• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Thermal Conductivity of Complex Plasmas Using Novel Evan-Gillan Approach

    2018-06-15 07:32:42AamirShahzadSyedIrfanHaiderMuhammadKashifMuhammadShahzadShifaTariqMunirandMaoGangHe
    Communications in Theoretical Physics 2018年6期

    Aamir Shahzad?Syed Irfan HaiderMuhammad KashifMuhammad Shahzad ShifaTariq Munir and Mao-Gang He

    1Molecular Modeling and Simulation Laboratory,Department of Physics,Government College University Faisalabad(GCUF),Allama Iqbal Road,Faisalabad 38040,Pakistan

    2Key Laboratory of Thermo-Fluid Science and Engineering,Ministry of Education(MOE),Xi’an Jiaotong University,Xi’an 710049,China

    1 Introduction

    In recent years,the use of new materials for different specific applications,it is vital to understand and characterize its transport properties such as thermal transport,mass transport,and electrical transport.In the advancement of large and fast massively parallel computers,it is now possible to devise new molecular modeling methods that can reliably compute transport properties of complex materials from bottom to the top.Technological development in different areas such as electronics,automobiles and nuclear energy demands better thermal management.Conventional methods of measuring heat properties are reaching their limits.There is an immediate need to look for innovative means to achieve enhanced heat capacity and low thermal conductivity of conventional heat transfer fluid is proving to be a serious limitation.A comprehensive and systematic e ff ort is necessary to incorporate the effective thermal conductivity of complex materials and their limitations.The real structures and geometries of multi-phase materials are so vast and vivid that one cannot use a single model to estimate the effective thermal conductivity of complex fluid materials in the whole range due to their inherent limitations.In this scenario,complex fluid materials have emerged as an attractive solution to meet these challenges.[1]

    In addition to further characteristics of complex fluid materials,the composition and dimensions of these fluid materials help in the investigation of microscopic level properties,which are difficult to measure even with state of the art experimental techniques.Such techniques are also required for studying new thermo-physical phenomena in the micro to a nanoscale device made of novel nanostructures,such as carbon electronics and nano level fluidic flow.[2?5]Similarly,size,and dimension effects on vibrational modes for thermal conductivity in a complex crystal are extremely important especially for the variety of electronic and energy conversion technologies.The boundary scattering effects are strong for many vibrational modes because of strong anisotropy in their nonpropagating nature.This non-diffusive(non-propagating)nature can be suppressed by the adequate composition of nanostructures inside the fluids materials.So,the lattice thermal conductivities get important for fluids materials,dependent on their structure,heat capacities and the equation of state.[6]Thermal conductivities are carried out by atomic vibrations called phonons(quasi-particle traveling at the speed of sound).Heat propagation and conductivity are directly related to the time a phonon travels in a material before it collides with another phonon or defect.This characteristic time is called phonon lifetime.Shortening phonon lifetimes achieve low thermal conductivity,which is important for thermo-electronic materials.Phonon lifetime is one of the key parameters for quantifying the thermal conductivity,but assessing and measuring it is extremely challenging both experimentally and theoretically.State of the art simulation techniques is required to overcome it.Traditional computer simulations did not lead to a dramatic increase in thermal conductivity as found in experiments.[7]

    The atomic and molecular levels study of fluid dynamics is still an open challenge from the analytical and experimental point of view. The molecular dynamics(MD)simulation is the powerful tool for the investigation of transport properties of fluid dynamics at atomic or molecular scale and gives the understandings about the complex systems that cannot be directly accessible by experiments.[8?10]MD simulation is the favorable technique over the other computational techniques for the dynamical study of materials and complex systems.[11]The thermal properties,structures,and behavior of complex and large systems may be explored by using faster and powerful computer simulation modeling tools.Generally,two MD methods are in considerations for the estimation of thermal conductivity,namely,equilibrium MD(EMD),non-equilibrium MD(NEMD).The former method employs the Green-Kubo relations(GKRs)to calculate time correlation function of microscopic heat flux and the thermal conductivity. The method based on GKRs requires a long time to run the simulation and its computational cost limits to the systems having only a few hundred atoms.The lateral method is also a popular way to simulate the complex mechanisms,an example of it is inhomogeneous NEMD(InHNEMD)techniques,which mimic the experiment by imposing temperature differences,[11?12]heat current,[13?14]transient heat impulsion[15]across the system.This technique has faster convergence than EMD method.However,both techniques have complexities in terms finite size effects,large temperature gradients,spatially inhomogeneity.The Evan’s homogenous NEMD(HNEMD)required minimum sizes and produced small statistical errors than previously discussed techniques.[16]The HNEMD has no such complexities as discussed in above mentioned NEMD methods.The reason for preferring this scheme is that if physical walls are replaced by periodic boundary conditions(PBCs),all particles perceive similar treatment.The link between EMD and NEMD methods is due to fluctuationdissipation theorem,[17]which represents the relation between linear response to external perturbations and equilibrium time correlation function of the fluxes of the system.The HNEMD techniques have already been checked with emphasis on the application on heat transport problems of different fluids,thermal transport coefficients,and the autocorrelation function of heat current.[14]

    The area of complex dusty plasmas has rapidly grown over the past two decades to become the major area of study in the field of plasma physics. The results of strongly coupled complex dusty plasmas(SCCDPs)have been calculated for three-dimensional(3D)thermal conductivity(λ)by Salin and Caillol,[18]Faussurier and Murillo,[19]Donkoet al.[20]Donko and Hartmann[11]and presented authors of Shahzad and He,[21?22]as well as two-dimensional(2D)estimations,have been explored by Hou and Piel,[4]Khrustalyov and Vaulina[5]and presented authors of Shahzad and He.[23]Moreover,for the 2D systems,at?1long-time tail exists for auto correlation function(ACF)as compared tot?3/2short-time decay for the 3D systems.Presently,the external small perturbation is applied for the 2D dusty plasma systems at the lowerintermediately and high couplings(Γ).This small perturbation can cause small deviation from the initial state and the current ACF decays faster thant?1for large simulation time step dt,and it shows a definite value of heat energy fluxJ(t).[10,20]The current ACF oscillation,retardation of perturbation,and damping of external field generate smooth decay in the vicinity of 2D dusty plasmas.Consequently,integral converges when attempting to compute the transport coefficients by using Green-Kubo relation.The main objective of current work is to investigate the preliminary normalized(λ0)of 2D complex fluid material in strongly coupled complex regime through an improved Evan-Gillan HNEMD algorithm at constant external perturbation.The Gillan and Dixon[24]have also used this modified approach for LJ liquids to measure the autocorrelation function of microscopic heat current and thermal coefficients with weak external perturbations.This modified algorithm has already been used for transport coefficients of one component plasma(OCCP),[25]ionic liquids and for the investigation of simple fluids,[13?14]rheological issues of Yukawa liquids,[11]and semiconductor systems.[2]Therefore,this method is considered as a best computational tool in the limit of zero applied external perturbation.The extensive HNEMD simulations are performed to study the performance of algorithms and to compare the results obtained from EMD and NEMD simulations for a wide range of plasma parameters(Γ,κ)than those used for formerly used for Yukawa liquids.

    2 Computational Method

    2.1 Simulation Technique and Parameters

    Several simulation techniques have unnecessary cost,then simplify approach could be a select e.g.molecular mechanics dynamic simulation(MMDS).It allows study molecular ensembles for thousands of atoms.The MMDS technique works as a core on a simple explanation of force between the individual atoms.Here,HNEMD approach is implemented to determine the thermal conductivity of CDPLs by applying external perturbation,which is modeled by using Yukawa potential model use for the explanation of dust particles interact with one another.Yukawa potential is used for a system of charged particles.While

    2.2 HNEMD Model and Thermal Conductivity

    The GRKs are the mathematical terms for transport coefficients in the form of time integral correlation functions.GKR is for hydrodynamic transport coefficient of neutral particles.It has also been used for OCCP[25]and SCCDPs.[18,27]This formula gives linear response expression for thermal conductivity.It enables our calculations using a time-series record of motion of individual dust particles.For thermal transport coefficient,it is a time integral of the correlation function of the microscopic flux of heat energy and where it required input include timeseries for position and velocity of a dust particle.

    whereArepresents the area,Tdenotes the absolute temperature,kBis Boltzmann’s constant.The relation of microscopic heat energyJQis

    In this equationrij=ri?rjis the position vector andFijis the force of interaction on particleidue tojandpirepresents the momentum vector of thei-th particle.The energyEiof particleiisEi=Pi/2m+1/2Σφij,fori/=j,whereφijis the Yukawa pair potential given in Eq.(1)between particleiandj.According to,linear response theory(LRT)the perturbed equations of motion,given by Evans-Gillan in Ref.[22]define interparticle force acting on the particleiand the tensorial phase space distribution functionDi(ri,pi)describes the coupling of the system.According to non-Hamiltonian dynamics,LRT describes thisDi(ri,pi)as arbitrary phase space dynamical variable for a system moving underFe(t)[22?23]and is calculated as

    whereH0is the time derivative of the total energy with respect to field dependent equation of motion and in Ref.[22]and average brackets denote the statistical average andβ=1/kBT.

    The external force does a mechanical work on the system and it disturbs its equilibrium position,therefore,the Gaussian thermostat is applied in the dynamics of the system to maintain the equilibrium of the system.The dynamics of the system satisfy the condition of adiabatic incompressibility of phase space and Eq.(4)is only valid forBi(ri,pi)=0 and it is given in Ref.[22]ifDi(ri,pi)is taken as

    Then,Eq.(4)withJQA=A(t)is simply related to Green-Kubo formula given in Eq.(2).It is an assumption to our system that force is sufficiently weak and the system remains homogeneous and compatible with PBCs by taking momentum derivative sum equals zero.Therefore,the response in heat energy flux is

    The above Eq.(10)is the basic formula for evaluation of autocorrelation function of heat energy current by a perturbation method.The efficiency of the above formula depends on the extensive range of Yukawa plasma parameters.It is important to know the perturbation has Dirac delta function,therefore,the response of heat energy current is proportional to autocorrelation function itself rather than time integral of this function.[24]Recently,the presented authors(Shahzad and He)have reported a detail discussion on thermal conductivity calculation and Ewald-Yukawa sum for the case ofJQthat corresponds to phase space variable.[16]

    3 HNEMD Results and Discussion

    In this section,the thermal conductivity calculations are obtained through homogenous perturbed MD(HPMD)simulations,using Eq.(10),for 2D complex dusty plasma systems.The thermal conductivity is compared here with appropriate frequency normalization in the limit of a suitable equilibrium low value of normalized external perturbation,for an absolute range of plasma coupling(Γ≥10)and screening strength(κ≥1).For 2D case,the thermal conductivity of complex dusty plasmas may be represented asλ0=λ/nmωpa2ws(normalized by plasma frequency)and orλ?=λ/nmωEa2ws(normalized by plasma frequency).These types of normalizations have been used usually for the earlier studies of OCCP[25]and CDPLs[18?19]for estimating thermal conductivity.Especially for the 3D strongly coupled system the Einstein frequency decreases by increasing screening parameter.[22,28]This improved HPMD approach to 2D strongly coupled plasmas enables it possible to compute all the possible range of plasma states(Γ,κ)at constant value of normalized perturbationP?(=Pzaws/JQZ).For results reported here,we have checked and varied the following parameters including system size(N),normalized perturbation(P?),thermostat(α),simulations total run time,simulation step size(dt),and Debye screening(κ),Coulomb coupling(system temperature≡1/Γ)for the investigation of plasma thermal conductivity.Different sequences of HPMD simulations are performed for various suitable low values of normalized external perturbation in order to find appropriate value ofP?.In our case,the possible low value of external perturbation isP?=0.02 at which 2D complex plasma system gives equilibrium thermal conductivity for all plasma state points.It is interesting and

    When external force is selected parallel to thez-axisFe(t)=δ(0,Pz),δis Dirac delta function,the above Eq.(8)becomes significant here that this normalized steady state low value ofP?=0.02 is very small as compared to earlier known value of external force in Ref.[23]This low value re flects more appropriate and acceptable results using presented HPMD technique than earlier used HNEMD technique.Theλ0results obtained through HPMD computer simulation are checked for the universal temperature scaling law at this reduced steady-state value ofP?=0.02:

    Equation(11)gives the simple scaling law(universal temperature law)and it is showed that the PHMD data calculated by usingλ?=nmωEa2wsandT?=T/Tm≡Γm/Γ(ratio of the system temperature to melting temperature),hereTmand Γmare the melting points and related detail is given in Refs.[15?19,23]Here,the unknown constants(A,B and C)are found after curve fitting to available HPMD simulation data for complex plasmas at different plasma state points(Γ,κ).

    We now turn our attention to the main results obtained through the HPMD simulations.In our case,before the external perturbationP?is switched on,the system is equilibrated using the Gaussian thermostat,which generates the canonical ensemble given in Refs.[22–23].In practice,it is necessary for the MD system to be thermostated for the removal of additional heat that is generated due to work done by the external perturbationP?.[3,23]Presently,for a possible low value of the external perturbation strength ofP?=0.02(steady state value)is to be chosen for the estimation of equilibrium thermal conductivity at all plasma states of Γ (≡10,100)andκ(≡1,3).The results obtained through present HPMD approach are shown in Figs.1–3,where we have traced the plasma thermal conductivity through a computation of usual Yukawa particles in 2D within the strongly coupled regime for different screening parameters ofκ=1,2,and 3 respectively.These figures show our key results along with the earlier numerical estimations taken from 2D GKREMD of dissipative Yukawa systems of Khrustalyov and Vaulina[5]as well as the 2D NEMD results of Hou and Piel[4]and the previous measurements taken from the 2D homogenous NEMD computations of Shahzad and He[23]nearly at the same data points.Our HPMD data are in practically good agreement with the previous numerical computations based on different methods that yield better measurements for plasma thermal conductivity.It is observed from figures that the measured thermal conductivity has lower values as compared to earlier estimated values at nearly same plasma state points.The presented simulation resultsλ0(Γ)are performed forN=400 particles and a sequence of four different computations are taken into account at constant perturbation ofP?=0.02 for eachκ=1,2,and 3,respectively.Our numerical data ofλ0(Γ)are in nearly reasonable agreement with earlier numerical data of GKR-EMD,NEMD and HNEMD investigation.[4?5,23]

    Fig.1 Comparison of results obtained from Yukawa thermal conductivity λ0(normalized by ωp)as a function of plasma coupling Γ(system temperature)for SCCDPs at κ=1.Our 2D HPMD simulation results:present data(for N=400 particles)and simulation results for the 2D HNEMD obtained by the Shahzad and He,[23]2D NEMD(Brownian dynamics)results of Hou and Piel,[4]GKR-EMD of Khrustalyov and Vaulina at scaling factors of ζ=1,0.25 and ∞.[5]

    Fig.2 Comparison of results obtained from Yukawa thermal conductivity λ0(normalized by ωp)as a function of plasma coupling Γ(system temperature)for SCCDPs at κ=2.For details,see the caption of Fig.1.

    Figures 1 and 2 show the thermal conductivity,normalized by the plasma frequency(ωp),as a function of Coulomb coupling(system temperature=1/Γ)for the cases ofκ=1 and 2,respectively.For both cases,our simulations covering the appropriate range of Coulomb coupling parameter i.e.from the nearly liquid state to strongly coupled states,depending on differentκvalues.The presented simulation data are generally in fair agreement at nearly same plasma parameters and figures show overall the same trends as in the earlier numerical methods of 2D Yukawa liquids.[4?5,23]It is observed that our investigation ofλ0at low value of Γ(=10)is definitely higher than that of NEMD of Hou and Piel[4]and GKR-EMD estimations of Khrustalyov and Vaulina[5]but slightly higher that HNMED(N=1024)simulations Shahzad and He.[23]It is noted that our result for low value of Γ shows that particle-particle interactions are very weak and particles have maximum kinetic energy and the effectiveness of screening parameter is large.At intermediate to higher Γ(=20,50,and 100),the present results lie closer to earlier 2D NEMD simulations[4]and HNMED(N=4096)computations[23]but slightly less than 2D dissipative Yukawa GKR-EMD numerical results.[5]For both cases,it can be seen that the presentedλ0is well matched with earlier 2D numerical estimations[23]at intermediate Γ(=20).It is significant to note that a constantλ0is observed at intermediate to higher plasma coupling Γ at constant external perturbationP?=0.02,however,it is observed that a very slightly decreasing behavior is observed at higher Γ,contrary to earlier simulations of Shahzad and He.[23]But it is examined that a constantλ0is found at intermediate to higher Γ at constantP?,con firming earlier numerical results.[4?5,23]It is interesting to note here that the existence ofλ0is present for low-intermediate to higher Γ with an increase inκand remains within a satisfactory limited statistical uncertainty,con firming previous simulation results.[23]In our simulation,the presented plasma conductivity for lower to intermediate Γ shows the existence ofλ0and it is a clear contradiction with the earlier simulation results of Donkoet al.[29]where theλ0was not found at lower Γ.

    Fig.3 Comparison of results obtained from Yukawa thermal conductivity λ0(normalized by ωp)as a function of plasma coupling Γ(system temperature)for SCCDPs at κ=3.For details,see the caption of Fig.1.

    One further set of simulations is plotted to illustrate the plasmaλ0behaviors of the simulated complex dusty plasmas at higher value of screening.For this case,Fig.3 shows the normalizedλ0computed by the HPMD approach forN=400 atκ=3 and a sequence of different simulations is performed.This figure shows that our results are satisfactory agreement with various simulation data sets and the uncertainties inherent to the different earlier approaches are comparable.It is depicted from this figure that the present results lie close to the earlier 2D NEMD results of Hou and Piel[4]at intermediate to higher Γ (=20,100).At lower value of Γ,our simulation result is slightly higher than earlier HNMED simulation result,however,it is definitely higher than earlier numerical results of NEMD,GKR-EMD.Moreover,it is examined that the presence of normalized plasmaλ0at all plasma state points and it is observed that plasmaλ0found to be constant,as expected in earlier simulation results.[4]Moreover,it is noted that the measured data of plasmaλ0estimations atP?=0.02,where plasmaλ0has equilibrium values and independent ofP?,are within limited statistical uncertainties.The overall HPMD simulation data obtained with lower system size(N=400)are revealed to be well matched within statistical limits of errors at lower,intermediate and higher Γ states,however,some data points are deviate at the lower Γ states.This deviation grows up suddenly at lower Γ states and intermediate screeningκ=2.This deviation of our numerical result from previous data point is still acceptable,for all cases.It is demonstrated from all figures with comparisons of earlier results that the presented results through HPMD approach with lowerNare more accurate and acceptable.

    Fig.4 Variation of normalized plasma conductivity(λ?)by Einstein frequency(ωE)with normalized temperature(T ?)for complex dusty plasmas system at different κ =1,2,and 3.The bold line is computed by employing simple functional form of:λ?=AT?+B/T?+C,representing the universal temperature law for the 2D complex dusty plasmas.[23]

    We determine the universal behavior of complex dusty plasma in which normalized conductivityλ?follows a temperature scaling law.Figure 4 shows the variation of normalized plasmaλ?(=λ/nmωEa2WS)verses various normalized temperaturesT?(=T/Tm).It is observed that these measured results are in good agreement to the former reported results for 2D Yukawa liquids.[11]In our case,T?is plotted along horizontal axis andλ?is plotted along vertical axis as shown in figure.This figure displays the variation of normalized(by EinsteinωE)λ?for different normalized temperatureT?atκ=1,2,and 3.The bold line,shown in Fig.4,is obtained by fitting curve of the functional form(temperature scaling law)given in Eq.(11)reported in Refs.[19,23]with the coefficients:A=0.02302,B=?1.49422 andC=0.69373.These obtained fitting coefficients(A,BandC)for the dimensionless plasma thermal conductivity given in Eq.(11),λ?=AT?+B/T?+C,are measured from presented HPMD simulation data display in Figs.1–3.It is observed that there is dispersion of obtained data of normalizedλ?shown in Fig.4.The scattering of these data from bold line suggested one possible reason that this may be happen due to high negative value of coefficientBin the functional fit of Eq.(11)in comparison to the previous EMD,HNMED measurements.It is noted that the bold fitting line is nearly exact fitting,con firming earlier numerical results.Moreover,Einstein frequency(ωE)is much more important than plasma frequency(ωp)because the distribution of data along solid line explains more accurately the physical significance of dusty plasma thermal conductivity.It is observed from Fig.4 that theλ?of dusty plasma is close to functional form for low value ofκandT?.For higher values ofκ,at intermediate values ofT?,λ?shows less dependence on these two variables and it is little far from functional form(temperature scaling).But at higherT?the conductivity of dusty plasmas is close to functional form,forκ=3 in 2D case.It is concluded that present results show the less growing behavior of dusty plasmasλ?with the increase of normalized temperature and screening.The plotted functional form demonstrates the correct universal behavior at three different values of screening on the extensive range ofT?for the reduced force field strengthP?=0.02.The result measured by plasmasλ?(T?),employing the HPMD technique,give empirical fitting and the plot shows better fit compared to the prior results.

    4 Conclusions

    We have estimated thermal conductivity of the 2D strongly coupled complex Yukawa liquid using improved Evan-Gillan HPMD approach for suitable range of plasma parameters of screening lengthsκ(=1,3)and Coulomb couplings Γ(=10,100).Nonequilibrium molecular dynamics method uses the thermal response of heat energy current to calculate the preliminary results of plasma thermal conductivity.Our presented method is better than earlier HNEMD and NEMD methods because the very small value of external perturbation(P?=0.02)is only imposed on several individual particles each time step.We have shown that normalized plasmaλ?as the function of normalized temperatureT?follows simple temperature scaling law.It is concluded that the present approach for evaluating the thermal conductivity from homogenous PMD method yields consistent results and this method is quite accurate and much faster than the previous EMD and NEMD methods.For future work,the system size(N)and external perturbation strength(P?)can be varied to examine how effectively this improved HPMD algorithm calculates the thermal conductivities of Yukawa and other Coulomb systems.

    Acknowledgments

    We are very obliged to the National Advanced Computing Centre of National Centre for Physics(NCP),Pakistan and National High-Performance Computing Center(NHPCC)of Xian Jiaotong University,China for allocating computer time to test and run our MD code.

    [1]Y.Feng,B.Yu,P.Xu,and M.Zou,J.Phys.D40(2007)3164.

    [2]K.K.Mandadapu,R.E.Jones,and P.Papadopoulos,J.Chem.Phys.130(2009)204106.

    [3]A.Shahzad and M.G.He,AIP Conf.Proc.1547(2013)173.

    [4]L.J.Hou and A.Piel,J.Phys.A42(2009)214025.

    [5]Y.V.Khrustalyov and O.S.Vaulina,Phys.Rev.85(2012)046405.

    [6]W.Yu,D.M.France,J.L.Routbort,and S.U.Choi,Heat Trans.Eng.29(2008)432.

    [7]A.J.H.McGaughey and M.Kaviany,Int.J.Heat Mass.Trans.47(2004)783.

    [8]G.Ciccotti,G.Jacucci,and I.R.McDonald,J.Stat.Phys.21(1979)01.

    [9]W.G.Hoover and W.T.Ashurst,Nonequilibrium Molecular Dynamics,Academic London,London(1975).

    [10]D.J.Evans and G.P.Morriss,Statistical Mechanics of Non-Equilibrium Liquids,Academic London,London(1990).

    [11]Z.Donko and P.Hartmann,Phys.Rev.E69(2004)016405.

    [12]F.Muller-Plathe,J.Chem.Phys.106(1997)6082.

    [13]J.P.Hansen and I.R.McDonald,Theory of Simple Liquids,Academic London,London(1986).

    [14]D.J.Evans,Phys.Lett.A91(1982)457.

    [15]R.J.Hulse,R.L.Rowley,and W.V.Wilding,Int.J.Thermo.Phys.26(2005)01.

    [16]A.Shahzad and M.G.He,Contrib.Plasma.Phys.52(2012)667.

    [17]R.Kubo,Rep.Prog.Phys.29(1966)255.

    [18]G.Salin and M.J.Caillol,Phys.Plasmas.10(2003)1220.

    [19]G.Faussurier,M.S.Murillo,and Gibbs-Bogolyubov,Phys.Rev.E67(2003)046404.

    [20]Z.Donko,J.Phys.A:Math.Theor.42(2009)214029.

    [21]A.Shahzad,M.G.He,S.Irfan Haider,and Y.Feng,Phys.Plasmas.24(2017)093701.

    [22]A.Shahzad and M.G.He,Phys.Plasmas.19(2012)083707.

    [23]A.Shahzad and M.G.He,Phys.Plasmas.22(2015)23707.

    [24]M.J.Gillan and M.Dixon,J.Phys.C16(1983)869.

    [25]C.Pierleon,G.Ciccotti,and B.Bernu,Euro.Phys.Lett.4(1987)1115.

    [26]E.Wigner,Phys.Rev.46(2004)1002.

    [27]H.Ohta and S.Hamaguchi,Phys.Plasmas7(2000)4506.

    [28]T.Saigo and S.Hamaguchi,Phys.Plasmas9(2002)1210.

    [29]Z.Donko,J.Goree,P.Hartmann,and B.Liu,Phys.Rev.E79(2009)026401.

    一级毛片 在线播放| www.色视频.com| 大码成人一级视频| av在线播放精品| 一本一本综合久久| 国产日韩欧美在线精品| 精品熟女少妇av免费看| 久久久久久伊人网av| 亚洲国产精品一区三区| 一边摸一边做爽爽视频免费| 成人午夜精彩视频在线观看| 国产精品久久久久久久电影| 女人精品久久久久毛片| 校园人妻丝袜中文字幕| 国产精品一区www在线观看| 亚洲国产欧美日韩在线播放| 日韩,欧美,国产一区二区三区| 午夜福利网站1000一区二区三区| 黄片无遮挡物在线观看| 国产成人av激情在线播放 | 80岁老熟妇乱子伦牲交| 久久毛片免费看一区二区三区| 中文字幕亚洲精品专区| 色视频在线一区二区三区| 国产精品 国内视频| 午夜激情av网站| 日韩强制内射视频| 成人黄色视频免费在线看| 国产成人午夜福利电影在线观看| 少妇 在线观看| 亚洲av福利一区| 亚洲人成77777在线视频| 亚洲精品第二区| 18禁在线无遮挡免费观看视频| 久久精品国产自在天天线| 国产成人精品久久久久久| 久久婷婷青草| 国产日韩欧美亚洲二区| 久久久精品区二区三区| 熟女人妻精品中文字幕| 性色avwww在线观看| 亚洲欧洲日产国产| 在线 av 中文字幕| 久久毛片免费看一区二区三区| 两个人的视频大全免费| 久久久精品94久久精品| 麻豆精品久久久久久蜜桃| 另类亚洲欧美激情| 超色免费av| 亚洲精品国产色婷婷电影| 国产深夜福利视频在线观看| 亚洲三级黄色毛片| 妹子高潮喷水视频| 春色校园在线视频观看| 多毛熟女@视频| 成人毛片60女人毛片免费| 亚洲国产毛片av蜜桃av| 中文乱码字字幕精品一区二区三区| 天堂8中文在线网| 一区二区av电影网| 边亲边吃奶的免费视频| 97超碰精品成人国产| 欧美xxxx性猛交bbbb| 亚州av有码| 91精品三级在线观看| 一区二区日韩欧美中文字幕 | 精品人妻偷拍中文字幕| 亚洲欧洲精品一区二区精品久久久 | 国产亚洲精品久久久com| 蜜桃久久精品国产亚洲av| 久久久久久久久久久免费av| 亚洲av福利一区| 精品一区二区三区视频在线| 人人妻人人爽人人添夜夜欢视频| 母亲3免费完整高清在线观看 | 99九九在线精品视频| 国产精品国产三级国产av玫瑰| 亚洲美女视频黄频| 国产精品成人在线| 精品国产一区二区久久| 一级,二级,三级黄色视频| 91久久精品电影网| 中文字幕人妻丝袜制服| 天天操日日干夜夜撸| 亚洲精品自拍成人| 日本与韩国留学比较| 国产有黄有色有爽视频| 久久99蜜桃精品久久| 97超视频在线观看视频| 国产精品久久久久久av不卡| 国产精品久久久久久精品古装| 99re6热这里在线精品视频| 亚洲精品日韩av片在线观看| 婷婷色综合www| 青春草视频在线免费观看| av网站免费在线观看视频| 国产片内射在线| 久久99热6这里只有精品| 免费看光身美女| 日韩中字成人| 免费日韩欧美在线观看| 99国产精品免费福利视频| 久久久久精品久久久久真实原创| 男人爽女人下面视频在线观看| 久久久精品免费免费高清| 只有这里有精品99| 午夜91福利影院| 欧美一级a爱片免费观看看| 久久热精品热| 日日摸夜夜添夜夜爱| 久久精品国产亚洲av天美| 中文字幕人妻丝袜制服| 9色porny在线观看| 国产日韩欧美亚洲二区| 天天操日日干夜夜撸| 久久午夜综合久久蜜桃| 亚洲av不卡在线观看| 麻豆成人av视频| 99热国产这里只有精品6| av电影中文网址| 一级毛片aaaaaa免费看小| 国产精品国产三级专区第一集| 在线观看美女被高潮喷水网站| 国产爽快片一区二区三区| 高清午夜精品一区二区三区| 亚洲内射少妇av| a级毛色黄片| 人妻制服诱惑在线中文字幕| 久久久久视频综合| 国产一级毛片在线| 国产免费一级a男人的天堂| 精品一区在线观看国产| 97在线人人人人妻| 免费高清在线观看视频在线观看| 人妻人人澡人人爽人人| 亚洲性久久影院| 成人国产麻豆网| 2021少妇久久久久久久久久久| 欧美变态另类bdsm刘玥| 九九久久精品国产亚洲av麻豆| 在现免费观看毛片| 在线播放无遮挡| 少妇丰满av| 国产亚洲精品久久久com| 久久毛片免费看一区二区三区| 亚洲色图 男人天堂 中文字幕 | 久久精品夜色国产| 精品酒店卫生间| 国产精品国产三级国产av玫瑰| 亚洲人与动物交配视频| 不卡视频在线观看欧美| 一级毛片 在线播放| 最近2019中文字幕mv第一页| 亚洲成色77777| 一级片'在线观看视频| 国产精品国产三级国产专区5o| 伦理电影大哥的女人| 在线观看三级黄色| 亚洲国产成人一精品久久久| av网站免费在线观看视频| 色视频在线一区二区三区| av在线app专区| 久久热精品热| 99九九在线精品视频| 人妻 亚洲 视频| 一区二区三区精品91| 精品少妇内射三级| 欧美激情 高清一区二区三区| 欧美bdsm另类| 99热6这里只有精品| 国产白丝娇喘喷水9色精品| 久久久国产一区二区| 亚洲成人一二三区av| 看免费成人av毛片| 国产精品免费大片| 自线自在国产av| 成人毛片a级毛片在线播放| 久久久久久久精品精品| h视频一区二区三区| 一区在线观看完整版| 高清欧美精品videossex| 国产精品国产av在线观看| 精品国产乱码久久久久久小说| 色婷婷久久久亚洲欧美| 国产精品一区二区三区四区免费观看| 免费av中文字幕在线| 午夜精品国产一区二区电影| 男女边摸边吃奶| 国产免费视频播放在线视频| 99久久精品一区二区三区| 亚洲天堂av无毛| 99久国产av精品国产电影| 人妻一区二区av| 99久久中文字幕三级久久日本| 韩国av在线不卡| 看十八女毛片水多多多| 亚洲国产精品一区三区| 成人综合一区亚洲| 国产成人91sexporn| 一级黄片播放器| 久久久久久久久久人人人人人人| 校园人妻丝袜中文字幕| 成年女人在线观看亚洲视频| 亚洲综合色惰| 亚洲国产成人一精品久久久| 18在线观看网站| av国产久精品久网站免费入址| 另类亚洲欧美激情| 在线观看三级黄色| 欧美成人午夜免费资源| 午夜av观看不卡| 欧美 亚洲 国产 日韩一| 人妻 亚洲 视频| 国产精品秋霞免费鲁丝片| 久久久久国产精品人妻一区二区| 在线天堂最新版资源| 成人漫画全彩无遮挡| 一个人免费看片子| 国产国语露脸激情在线看| 水蜜桃什么品种好| 亚洲欧美一区二区三区黑人 | 久久久久人妻精品一区果冻| 成人综合一区亚洲| 亚洲av男天堂| 99热这里只有精品一区| 街头女战士在线观看网站| 一本久久精品| 久久精品人人爽人人爽视色| 天美传媒精品一区二区| 国产精品人妻久久久久久| 十分钟在线观看高清视频www| 性色av一级| 在线看a的网站| 免费观看无遮挡的男女| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 日韩熟女老妇一区二区性免费视频| 免费av中文字幕在线| 久久精品国产鲁丝片午夜精品| 最新的欧美精品一区二区| 春色校园在线视频观看| 国产男女超爽视频在线观看| 久久97久久精品| 两个人免费观看高清视频| 美女国产视频在线观看| 免费黄网站久久成人精品| 汤姆久久久久久久影院中文字幕| 欧美日韩av久久| 免费高清在线观看日韩| 一二三四中文在线观看免费高清| 99re6热这里在线精品视频| 国产男女内射视频| 午夜影院在线不卡| 亚洲怡红院男人天堂| 韩国高清视频一区二区三区| 日韩av在线免费看完整版不卡| av电影中文网址| 成年人免费黄色播放视频| 日韩av免费高清视频| 久久精品国产鲁丝片午夜精品| 国产午夜精品久久久久久一区二区三区| 女性被躁到高潮视频| 少妇高潮的动态图| 91在线精品国自产拍蜜月| 欧美变态另类bdsm刘玥| 一级a做视频免费观看| 国产日韩欧美亚洲二区| 日韩制服骚丝袜av| 久久久久久久国产电影| 亚洲色图 男人天堂 中文字幕 | 纯流量卡能插随身wifi吗| 亚洲激情五月婷婷啪啪| 水蜜桃什么品种好| 天天操日日干夜夜撸| 一级毛片我不卡| 亚洲国产日韩一区二区| 美女xxoo啪啪120秒动态图| 免费人成在线观看视频色| 亚洲av男天堂| 国产欧美日韩一区二区三区在线 | 欧美成人午夜免费资源| 看非洲黑人一级黄片| 三级国产精品片| 亚洲精品aⅴ在线观看| av国产久精品久网站免费入址| 一个人看视频在线观看www免费| 欧美另类一区| 80岁老熟妇乱子伦牲交| 国产一区亚洲一区在线观看| 三上悠亚av全集在线观看| 久久久午夜欧美精品| 久久久久网色| 高清黄色对白视频在线免费看| av国产久精品久网站免费入址| 日韩,欧美,国产一区二区三区| 国产高清国产精品国产三级| 天天影视国产精品| 亚州av有码| 亚洲精品一区蜜桃| 亚洲伊人久久精品综合| 亚洲不卡免费看| 欧美人与性动交α欧美精品济南到 | 一区在线观看完整版| 少妇熟女欧美另类| 欧美精品一区二区大全| 亚洲欧美中文字幕日韩二区| 夜夜看夜夜爽夜夜摸| 亚洲高清免费不卡视频| 免费高清在线观看日韩| 亚洲国产最新在线播放| 插逼视频在线观看| videossex国产| av有码第一页| 男男h啪啪无遮挡| 国产探花极品一区二区| av国产精品久久久久影院| 国产毛片在线视频| 观看美女的网站| 在线播放无遮挡| 九色成人免费人妻av| 一级爰片在线观看| 午夜激情久久久久久久| 美女中出高潮动态图| 99久久中文字幕三级久久日本| 丝瓜视频免费看黄片| 3wmmmm亚洲av在线观看| 美女视频免费永久观看网站| 欧美人与性动交α欧美精品济南到 | 国产一区二区在线观看日韩| 热re99久久精品国产66热6| 18在线观看网站| 久久精品夜色国产| 久久久亚洲精品成人影院| 国产精品久久久久成人av| 最近中文字幕2019免费版| av卡一久久| 人妻制服诱惑在线中文字幕| 人人妻人人添人人爽欧美一区卜| 欧美老熟妇乱子伦牲交| 国产综合精华液| 亚洲无线观看免费| 99九九在线精品视频| videosex国产| 99九九在线精品视频| 波野结衣二区三区在线| 一区二区三区乱码不卡18| 亚洲成色77777| 毛片一级片免费看久久久久| 精品酒店卫生间| 啦啦啦视频在线资源免费观看| 亚洲国产日韩一区二区| 少妇猛男粗大的猛烈进出视频| www.av在线官网国产| 国产av国产精品国产| 人妻制服诱惑在线中文字幕| 人人妻人人添人人爽欧美一区卜| 亚洲,欧美,日韩| 久久综合国产亚洲精品| 亚洲久久久国产精品| 一级二级三级毛片免费看| 亚洲精品一二三| 成人18禁高潮啪啪吃奶动态图 | 国产一区亚洲一区在线观看| tube8黄色片| 亚洲av.av天堂| 乱码一卡2卡4卡精品| 亚洲av男天堂| 久久国产精品男人的天堂亚洲 | 在线 av 中文字幕| 一级,二级,三级黄色视频| 狂野欧美激情性bbbbbb| 在线观看免费日韩欧美大片 | 极品人妻少妇av视频| 亚洲精品一区蜜桃| 日韩中文字幕视频在线看片| 天天影视国产精品| 一级a做视频免费观看| 精品人妻在线不人妻| 欧美少妇被猛烈插入视频| av视频免费观看在线观看| 精品一区在线观看国产| 久久久久久久久久成人| 国产成人免费无遮挡视频| 国产白丝娇喘喷水9色精品| av卡一久久| 成人亚洲欧美一区二区av| 精品少妇内射三级| 免费观看av网站的网址| 丝袜脚勾引网站| 男女啪啪激烈高潮av片| 欧美3d第一页| 国产国语露脸激情在线看| 国产深夜福利视频在线观看| 色婷婷av一区二区三区视频| 久久久a久久爽久久v久久| 精品午夜福利在线看| 欧美一级a爱片免费观看看| 少妇的逼好多水| 秋霞伦理黄片| 中国国产av一级| 亚洲在久久综合| 高清不卡的av网站| 人体艺术视频欧美日本| 曰老女人黄片| 欧美亚洲 丝袜 人妻 在线| 妹子高潮喷水视频| 搡女人真爽免费视频火全软件| 日日啪夜夜爽| 少妇的逼好多水| 精品人妻在线不人妻| 国产精品一区二区在线不卡| 在线精品无人区一区二区三| 国产黄片视频在线免费观看| 性高湖久久久久久久久免费观看| videossex国产| 午夜福利在线观看免费完整高清在| 国产免费视频播放在线视频| 大陆偷拍与自拍| 亚洲av免费高清在线观看| 天天操日日干夜夜撸| 亚洲欧美日韩另类电影网站| 街头女战士在线观看网站| 亚洲av不卡在线观看| 国产一区二区在线观看av| tube8黄色片| 精品久久久久久久久av| 尾随美女入室| 毛片一级片免费看久久久久| 国产有黄有色有爽视频| 国产黄色视频一区二区在线观看| 免费高清在线观看视频在线观看| 飞空精品影院首页| www.色视频.com| 黄色欧美视频在线观看| 国产日韩一区二区三区精品不卡 | 中文字幕最新亚洲高清| 免费大片黄手机在线观看| 精品国产国语对白av| 大话2 男鬼变身卡| 建设人人有责人人尽责人人享有的| 日本午夜av视频| 十八禁高潮呻吟视频| 亚洲综合色网址| 国产不卡av网站在线观看| 免费观看性生交大片5| 久久久久久久久久人人人人人人| 国产精品熟女久久久久浪| 91午夜精品亚洲一区二区三区| 日本黄色片子视频| 亚洲国产av新网站| 夜夜爽夜夜爽视频| 久久综合国产亚洲精品| 国产高清不卡午夜福利| 水蜜桃什么品种好| av免费观看日本| 涩涩av久久男人的天堂| 欧美少妇被猛烈插入视频| 精品少妇黑人巨大在线播放| 精品国产国语对白av| 国产女主播在线喷水免费视频网站| 国产日韩欧美视频二区| 草草在线视频免费看| 成人综合一区亚洲| 国产成人av激情在线播放 | 最近中文字幕高清免费大全6| 免费高清在线观看日韩| 九色亚洲精品在线播放| 美女主播在线视频| 国产成人精品一,二区| 国产高清国产精品国产三级| 国产精品一区二区三区四区免费观看| 99久国产av精品国产电影| 99久久精品国产国产毛片| 纵有疾风起免费观看全集完整版| 啦啦啦啦在线视频资源| 搡女人真爽免费视频火全软件| 欧美一级a爱片免费观看看| av天堂久久9| www.av在线官网国产| 久久国内精品自在自线图片| 亚洲精品,欧美精品| 国产深夜福利视频在线观看| 亚洲欧洲日产国产| 大香蕉久久网| a级毛片黄视频| 制服诱惑二区| 国产色爽女视频免费观看| 91久久精品国产一区二区三区| 免费大片黄手机在线观看| 99久久精品国产国产毛片| 18在线观看网站| 高清毛片免费看| 一级片'在线观看视频| 国产精品99久久久久久久久| 春色校园在线视频观看| 在线观看免费日韩欧美大片 | 欧美另类一区| 国产白丝娇喘喷水9色精品| 在线 av 中文字幕| 国产熟女午夜一区二区三区 | 成人漫画全彩无遮挡| 国产精品一区二区在线观看99| 亚洲欧美中文字幕日韩二区| av福利片在线| 免费人成在线观看视频色| 天美传媒精品一区二区| 永久网站在线| 999精品在线视频| 日韩大片免费观看网站| 午夜福利,免费看| 精品久久久精品久久久| 免费高清在线观看视频在线观看| 高清在线视频一区二区三区| 欧美另类一区| 亚洲人成77777在线视频| 国产黄色视频一区二区在线观看| 久久久久精品久久久久真实原创| h视频一区二区三区| 中文字幕av电影在线播放| 国产成人精品无人区| 亚洲精品中文字幕在线视频| 精品午夜福利在线看| 99re6热这里在线精品视频| 免费观看的影片在线观看| 久久99蜜桃精品久久| 在线观看人妻少妇| 黄片播放在线免费| 亚洲欧美精品自产自拍| 亚洲国产欧美日韩在线播放| 一级片'在线观看视频| 亚洲精品美女久久av网站| 在现免费观看毛片| 美女主播在线视频| 亚洲丝袜综合中文字幕| 黄色毛片三级朝国网站| 精品人妻偷拍中文字幕| 老熟女久久久| 亚洲欧洲精品一区二区精品久久久 | 极品人妻少妇av视频| 免费看不卡的av| av国产久精品久网站免费入址| freevideosex欧美| 极品少妇高潮喷水抽搐| 成人漫画全彩无遮挡| 看十八女毛片水多多多| 国产 精品1| 亚洲精品乱码久久久v下载方式| 国产成人精品婷婷| av有码第一页| 在线免费观看不下载黄p国产| 菩萨蛮人人尽说江南好唐韦庄| 两个人免费观看高清视频| 91在线精品国自产拍蜜月| 天堂中文最新版在线下载| 亚洲五月色婷婷综合| 哪个播放器可以免费观看大片| 国产色爽女视频免费观看| 国产精品免费大片| 欧美日本中文国产一区发布| 王馨瑶露胸无遮挡在线观看| 亚洲精品视频女| 国产爽快片一区二区三区| 国产男人的电影天堂91| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 两个人免费观看高清视频| 在线观看免费高清a一片| 午夜福利网站1000一区二区三区| 在线亚洲精品国产二区图片欧美 | 久热这里只有精品99| 久久97久久精品| 久久99一区二区三区| 亚洲精品456在线播放app| 一本—道久久a久久精品蜜桃钙片| 日韩在线高清观看一区二区三区| 亚洲高清免费不卡视频| 日韩人妻高清精品专区| 乱人伦中国视频| 男女高潮啪啪啪动态图| .国产精品久久| 久久久久国产精品人妻一区二区| 日韩不卡一区二区三区视频在线| 久久这里有精品视频免费| 久久 成人 亚洲| 男女边摸边吃奶| 久久精品国产亚洲av天美| 欧美国产精品一级二级三级| 免费高清在线观看日韩| 亚洲五月色婷婷综合| 精品久久久久久电影网| 国产又色又爽无遮挡免| 午夜91福利影院| 日产精品乱码卡一卡2卡三| 十八禁高潮呻吟视频| 国产视频首页在线观看| 久久国产精品大桥未久av| 99热全是精品| 爱豆传媒免费全集在线观看| 人人妻人人爽人人添夜夜欢视频| 夜夜骑夜夜射夜夜干| 成人毛片a级毛片在线播放| 水蜜桃什么品种好| 成人黄色视频免费在线看| 免费少妇av软件| 国产免费视频播放在线视频| 精品人妻偷拍中文字幕| 亚洲精品456在线播放app| 在线观看三级黄色| 赤兔流量卡办理| videossex国产| 国产精品国产三级专区第一集| 乱码一卡2卡4卡精品| 视频中文字幕在线观看| 亚洲欧美精品自产自拍| 丝袜在线中文字幕| 午夜久久久在线观看| 国产精品.久久久|