>0 the state of the whole system ceases to be pure due to the presence of losses and the eventual action of time-dependent external fields.Now,concerning the relationship between the entropy?S=?ρln(?ρ)and the degree of mixing of the state,?D=Tr(?ρ2),despite having this relation between?Sand?ρ,to our knowledge the connection between these two quantities,?Sand?D,is not trivial.

    4 Results and Discussions

    4.1 Entropy:(a)Resonant Case

    We will initially analyze the entropy of the system in the absence of losses for the superposition of coherent states{|α?},for|α|=3.Figure 2 shows the changes that repeat in the periodT≈1.58λtwhile the entropy presents a maximum value 0.7.

    Fig.2 Time evolution of the entropy for the QED-circuit initially in a superposition of coherent states,in the resonant case,for|α|=3.0, ω0=2000λ and ω =2000λ.

    Figure 3 shows the entropy as a function of the dimensionless timeλt:in the first column,going from Figs.3(a)to 3(c),we vary the parameterγand fixδ=0.0;in the second column we setγ=0.0 and varyδ.The time evolution of the entropy was observed in the presence of loss affecting only the CPB while in Figs.3(d)to 3(f)the entropy evolves with losses affecting only the CQED.Comparing Figs.3(a)with 3(d),3(b)with 3(e),and 3(c)with 3(f),we note that the higher in fluence on the entropy occurs when the loss is included in the CQED,than when caused by the loss in the CPB.Based on the results by Refs.[47]and[48]the decoherence effect is greater in CQED due to the fact that this subsystem can be more excited than the CPB.The reverse only occurs for very low average excitation of CQED,??n?=|α|2?1.As expected,in both cases the maximum value of entropy increases when losses are included(seefigs.2 and 3).

    Another detail observed is that,for the ratioγ/δ≈16 between the decays the in fluences on the entropy are quite similar for|α|≤3(Fig.4).On the other hand,while the CQED state loses its coherence,its entropy tends to zero rapidly(seefig.3(e)).

    Fig.3 Time evolution of the entropy of the QED-circuit initially in a superposition of coherent states,for|α|=3.0,ω0=2000λ and ω =2000λ:(a) γ =0.001λ and δ=0.0;(b) γ =0.015λ and δ=0.0;(c) γ =0.030λ and δ=0.0;d)δ=0.001λ and γ =0.0;(e) δ=0.015λ and γ =0.0;(f) δ=0.030λ and γ =0.0.

    Fig.4 (Color online)Time evolution of the entropy of the QED-circuit initially in a superposition of coherent states,with|α|=3.0,ω0=2000λ and ω =2000λ.The blue region stands for: γ =0.0 and δ=0.001λ;the yellow region is for δ=0.0 and γ =0.015λ.

    4.2 Entropy of the System:(b)Non Resonant Case

    Here the subsystems are assumed non resonant,with fixed detuningf(t)=η.The entropy in absence of loss is smaller than in its presence and the periodicity disappears when detuning increases(Fig.5).In absence of losses,detuning affects the entropy of both subsystems,causing a decrease in its maximum value;this effect is amplified in presence of losses(seefig.6).The amplitude of the entropy decreases whenever the detuning is large,η?1.

    The entropy of the system in presence of losses and a time-dependent detuning(f(t)=ηcos(ω′t))has an opposite effect to what happens whenf(t)=η=const.One observes that a variable detuning causes no decrease in the maximum value entropy of the system,as shown in Fig.7.

    Fig.5 Time evolution of the entropy of the QED-circuit initially in a superposition of coherent states,with|α|=3.0,ω0=2000λ,ω =2000λ,and γ = δ=0.0;(a)for η = λ;(b)for η =20λ;(c)for η =100λ.

    Fig.6 Time evolution of the entropy of the QED-circuit initially in a superposition of coherent states,with|α|=3.0,ω0=2000λ,ω =2000λ,γ =0.015λ,and δ=0.001λ (a)for η = λ;(b)for η =20λ;(c)for η =100λ.

    Fig.7 Time evolution of the entropy of the QED-circuit initially in a superposition of coherent states,with|α|=3.0,ω0=2000λ,ω =2000λ,γ =0.015λ,δ=0.001λ,and η =100λ;(a)for ω′=10;(b)for ω′=20;(c)for ω′=50.

    4.3 CPB Excitation Inversion:(a)Resonant Case

    Firstly we consider the CPB in absence of losses and the field state in the mentioned superposition of two coherent states,for|α|=3.0;according to Fig.8 no collapse and revival effect is shown in the CPB excitation inversion.

    Figure 9 shows the excitation inversion as a function of(dimensionless)time(λt):in the first column,going from Figs.9(a)to 9(c)we letγto vary and setδ=0.0;in the second column we setγ=0.0 and letδto vary.Comparing Figs.9(a)with 9(d),9(b)with 9(e)and 9(c)with 9(f)we see again that the loss affecting the CQED has a greater in fluence on the inversion of excitation of the CPB.As the CQED can be more excited than the CPB,the deleterious effect of losses is greater in the CQED;for the ratioγ/δ≈16 between the decays,the in fluences of losses on the excitation inversion are quite similar for any|α|≤3.

    4.4 CPB Excitation Inversion:(b)Non Resonant Case

    Here the subsystems are assumed non resonant with constant detuningf(t)=η.The excitation inversion in absence of losses is greater than in their presence and the periodicity disappears when detuning increases(Fig.10).Detuning affects the excitation inversion of the CPB by decreasing the maximum amplitude value,the same effect is observed in entropy(seefig.5).Excitation inversion in the CPB does not occur for large detuning(η?1).When the system is in the presence of losses the excitation inversion occurs only for small detuning values,seefig.11(a),for higher detuning values there is no occurrence of excitation inversion;seefigs.11(b)and 11(c).

    The evolution of excitation inversion of the system in the presence of losses with a variable detuning(f(t)=ηcos(ω′t))shows an opposite behavior to that forf(t)=η=constant.Now the time dependent detuning causes no extinction of the excitation inversion,i.e.,the system continues reversing the excitation but maximum value amplitude of inversion decreases with time,as shown in Fig.12.

    Fig.8 Time evolution of the excitation inversion for the QED-circuit initially in coherent state superposition,with|α|=3.0,ω0=2000λ,and ω =2000λ.

    Fig.9 Time evolution of the excitation inversion for the QED-circuit initially in coherent state superposition,with|α|=3.0,ω0=2000λ,and ω =2000λ;(a)for γ =0.001λ and δ=0.0;(b) γ =0.015λ and δ=0.0;(c) γ =0.030λ and δ=0.0;(d)δ=0.001λ and γ =0.0;(e)δ=0.015λ and γ =0.0;(f)δ=0.030λ and γ =0.0.

    Fig.10 Time evolution of the excitation inversion for the QED-circuit initially in coherent state superposition,with|α|=3.0,ω0=2000λ,ω =2000λ,and γ = δ=0.0;(a)for η = λ;(b)for η =20λ;(c)for η =100λ.

    Fig.11 Time evolution of the excitation inversion for the QED-circuit initially in coherent state superposition,with|α|=3.0,ω0=2000λ,ω =2000λ,γ =0.015λ,and δ=0.001λ;(a)for η = λ;(b)for η =20λ;(c)for η =100λ.

    Fig.12 Time evolution of the excitation inversion for the QED-circuit initially in coherent state superposition,with|α|=3.0,ω0=2000λ,ω =2000λ,γ =0.015λ,δ=0.001λ,and η =100λ;(a)for ω′=10;(b)for ω′=20;(c)for ω′=50.

    5 Conclusion

    In this work we studied the dynamic properties(entropy of both sub-systems and the CPB excitation inversion)of a hybrid system composed of a CPB and an CQED.We considered the CPB initially excited and the CQED as a superposition of two coherent states.We have assumed the CPB-CQED system described by an intensity-dependent interaction introduced by Buck-Sukumar model.Concerning the entropy,which is related to the entanglement of subsystem states,we studied its time evolution in the presence of losses affecting both subsystems,for resonant and non-resonant cases.The influence on the entropy of a time-dependent(sinusoidal)frequency,via the CQED,was also considered.The excitation inversion was investigated under the same conditions and in fluences.The inclusion of losses in CPB and CQED makes the scenario more realistic.We have shown that the CQED subsystem is much more sensitive in the presence of losses than the CPB,this can be explained,due to the fact that the CQED presents a much larger number of photons in relation to the CPB.In addition,the time dependence of the couplingλtand CQED frequencyω(t)brings our results to different physical conditions.It was shown that the CPB excitation inversion occurs when detuning is constant in time;however,when it varies the excitation inversion always occurs no matter the value of detuning.In this hybrid system it is possible to control the entropy and inversion of excitation by choosing the parameters appropriately,for example,the appropriate choice of detuning allows us to increase the maximum entropy of the system,which was~0.45 in Fig.6(c)and passed to be~0.75 in Fig.7(c),another example can be seen in the excitation inversion that no longer occurs Figs.11(b)and 11(c)and conversely occur in Figs.12(b)and 12(c).

    In summary,it was shown that,when using the intensity-dependent BS model extended to a realistic scenario taking into account in fluence of losses,detuning and time dependent external fields,interesting results emerge.This also indicates that one can perform a dynamic control of subsystem properties through the manipulation of parameters involved,with potential applications to the command of quantum information processes.We have also shown that the decoherence effect is greater in the CQED,which is due to the fact that the CQED can have more excitations than the CPB.Decoherence affecting the CQED can be reduced by improving its quality.We hope that these results could provide some good insights for researchers in this area.

    Acknowledgment

    The authors thank the supports by the Conselho Nacional de Desenvolvimento Cient′? fico e Tecnologico(CNPq),the FAPEG-CNPq,Brazilian Agencies,and Rosemberg Fortes Nunes Rodrigues for Fig.1.

    [1]Z.L.Xiang,S.Ashhab,J.Q.You,and F.Nori,Rev.Mod.Phys.85(2013)623.

    [2]C.Jiang,Y.S.Cui,H.X.Liu,et al.,Chin.Phys.B24(2015)54206.

    [3]T.Duty,Physics(College.Park.Md).3(2010)80.

    [4]Q.Guo,L.Y.Cheng,H.F.Wang,and S.Zhang,Chin.Phys.B24(2015)40303.

    [5]I.Buluta,S.Ashhab,and F.Nori,Rep.Prog.Phys.74(2011)104401.

    [6]J.J.L.Morton and B.W.Lovett,Annu.Rev.Condens.Matter Phys.2(2011)189.

    [7]C.Valverde,A.N.Castro,and B.Baseia,Opt.Commun.366(2016)301.

    [8]R.Y.Yan,H.L.Wang,and Z.B.Feng,Int.J.Theor.Phys.55(2016)258.

    [9]K.D.Petersson,L.W.McFaul,M.D.Schroer,et al.,Nature(London)490(2012)380.

    [10]S.M.Girvin,M.H.Devoret,and R.J.Schoelkopf,Phys.Scr.T137(2009)014012.

    [11]Zhi-Bo Feng and M.Li,Physica C507(2014)65.

    [12]M.H.Devoret,S.Girvin,and R.Schoelkopf,Annalen der Physik16(2007)767.

    [13]M.H.Devoret and R.Schoelkopf,Science339(2013)1169.

    [14]T.J.Kippenberg and K.J.Vahala,Science321(2008)1172.

    [15]T.J.Kippenberg and K.J.Vahala,Opt.Express15(2007)17172.

    [16]F.Ivan and K.Khaled,Nature Photonics3(2009)201.

    [17]M.Aspelmeyer,T.J.Kippenberg,and F.Marquardt,Rev.Mod.Phys.86(2014)1391.

    [18]F.Brennecke,S.Ritter,T.Donner,and T.Esslinger,Science322(2008)235.

    [19]P.Rabl,Phys.Rev.Lett.107(2011)063601.

    [20]J.Q.Liao and F.Nori,Phys.Rev.A88(2013)023853.

    [21]M.V.Gustafsson,et al.,Science346(2014)207.

    [22]J.A.Schreier,et al.,Phys.Rev.B77(2008)180502.

    [23]T.P.Purdy,et al.,Phys.Rev.Lett.105(2010)133602.

    [24]J.V.Wezel and T.H.Oosterkamp,Proc.R.Soc.A468(2012)35.

    [25]X.Y.Lu,Z.L.Xiang,W.Cui,et al.,Phys.Rev.A88(2013)12329.

    [26]A.J¨ockel,et al.,Nature Nanotechnology10(2014)55.

    [27]A.C.P flanzer,O.Romero-Isart,and J.I.Cirac,Phys.Rev.A88(2013)033804.

    [28]J.M.Pirkkalainen,et al.,Nature(London)494(2013)211.

    [29]J.M.Pirkkalainen,S.U.Cho,F.Massel,et al.,Nature Communications6(2015)6981.

    [30]M.Janowicz,Phys.Rev.A57(1998)4784.

    [31]J.Fei,S.Y.X.,and Y.P.Yang,Chin.Phys.B18(2009)3193.

    [32]J.J.Li and K.D.Zhu,Appl.Phys.Lett.94(2009)63116.

    [33]J.J.Li and K.D.Zhu,Appl.Phys.Lett.94(2009)249903.

    [34]B.Buck and C.V.Sukumar,Phys.Lett.A81(1981)132.

    [35]R.J.Schoelkopf and S.M.Girvin,Nature(London)451(2008)664.

    [36]A.Blais,R.S.Huang,A.Wallra ff,et al.,Phys.Rev.A69(2004)062320.

    [37]Y.L.Chen,Y.F.Xiao,X.Zhou,et al.,J.Phys.B:At.Mol.Opt.Phys.41(2008)175503.

    [38]J.H.Eberly,J.B.Narozhni,and J.J.Sanchez-Mandragon,Phys.Rev.Lett.44(1980)1323.

    [39]B.M.Rodr′Igues-Lara,J.Opt.Soc.Am.B31(2014)1719.

    [40]B.M.Rodr′Iguez-Lara,F.Soto-Eguibar,A.Z.Cardenas,and H.M.Moya-Cessa,Opt.Express21(2013)12888.

    [41]A.N.Chaba,B.Baseia,C.X.Wang,and Recta Vyas,Physica A232(1996)273.

    [42]C.Valverde and B.Baseia,Mod.Phys.Lett.B32(2018)1850026.

    [43]J.Koch,T.M.Yu,J.Gambetta,et al.,Phys.Rev.A76(2007)042319.

    [44]J.M.Fink,R.Bianchetti,M.Baur,et al.,Phys.Rev.Lett.103(2009)083601.

    [45]S.J.D.Phoenix and P.L.Knight,Phys.Rev.A44(1991)6023.

    [46]A.Einstein,B.Podolsky,and N.Rosen,Phys.Rev.47(1935)777.

    [47]M.Brune,E.Hagley,J.Dreyer,et al.,Phys.Rev.Lett.77(1996)4887.

    [48]C.Monroe,D.M.Meekhof,B.E.King,and D.J.Wineland,Science272(1996)1131.

    av黄色大香蕉| 老司机亚洲免费影院| 亚洲经典国产精华液单| h视频一区二区三区| 国产xxxxx性猛交| 亚洲国产看品久久| 天天影视国产精品| 秋霞伦理黄片| 亚洲国产毛片av蜜桃av| 黑人巨大精品欧美一区二区蜜桃 | 精品久久久精品久久久| 日本猛色少妇xxxxx猛交久久| 又大又黄又爽视频免费| 中文欧美无线码| 在线看a的网站| av.在线天堂| 中国美白少妇内射xxxbb| 自线自在国产av| 人妻系列 视频| 99久国产av精品国产电影| 9191精品国产免费久久| av国产精品久久久久影院| av国产久精品久网站免费入址| 久久久久网色| 国产乱来视频区| 国产在视频线精品| 精品第一国产精品| 色婷婷av一区二区三区视频| xxx大片免费视频| 日韩成人伦理影院| 亚洲精品日本国产第一区| 观看美女的网站| 天美传媒精品一区二区| 毛片一级片免费看久久久久| 国产精品熟女久久久久浪| 水蜜桃什么品种好| 国产精品一二三区在线看| 999精品在线视频| 国产爽快片一区二区三区| 91成人精品电影| 久久狼人影院| 亚洲,欧美精品.| 欧美人与善性xxx| 男的添女的下面高潮视频| 亚洲av福利一区| 国产精品久久久久成人av| 久久精品国产亚洲av天美| 一区二区三区乱码不卡18| 最近的中文字幕免费完整| 日韩精品免费视频一区二区三区 | 最黄视频免费看| 人人妻人人添人人爽欧美一区卜| 香蕉精品网在线| 亚洲在久久综合| 免费人妻精品一区二区三区视频| 91在线精品国自产拍蜜月| 熟女人妻精品中文字幕| 最近2019中文字幕mv第一页| 午夜福利网站1000一区二区三区| 成年人免费黄色播放视频| 国产精品久久久久久久电影| 国产男女超爽视频在线观看| 亚洲精品aⅴ在线观看| 精品人妻偷拍中文字幕| 亚洲精品美女久久久久99蜜臀 | 涩涩av久久男人的天堂| 亚洲av免费高清在线观看| 亚洲av福利一区| 日本与韩国留学比较| 女人久久www免费人成看片| 国产精品久久久久久精品古装| 亚洲精品国产av成人精品| 18禁裸乳无遮挡动漫免费视频| 天天操日日干夜夜撸| 丝袜喷水一区| a级毛片在线看网站| 国产又爽黄色视频| 日韩在线高清观看一区二区三区| 免费大片黄手机在线观看| 插逼视频在线观看| 精品国产露脸久久av麻豆| 亚洲中文av在线| 91精品三级在线观看| 国产精品国产av在线观看| 一个人免费看片子| 美女视频免费永久观看网站| 天堂俺去俺来也www色官网| 大香蕉97超碰在线| 热99国产精品久久久久久7| 美女内射精品一级片tv| 国产成人av激情在线播放| 视频中文字幕在线观看| 一区在线观看完整版| av在线观看视频网站免费| 制服丝袜香蕉在线| 欧美xxⅹ黑人| 国产精品.久久久| 欧美变态另类bdsm刘玥| 新久久久久国产一级毛片| av黄色大香蕉| 久久久久久人妻| 亚洲精品第二区| 久久精品久久久久久久性| 97精品久久久久久久久久精品| 亚洲 欧美一区二区三区| 欧美少妇被猛烈插入视频| 亚洲天堂av无毛| 亚洲精品自拍成人| 国产精品一国产av| 国产精品 国内视频| 国产精品一区二区在线观看99| 国产毛片在线视频| 在线天堂中文资源库| 人人妻人人爽人人添夜夜欢视频| 久久久精品区二区三区| 欧美xxxx性猛交bbbb| 国产精品99久久99久久久不卡 | 最后的刺客免费高清国语| 日本黄大片高清| 欧美3d第一页| 三级国产精品片| 99热全是精品| 亚洲国产毛片av蜜桃av| 99国产精品免费福利视频| 边亲边吃奶的免费视频| av福利片在线| 欧美少妇被猛烈插入视频| 亚洲婷婷狠狠爱综合网| 九色亚洲精品在线播放| 内地一区二区视频在线| 在线观看免费视频网站a站| 人人妻人人澡人人爽人人夜夜| 最新的欧美精品一区二区| 国产精品人妻久久久影院| 久久青草综合色| 亚洲成人一二三区av| 亚洲国产欧美日韩在线播放| 麻豆乱淫一区二区| 久久久国产欧美日韩av| 蜜桃在线观看..| 中文字幕另类日韩欧美亚洲嫩草| 欧美亚洲 丝袜 人妻 在线| 中文精品一卡2卡3卡4更新| av在线播放精品| 人妻人人澡人人爽人人| 免费黄色在线免费观看| a级毛色黄片| 天天躁夜夜躁狠狠躁躁| 久久久久久久久久成人| 亚洲精品,欧美精品| 亚洲情色 制服丝袜| 青春草国产在线视频| 免费看不卡的av| 视频在线观看一区二区三区| 五月玫瑰六月丁香| 美国免费a级毛片| 麻豆精品久久久久久蜜桃| 久久亚洲国产成人精品v| 欧美日韩成人在线一区二区| av一本久久久久| 最近的中文字幕免费完整| 亚洲第一av免费看| 亚洲中文av在线| 69精品国产乱码久久久| 精品午夜福利在线看| 99久久综合免费| 欧美 日韩 精品 国产| 久久av网站| 纵有疾风起免费观看全集完整版| 成人国产麻豆网| 国产视频首页在线观看| 又黄又粗又硬又大视频| 女的被弄到高潮叫床怎么办| 80岁老熟妇乱子伦牲交| 欧美xxⅹ黑人| 最近最新中文字幕免费大全7| 久久久久久久精品精品| a级毛色黄片| 亚洲精品一二三| 一级,二级,三级黄色视频| 亚洲精品久久午夜乱码| 成年女人在线观看亚洲视频| 国产精品秋霞免费鲁丝片| 国产亚洲精品久久久com| 考比视频在线观看| 十分钟在线观看高清视频www| 日韩 亚洲 欧美在线| 久久99一区二区三区| xxx大片免费视频| 另类精品久久| 国产福利在线免费观看视频| 看免费av毛片| 热99久久久久精品小说推荐| 日韩三级伦理在线观看| 成年av动漫网址| 交换朋友夫妻互换小说| 久久 成人 亚洲| 男人添女人高潮全过程视频| 视频区图区小说| 女性被躁到高潮视频| 高清视频免费观看一区二区| 有码 亚洲区| 欧美日韩亚洲高清精品| 2022亚洲国产成人精品| 在线 av 中文字幕| 黑丝袜美女国产一区| 九色成人免费人妻av| 晚上一个人看的免费电影| 国产免费一级a男人的天堂| 校园人妻丝袜中文字幕| av视频免费观看在线观看| 又大又黄又爽视频免费| 热re99久久精品国产66热6| 99精国产麻豆久久婷婷| 日本av手机在线免费观看| 亚洲第一av免费看| 欧美人与性动交α欧美精品济南到 | 精品国产一区二区三区四区第35| 国产欧美日韩综合在线一区二区| 欧美成人午夜精品| 精品国产露脸久久av麻豆| 美女xxoo啪啪120秒动态图| 天天躁夜夜躁狠狠躁躁| 男女边摸边吃奶| av卡一久久| 午夜视频国产福利| 国产精品人妻久久久影院| 亚洲国产欧美日韩在线播放| 国产极品天堂在线| 中文乱码字字幕精品一区二区三区| 99re6热这里在线精品视频| 777米奇影视久久| 中文字幕制服av| 母亲3免费完整高清在线观看 | 又黄又粗又硬又大视频| 成人亚洲精品一区在线观看| 久久青草综合色| h视频一区二区三区| 视频区图区小说| 丝袜脚勾引网站| 国产精品久久久av美女十八| 人人妻人人澡人人爽人人夜夜| 亚洲av中文av极速乱| 只有这里有精品99| 国产男人的电影天堂91| 久久国产亚洲av麻豆专区| 午夜老司机福利剧场| 久久久久久人人人人人| 亚洲成av片中文字幕在线观看 | 夫妻性生交免费视频一级片| 亚洲天堂av无毛| 国精品久久久久久国模美| 欧美成人精品欧美一级黄| 国产一区二区三区综合在线观看 | 欧美亚洲日本最大视频资源| 伦理电影大哥的女人| 精品久久久久久电影网| 欧美 亚洲 国产 日韩一| 在线观看免费视频网站a站| 日韩av在线免费看完整版不卡| 在线观看免费高清a一片| 日韩视频在线欧美| 国产精品秋霞免费鲁丝片| 久久久精品区二区三区| 日韩一本色道免费dvd| 一本久久精品| 精品少妇黑人巨大在线播放| 91久久精品国产一区二区三区| 永久免费av网站大全| 免费观看性生交大片5| 国产午夜精品一二区理论片| 中国三级夫妇交换| 亚洲国产精品国产精品| 波多野结衣一区麻豆| 久久精品夜色国产| 亚洲国产精品一区二区三区在线| 久久午夜福利片| 尾随美女入室| 搡老乐熟女国产| 亚洲国产毛片av蜜桃av| 日日撸夜夜添| 亚洲av在线观看美女高潮| 香蕉国产在线看| 狂野欧美激情性bbbbbb| 交换朋友夫妻互换小说| 成年人午夜在线观看视频| 国产高清不卡午夜福利| 视频中文字幕在线观看| 国产精品人妻久久久久久| 久久久久视频综合| 国产亚洲av片在线观看秒播厂| 免费人妻精品一区二区三区视频| 久久精品夜色国产| 日韩一本色道免费dvd| 99久国产av精品国产电影| 久久精品国产亚洲av涩爱| 成人国语在线视频| 亚洲欧美中文字幕日韩二区| 国产又爽黄色视频| 欧美日韩成人在线一区二区| 美女内射精品一级片tv| 成年动漫av网址| 香蕉国产在线看| 国内精品宾馆在线| 国产精品人妻久久久久久| 日韩制服骚丝袜av| 午夜久久久在线观看| 夜夜骑夜夜射夜夜干| 国产爽快片一区二区三区| 国产男女超爽视频在线观看| 男女免费视频国产| 亚洲av成人精品一二三区| 亚洲欧美日韩卡通动漫| av电影中文网址| 91成人精品电影| 欧美精品一区二区大全| 五月玫瑰六月丁香| 一边摸一边做爽爽视频免费| 久久久久久久久久成人| 国产一区二区在线观看av| 美女国产高潮福利片在线看| 亚洲,欧美,日韩| 少妇人妻久久综合中文| 亚洲欧美一区二区三区国产| 精品人妻熟女毛片av久久网站| av免费在线看不卡| 国产成人aa在线观看| 国产一区二区三区综合在线观看 | 久久久久久人妻| 边亲边吃奶的免费视频| 久久精品久久精品一区二区三区| videos熟女内射| 视频在线观看一区二区三区| 免费黄色在线免费观看| freevideosex欧美| 99热这里只有是精品在线观看| a级毛片在线看网站| 亚洲精品日本国产第一区| 日本免费在线观看一区| 最近手机中文字幕大全| 国产男女超爽视频在线观看| 午夜91福利影院| 女人久久www免费人成看片| 久久青草综合色| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 寂寞人妻少妇视频99o| 国产成人a∨麻豆精品| 亚洲成av片中文字幕在线观看 | 啦啦啦视频在线资源免费观看| 亚洲精品美女久久久久99蜜臀 | 夫妻性生交免费视频一级片| 丰满少妇做爰视频| 最近中文字幕2019免费版| 好男人视频免费观看在线| 国产白丝娇喘喷水9色精品| 黑人欧美特级aaaaaa片| 日韩在线高清观看一区二区三区| √禁漫天堂资源中文www| 青春草视频在线免费观看| 精品久久蜜臀av无| 久久精品熟女亚洲av麻豆精品| 精品午夜福利在线看| 久久久久久久亚洲中文字幕| 久久人人爽人人爽人人片va| 日韩欧美一区视频在线观看| 精品一区在线观看国产| 国产精品不卡视频一区二区| 亚洲情色 制服丝袜| 色5月婷婷丁香| 久久午夜综合久久蜜桃| 亚洲成av片中文字幕在线观看 | 成人无遮挡网站| 国产成人精品在线电影| 丰满少妇做爰视频| 亚洲第一区二区三区不卡| av电影中文网址| 香蕉丝袜av| 日韩欧美精品免费久久| 国产有黄有色有爽视频| 国产精品熟女久久久久浪| 制服丝袜香蕉在线| 欧美精品亚洲一区二区| 久久99精品国语久久久| 婷婷成人精品国产| 成人国产麻豆网| 国产深夜福利视频在线观看| 精品一区二区免费观看| 日本91视频免费播放| 女人精品久久久久毛片| 精品一区二区三卡| 欧美少妇被猛烈插入视频| 久久久欧美国产精品| 在线观看国产h片| 热99久久久久精品小说推荐| √禁漫天堂资源中文www| 丝瓜视频免费看黄片| 母亲3免费完整高清在线观看 | 免费高清在线观看日韩| 国产男人的电影天堂91| 晚上一个人看的免费电影| 色94色欧美一区二区| 大香蕉久久网| 欧美bdsm另类| 国产精品熟女久久久久浪| 欧美+日韩+精品| 有码 亚洲区| 日日啪夜夜爽| 中文欧美无线码| 丝袜脚勾引网站| 国产精品一区二区在线观看99| 久久热在线av| 男女无遮挡免费网站观看| 国产麻豆69| 成人二区视频| 国产精品 国内视频| 亚洲婷婷狠狠爱综合网| 久久av网站| 国产精品免费大片| 精品人妻一区二区三区麻豆| 一区在线观看完整版| 国产黄色视频一区二区在线观看| 国产精品久久久久久久电影| 国产1区2区3区精品| 国产精品不卡视频一区二区| 亚洲欧洲日产国产| 免费人成在线观看视频色| 国产精品人妻久久久影院| 欧美 日韩 精品 国产| 91午夜精品亚洲一区二区三区| 精品国产乱码久久久久久小说| 精品熟女少妇av免费看| 黑人欧美特级aaaaaa片| 久久久精品免费免费高清| 久久精品久久久久久噜噜老黄| 高清av免费在线| 99热这里只有是精品在线观看| 久久99一区二区三区| videossex国产| 精品人妻在线不人妻| 成人国产av品久久久| 午夜久久久在线观看| 精品亚洲成a人片在线观看| 69精品国产乱码久久久| 性色av一级| 欧美精品人与动牲交sv欧美| 日韩免费高清中文字幕av| 女性生殖器流出的白浆| 伦理电影免费视频| 中文字幕免费在线视频6| 亚洲av电影在线进入| 日本爱情动作片www.在线观看| 18禁国产床啪视频网站| 国产国拍精品亚洲av在线观看| 久久人人爽人人片av| 欧美人与善性xxx| 日日撸夜夜添| 久久精品久久久久久久性| 少妇高潮的动态图| 丰满乱子伦码专区| 精品国产一区二区三区四区第35| 99久久中文字幕三级久久日本| 国产爽快片一区二区三区| 成人手机av| 欧美xxxx性猛交bbbb| 边亲边吃奶的免费视频| 中文字幕精品免费在线观看视频 | 亚洲av电影在线观看一区二区三区| 国产淫语在线视频| 成人国产av品久久久| 久久久久久伊人网av| 夜夜爽夜夜爽视频| 丰满迷人的少妇在线观看| 亚洲精品久久午夜乱码| 亚洲精华国产精华液的使用体验| 啦啦啦视频在线资源免费观看| 国产精品久久久久久久电影| 侵犯人妻中文字幕一二三四区| 中文欧美无线码| 久久精品国产亚洲av天美| 中国三级夫妇交换| 国产精品人妻久久久久久| 高清不卡的av网站| 欧美xxⅹ黑人| 天堂俺去俺来也www色官网| 精品国产乱码久久久久久小说| 一个人免费看片子| 久久午夜综合久久蜜桃| 免费av不卡在线播放| 五月天丁香电影| 欧美日韩成人在线一区二区| 亚洲精品一区蜜桃| 国产亚洲午夜精品一区二区久久| 十八禁网站网址无遮挡| 精品国产国语对白av| 男的添女的下面高潮视频| 亚洲成人一二三区av| 美女国产视频在线观看| 热99久久久久精品小说推荐| 国产成人a∨麻豆精品| 成人毛片60女人毛片免费| 国产69精品久久久久777片| 菩萨蛮人人尽说江南好唐韦庄| 久久狼人影院| 亚洲色图综合在线观看| 亚洲第一区二区三区不卡| 日韩一区二区三区影片| 亚洲伊人久久精品综合| 午夜免费观看性视频| av国产精品久久久久影院| 日本-黄色视频高清免费观看| 国产日韩欧美视频二区| 日本vs欧美在线观看视频| 国产av一区二区精品久久| 久久97久久精品| 日本黄大片高清| 妹子高潮喷水视频| 免费不卡的大黄色大毛片视频在线观看| 国产不卡av网站在线观看| 大片免费播放器 马上看| av网站免费在线观看视频| 国产精品久久久久久久久免| 777米奇影视久久| 亚洲成av片中文字幕在线观看 | 久久久久国产精品人妻一区二区| 免费在线观看黄色视频的| 欧美97在线视频| 青青草视频在线视频观看| 成人亚洲精品一区在线观看| 97人妻天天添夜夜摸| 制服诱惑二区| 少妇精品久久久久久久| 亚洲国产精品一区三区| 午夜福利,免费看| 中文字幕最新亚洲高清| 宅男免费午夜| 日韩熟女老妇一区二区性免费视频| 亚洲av.av天堂| 国产日韩欧美亚洲二区| 久久久久久伊人网av| 熟妇人妻不卡中文字幕| 亚洲美女视频黄频| 亚洲美女搞黄在线观看| 婷婷色综合大香蕉| 免费看av在线观看网站| 美女大奶头黄色视频| 亚洲欧美日韩另类电影网站| 国产福利在线免费观看视频| av女优亚洲男人天堂| 国产精品成人在线| 99热全是精品| 国产精品成人在线| 国产精品久久久久久精品古装| 香蕉国产在线看| 99热这里只有是精品在线观看| 成人手机av| 婷婷成人精品国产| 99香蕉大伊视频| 高清毛片免费看| 七月丁香在线播放| 国产亚洲av片在线观看秒播厂| 五月玫瑰六月丁香| 成年女人在线观看亚洲视频| 精品久久国产蜜桃| 精品人妻在线不人妻| 狂野欧美激情性xxxx在线观看| 亚洲国产精品999| 一二三四中文在线观看免费高清| 人人妻人人澡人人爽人人夜夜| 最近手机中文字幕大全| 大话2 男鬼变身卡| 蜜桃国产av成人99| 国产精品免费大片| 欧美激情极品国产一区二区三区 | 久久人妻熟女aⅴ| 亚洲精品中文字幕在线视频| 欧美精品国产亚洲| 看十八女毛片水多多多| 亚洲五月色婷婷综合| 男男h啪啪无遮挡| 永久免费av网站大全| 欧美成人午夜免费资源| 久久午夜综合久久蜜桃| 亚洲第一区二区三区不卡| 欧美日韩亚洲高清精品| 97在线视频观看| 欧美最新免费一区二区三区| 丰满饥渴人妻一区二区三| 少妇的丰满在线观看| 欧美激情极品国产一区二区三区 | av在线观看视频网站免费| 一级爰片在线观看| 校园人妻丝袜中文字幕| 国产女主播在线喷水免费视频网站| 韩国高清视频一区二区三区| 又大又黄又爽视频免费| 免费黄频网站在线观看国产| 免费女性裸体啪啪无遮挡网站| 色哟哟·www| 午夜免费男女啪啪视频观看| 国产高清国产精品国产三级| 欧美激情国产日韩精品一区| 精品少妇内射三级| 日本免费在线观看一区| 最近的中文字幕免费完整| 亚洲色图 男人天堂 中文字幕 | 少妇的逼水好多| 久久99热这里只频精品6学生| 成人亚洲欧美一区二区av| 国产精品嫩草影院av在线观看| 亚洲激情五月婷婷啪啪| 亚洲国产欧美日韩在线播放| 成人国产av品久久久| 人人妻人人爽人人添夜夜欢视频| 亚洲精品av麻豆狂野| 成人亚洲欧美一区二区av|