• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Combustion Properties of Metal Particles as Components of Modified Double-Base Propellants

    2018-06-15 04:41:30XiaofeiQiHongyanLiNingYan2YingWang2andXueliChen2XianModernChemistryResearchInstituteXian70065ChinaScienceandTechnologyonCombustionandExplosionLaboratoryXian70065China
    關(guān)鍵詞:磁懸浮列車低能耗電磁力

    Xiaofei Qi, Hongyan Li Ning Yan2, Ying Wang2 and Xueli Chen2(.Xi’an Modern Chemistry Research Institute, Xi’an 70065, China; 2.Science and Technology on Combustion and Explosion Laboratory, Xi’an 70065, China)

    Many practical applications support continuing interest in metal combustion processes[1-2]. Metals like magnesium (Mg) has been studied by many researchers for a long time, and it was proposed in the early research, based on the low boiling point of Mg, that the reaction occurs in the vapor phase[3-4]. Aluminum (Al) particles are added to propellants to boost their combustion, as a prime candidate for high enthalpy fuel and propellant formulations due to its high energy release[5-6]. Although boron (B) is traditionally not considered as a true metal, it seems like a metallic element with high melting point and energy content, and has attracted a considerable research interest in the past 30 years[7-8]. Moreover, nickel (Ni) is widely used in propellants as a catalytic agent, and it might be used to tailor the combustion performance of propellants[9-10].

    Although metals are generally not considered to be flammable materials because of their high ignition temperatures, they burn extremely vigorously once ignition is achieved. In propulsion systems, the combustion of metals typically occurs via small diameter particles, which can be either of micro- or nano-size. One of the most complex aspects of understanding combustion of these propellants is describing the physics of burning metal particles. Burning metal particles is different from hydrocarbons because of the presence of condensed species. The highest temperatures in the flame are associated with localized particle combustion, and a significant amount of the heat release to objects in the flame is due to a particle deposition. The oxidation of the metal particles tends to occur over much longer time scales than the conversion of the primary propellant (oxidizer/binder/catalysts/ plasticizer), during which time the particles are convected away from the burning surface. When burning at elevated pressures, as rocket motors are designed to operate, the propellant burns rapidly and metal particles are probably convected away from the surface as they are exposed. When burning under ambient conditions, as in an accident scenario, the metal particles tend to stay on the surface of the propellant for a period of time without burning. These particles cluster together to form larger agglomerates and are then lofted into the plume, where burning takes place.

    1 Experimental

    1.1 Materials and specimen

    Cyclotrimethylenetrinitramine (RDX, ≥99.6%), nitrocotton (NC, ≥99.5%), nitroglycerine (NG, ≥99.2%), lead phthalate (φ-Pb, >99.5%), cupric 2,4-dihydroxybenzoate (β-Cu, >99.8%), 1,3-dimethyl-1,3-diphenyl urea (C2, ≥99.0%), carbon black (C.B., >99.8%), aluminum (Al, ≥99.8%), nickel (Ni, ≥99.5%), magnesium (Mg, ≥99.5%), boron (B, ≥99.5%) and Mg3Al4alloy (Mg/Al, ≥99.6%) were used as components of modified double-based propellants. The propellants involved in this study differ only in the type of reactive metals, where as other components and their ratios were identical. The composition and physical properties of the samples involved in this research are listed in Tab.1.

    Tab.1 Composition of propellants

    All the samples involved in this investigation were prepared by mould process at the temperature of 35 ℃, solidified for 96 h at 70 ℃, and machined to fixed dimensions (shape: cylinder; length: 200-250 mm; diameter: 5-8 mm).

    1.2 Instruments and experimentation

    1.2.1Surface morphology and particle size distribution

    The surface morphology of metal particles were measured by scanning electron microscopy (SEM) (Model JSM-5800,Japan).

    1.2.2Particle size distribution

    The particle size distribution of the metals was investigated and quantified by Malvern laser granulometer (Britain).

    1.2.3Flame structure analysis

    磁懸浮列車是現(xiàn)代社會(huì)高科技發(fā)展的產(chǎn)物。與普通的輕軌列車相比,它具有低噪音、低能耗、無污染和高速高效的特點(diǎn)。所以長遠(yuǎn)來看,這種新型交通工具具有廣闊的發(fā)展前景。那么磁懸浮列車是如何實(shí)現(xiàn)“若即若離”的基本工作狀態(tài)呢?它主要是利用“同性相斥、異性相吸”的電磁原理,以電磁力來對抗地球的引力,再通過直線電機(jī)的引導(dǎo),使列車能夠在懸浮間隙約1厘米的軌道上正常運(yùn)行。我國從德國購買的第一輛磁懸浮列車于2003年1月開始在上海運(yùn)行。更令人驕傲的是,我國首條磁懸浮線路—長沙磁浮線已經(jīng)成功試車。相信在不久的將來,我國一定會(huì)在這方面取得更大的成就。

    The Thermal Video Systems(China) was used to take photos of the flame at different pressure. A coated sample (dimension 150 mm×5 mm×5 mm) was placed vertically on an ignition rack, and the rack was fixed in a combustion chamber with a vitreous window. The chamber was filled with dynamic nitrogen atmosphere from bottom to top achieving a definite pressure, which ensured the flame transparency in the chamber. A nickel-chrome wire was used to ignite the propellant samples. In this way, the flame pictures were obtained.

    1.2.4Non-contact wavelet-based measurement of flame temperature distribution

    Thermographs make use of the infrared (IR) spectral band of the electromagnetic spectrum. IR involves four bands: near infrared (0.75-3 μm), middle infrared (3-6 μm), far infrared (6-15 μm) and extreme infrared (15-100 μm). Infrared video cameras are passive, i.e. emit no energy, but merely collect thermal radiation emitted from the flame zone. The IR camera used in this paper operates in the far infrared range. When infrared images of the flame were obtained, their source data were input into a software that can calculate and judge the temperature profiles of the flame by different RGB color value.

    2 Results and Discussion

    2.1 Metal particle shape and size

    Fig.1 shows SEM micrographs of five different metal particles related to different preparation routes. It is shown that Al, Ni, B are of spherical shapes, while Mg, Mg/Al are of irregular shape and larger particle size.

    Fig.1 SEM micrographs of the surfaces of different metal particles

    The particle size distribution is one of the important parameters for characterization of quality of metal powders. Tab.2 summarizes the particle size distribution of the metal particles obtained by laser granulometer and reports calculated average diameters. Obviously, the dimension of Al and B coincides with the average particle diameter, which means that all particles are almost monocrystalline. However, in case of Al/Mg alloy and Mg, the particle size is larger (d50>80 μm) and of wider distribution range, while the particle size of B is the smallest, being even at the submicron level (around 0.7 μm).

    Tab.2 Particle size distribution of the metals

    2.2 Flame structure

    Fig.2 Flame structure comparison for propellants at pressure of 1 MPa and 4 MPa

    Fig.2 shows a typical flame structure for the propellants at a pressure of 1 MPa and 4 MPa.p1indicates a low temperature zone, where there is an inert atmosphere instead of a fuel gas;p2shows a spray combustion zone of metal particles, where the flame temperature is extremely high;p3shows the burnout of the metal particles;p4presents incombustible components sprayed from the condensed phase;p5shows severe agglomeration of the metal particles with other components, andp6is the pressure sensor of the testing device. A thin dark zone exists above the burning surface, and a luminous reddish flame appears above the dark zone. For the CMDB, the luminous flame is blown away from the burning surface with a pressure of less than 1 MPa, and the luminous flame gradually approaches the burning surface as the pressure increases. With the incorporation of metal species, the burning process of the propellants becomes quite unstable, showing a wave-shaped flame zone, while the propellant containing nickel exhibits a stable one-dimensional luminous flame. It should be noted that the flame structure of the propellants containing Al and Ni shows nearly a disappearance of dark zones at the pressure of 4 MPa. Specifically, it was found that the flame region of Al-CMDB propellant approaches the liquid surface, leading to an increase in the concentration gradient of Al in the gas phase, which is beneficial for matching the increase of vaporization rate of Al at a higher pressure. On the other hand, the increase in the temperature of the burning surface can accelerate the vaporization rate of Al, which is responsible for accelerating the burning rate of the propellants. Thus far, the combustion behavior of Al at a micrometer scale has been well studied, and the results show large differences with regard to those of B and Mg metal particles, which demonstrate a detached flame structure at a lower pressure.

    Moreover, it is deduced from Fig.2 that different metal particles show considerable differences in both the combustion efficiency and flame structure. As for Al-CMDB and Mg/Al-CMDB propellants, the luminous flame is unstable and heterogeneous, and the distinctive metallic flame (Fig.2-p2) is embedded in the flame matrix zone where the burning rates are relatively higher. However, both B-CMDB and Mg-CMDB show a low combustion efficiency, which is attributed to the unburned metal agglomeration (Fig.2-p3) suspended in the flame zone. In addition, a smoke can be clearly observed in the flame photos of these two kinds of propellants. More details about the flame structure will be theoretically analyzed in the following passages.

    2.3 Flame temperature distributions

    Flame temperature distributions of solid propellants with and without reactive metals are shown in Fig.3 and Fig.4, respectively. “D” refers to the dark zone of the flame composed of a gaseous mixture of thermolysis products, and “F” denotes the uniform flame zone featuring stabilized combustion as well as a homogeneous temperature distribution. “B” in Fig.4 denotes inert gas bubbles in the flame zone where the temperature is extraordinary low, and “Fm” refers to the localized metallic flame. It was found that all the propellants show the combustion waves with multi-flame characteristics, and the unburnt binder layer can be observed in the surface reaction zones. As for the propellants containing Al, Mg and Mg/Al, the hot spots (Fig.2) starting from the ejected metal particles lead to much higher temperature of the flame zone compared with that of CMDB. It is worth noting that the ejected particles in the flame of Al-CMDB and Mg/Al-CMDB propellants show more straight tracks, which is attributed to a higher rate of the generation of gaseous products, leading to generation of a large amount of energy for the ejection of the metal particles. In fact, a large amount of data is available with regard to the combustion process of aluminum based propellants[11-13]. The melting point and boiling point of Al are 933 K and 2 600 K, respectively, while for the oxide, the melting and boiling points are 2 323 K and 3 273 K. In this case, with the increase of temperature, the Al melts first followed by the melting and coalescence of the oxides, which allows the diffusion of Al vapor into the gas phase of the flame, with consequence of the ignition of the metal particles. Consequently, Al particles burn in a gas phase reaction, and the flame front is at a detached distance of 1.5-4.0 times the droplet radius from the droplet surface. The hot oxide products dissociate outward, and Al2O3condenses and forms a smoke cloud that emits thermal radiation at a temperature of 3 036 K, which is shown in Fig.4.

    Fig.3 Temperature distribution for the flames of propellants containing nickel and boron

    Fig.4 Temperature distribution comparison between the flames of propellants containing different metals and a blank propellant at 4 MPa

    The flame temperature of the propellant containing magnesium reaches as high as 3 832 K. This is because the low melting point of magnesium leads to a sufficient release of the latent heat of metals. It should be noted that the propellants containing B and Ni exhibit a homogeneous distribution of the flame temperature, which is much lower than that of the propellants containing Al and Mg (Fig.3). Also, the flame propagation is steady and homogeneous due to the slow process of the energy release. In particular, the Ni-CMDB propellant represents a steady flame with a uniform temperature distribution in the burning process, which makes nickel a promising combustion stabilizer regardless of the slight decrease in the energy.

    As for B-CMDB and Ni-CMDB propellants, both B and Ni exhibit a slower oxidation process compared with Al, Mg and Mg/Al alloy, which is due to the difficulty in exploiting the energy potential of B and Ni. In fact, the oxide coating generated around the B particle would be liquefied at a very low temperature (723 K at 0.1 MPa), which can prevent the B particle from being attacked by the oxidizer, resulting in the ignition delay of the B particle[14]. In addition to the effect of the protective oxide coating, combustion of B and Ni is difficult to achieve due to their high vaporization temperature (4 139 K for B and 3 860 K for Ni at 0.1 MPa), which substantially hinders the vapor phase burning and restricts oxidation, which in turn slows down the heterogeneous surface reactions. During combustion, the condensation of products such as B2O3and NiO is thermodynamically prohibited, especially in the nozzle expansion where the temperature is below the boiling point of the oxide, which facilitates the dissociation of the products. In the presence of oxidizing species such as HCN, CH2O and H2O, originating from the thermolysis of the RDX and NC/NG binder[15], the products change in favor of gas phase species (HBO2, BN), resulting in a lower net energy release, though this may be offset to some extent by the formation of a much lower energy cyclic trimer of HBO2[14].

    3 Hypothetical Physical Model for Metal Particle Combustion

    In the hypothetical combustion model, the metal particles are assumed to be spherical, and coated with a negligibly thin oxide layer. The ignition and combustion modes for single micro-sized particles and agglomeration of nano-sized particles are shown in Fig.5.

    Mode A-a spherical metal particle; Mode B-an agglomeration of metals with less granularity in the modified double-base propellantFig.5 Schematic illustration of two combustion modes

    The combustion modes for a spherical metal particle and a metal agglomeration are shown in Fig.5. It was found that each mode consists of four steps, step 1: liquid RDX and binders enwrap the metal particle; step 2: metal particles absorb heat and start to melt; step 3: the temperature increases fast and the whole metal particle melts and the outer layer starts to vaporize and decompose; step 4: a part of the liquid RDX and binders mix with the liquid metal, and then a high temperature oxidation reaction starts between the metal particle and the oxidants produced by the thermolysis of the RDX and binders. Mode A presents a single spherical metal particle coated with the RDX powder and NC/NG components. An increase in temperature leads to the melting of the RDX and produces an NC/NG foam layer, which is beneficial for the uniform distribution of coatings, as well as the enhancement of the interfacial interaction between the coating layer and the metal particles (step 1). Then, the temperature of the metal particles increases greatly and an acute gas flow sprays into the flame zone as a result of the thermolysis of the liquid RDX and NC/NG (step 2); as the temperature reaches at the melting point of the metal, the metal begins to react with the gaseous oxidant (step 3). The temperature increases up to the boiling points of the metals like Mg, Al and Mg/Al, then the liquid metal particles begin to vaporize, the vaporized metal fuel then diffuses outward and reacts with the internal diffusing oxidizer gas such as CH2O, NO2, N2O and HCN in the diffusion flame (step 4). Mode B represents a similar process, where an agglomerate can be considered as a larger spheric metal particle.

    The oxidation of the metal particles shows a strong dependence on the outer oxide layer, which serves as a cap on the particle surface. The exposed liquid metal particle evaporates and is oxidized in a gaseous cloud around the particle, and the resultant oxides such as Al2O3, B2O3, NiO, MgO undergo a random diffusion to join the cap. The combustion mechanism is closely related to the oxidizer type and pressure, as the phase transition temperature varies a lot with respect to the chemical composition in the atmosphere and pressure. Moreover, the transport phenomenon through the condensed and gas phases further complicates the combustion mechanism. Due to the formation of high temperature condensed-phase products, radiation effects also play a crucial role in the energy conservation of burning particles. Moreover, compatibility of the metal and its products can also affect the combustion behavior and can lead to a disruption or break up of solid metal.

    Hence, the combustion mechanism of a particle is strongly dependent on ambient temperature. When the temperature is higher than the vaporization temperature of the metal, the particle burns through a vapor phase mechanism, although a detached flame cannot be observed because of the fast transport rates in the surrounding environment. When temperature is higher than the melting temperature of the oxide, but lower than the vaporization temperature of the metal, then the oxide can form a cap on the surface due to the surface tension difference between the molten oxide and the metal, which leads to a heterogeneous oxidation at the molten metal surface. At still lower environmental temperatures, the transport of metal and oxygen through the solid oxide shell with a subsequent reaction will dominate.

    4 Conclusions

    The characteristics of metal particles, combustion properties and burning models under different experimental conditions have been studied and discussed in detail. The conclusions could be made as follows.

    ①Observations of the propellant burning process with Ni and Mg show a nearly uniform bright region immediately above the propellant surface, in contrast to large agglomerates of B and Al that leave the surface as discrete isolated particles burning individually at some distance from the surface.

    ②Mg, Al and Mg/Al are excellent energetic components because of their large heat of combustion on either a mass or volume basis. In combustion of Mg, Al, and Mg/Al in propellants, there are both gas phase reactions and surface oxidation resulting in volatile and non volatile products which include oxide and suboxide species. However, for metalloid B and transition metal Ni, there are only gas phase reactions due to a higher melting point.

    ③Combustion of metal particles may cause a condensation of the oxide vapor at the particle surface, releasing the condensation heat that can be directly used by the metal particles for gasification. Spherical metals with higher activity (such as Al and Mg) could burn in an oxidizing environment with an infinitely fast surface reaction.

    [1] Yetter R A, Risha G A, Son S F. Metal particle combustion and nanotechnology[J]. Proceedings of the Combustion Institute, 2009, 32(2):1819-1838.

    [2] Dreizin E L. Phase changes in metal combustion[J]. Progress in Energy & Combustion Science, 2000, 26(1):57-78.

    [3] Shoshin Y L, Mudryy R S, Dreizin E L. Preparation and characterization of energetic Al-Mg mechanical alloy powders[J]. Combustion & Flame, 2002, 128(3):259-269.

    [4] Dreizin E L, Hoffmann V K. Constant pressure combustion of aerosol of coarse magnesium particles in microgravity[J]. Combustion & Flame, 1999, 118(1-2):262-280.

    [5] Chen Y, Guildenbecher D R, Hoffmeister K N G, et al. Study of aluminum particle combustion in solid propellant plumes using digital in-line holography and imaging pyrometry[J]. Combustion & Flame, 2017(182):225-237.

    [6] Poryazov V A, Krainov A Y. Combustion of the solid propellant with addition of aluminum powder under an acceleration load[J]. Tomsk State University, 2017(45):95-103.

    [7] Liu T K, Luh S P, Perng H C. Effect of boron particle surface coating on combustion of solid propellants for ducted rockets[J]. Propellants Explosives Pyrotechnics, 1991, 16(4):156-166.

    [8] Korotkikh A G, Glotov O G, Arkhipov V A, et al. Effect of iron and boron ultrafine powders on combustion of aluminized solid propellants[J]. Combustion & Flame, 2017(178):195-204.

    [9] Liang M A, Chen J B, Zheng W, et al. Effects of nickel powder on the combustion performance of RDX-CMDB propellant[J]. Initiators & Pyrotechnics, 2015(4):47-49.

    [10] Jiang Z, Shu-Fen L I, Kai L I, et al. Research on the ignition and combustion properties of composite propellant containing nano metal powders[J]. Journal of Solid Rocket Technology, 2004, 27(2):117-120.

    [11] Fedorov A V, Kharlamova Y V. Ignition of an aluminum particle[J]. Combustion, Explosion, and Shock Waves, 2003, 39(5):544-547.

    [12] Dreizin E L. On the mechanism of asymmetric aluminum particle combustion[J]. Combustion & Flame, 1999, 117(4):841-850.

    [13] Dreizin E L. Experimental study of aluminum particle flame evolution in normal and micro-gravity[J]. Combustion & Flame, 1999, 116(3):323-333.

    [14] Dreizin E L, Keil D G, Felder W, et al. Phase changes in boron ignition and combustion[J]. Combustion & Flame, 1999, 119(3):272-290.

    [15] Yan Q L, Li X J, Wang Y, et al. Combustion mechanism of double-base propellant containing nitrogen heterocyclic nitroamines (I): The effect of heat and mass transfer to the burning characteristics[J]. Combustion & Flame, 2009, 156(3):633-641.

    猜你喜歡
    磁懸浮列車低能耗電磁力
    低能耗建筑和綠色,節(jié)能建材會(huì)再上層樓
    貼地飛行器——磁懸浮列車
    對真空及電磁波傳播機(jī)理的重新認(rèn)識
    電子測試(2021年23期)2022-01-22 09:23:56
    風(fēng)馳電掣
    ——磁懸浮列車穩(wěn)步發(fā)展
    工程(2021年7期)2021-12-30 06:55:22
    某型異步感應(yīng)電機(jī)電磁力計(jì)算及分析
    低能耗城市污水處理工藝分析
    被動(dòng)式低能耗建造技術(shù)探析
    江西建材(2018年2期)2018-04-14 08:00:21
    時(shí)速600千米磁懸浮列車真的來啦!
    八鋼燒結(jié)低能耗低排放低成本運(yùn)營實(shí)踐
    新疆鋼鐵(2016年3期)2016-02-28 19:18:52
    被動(dòng)電磁裝甲對金屬射流箍縮電磁力的計(jì)算及驗(yàn)證
    俺也久久电影网| 18禁在线无遮挡免费观看视频 | 黄色日韩在线| av在线观看视频网站免费| 久久精品国产清高在天天线| 一级毛片我不卡| 亚洲av不卡在线观看| 日韩欧美在线乱码| 免费在线观看影片大全网站| 国产成人福利小说| 亚洲人与动物交配视频| 午夜免费男女啪啪视频观看 | 最新在线观看一区二区三区| 国产精品人妻久久久久久| 国产精品综合久久久久久久免费| 成年女人看的毛片在线观看| 丰满人妻一区二区三区视频av| 少妇裸体淫交视频免费看高清| 国产黄色视频一区二区在线观看 | 狂野欧美白嫩少妇大欣赏| 亚洲人成网站高清观看| 国产免费一级a男人的天堂| 久久久久久久久大av| 少妇猛男粗大的猛烈进出视频 | 亚洲色图av天堂| 2021天堂中文幕一二区在线观| 哪里可以看免费的av片| 老司机影院成人| 日本一本二区三区精品| 免费观看在线日韩| 九色成人免费人妻av| 日韩亚洲欧美综合| 啦啦啦韩国在线观看视频| 亚洲第一区二区三区不卡| 久久精品国产清高在天天线| 精品一区二区三区视频在线| 欧美最黄视频在线播放免费| 亚洲av中文av极速乱| 97在线视频观看| 国产淫片久久久久久久久| 国产在线精品亚洲第一网站| 国内少妇人妻偷人精品xxx网站| 国产成年人精品一区二区| 日韩高清综合在线| 成人美女网站在线观看视频| 大型黄色视频在线免费观看| 日韩欧美免费精品| 亚洲久久久久久中文字幕| 国产毛片a区久久久久| 美女免费视频网站| а√天堂www在线а√下载| 亚洲色图av天堂| 天天躁夜夜躁狠狠久久av| 亚洲熟妇熟女久久| a级毛色黄片| 国产午夜精品论理片| 99国产极品粉嫩在线观看| 久久久久久久午夜电影| 少妇人妻精品综合一区二区 | 亚洲三级黄色毛片| 此物有八面人人有两片| 嫩草影院精品99| 少妇熟女欧美另类| 亚洲国产精品合色在线| 日韩欧美三级三区| 乱系列少妇在线播放| av专区在线播放| 国内少妇人妻偷人精品xxx网站| 久久久久久国产a免费观看| 熟女人妻精品中文字幕| 亚洲,欧美,日韩| 亚洲激情五月婷婷啪啪| 听说在线观看完整版免费高清| 99热这里只有是精品在线观看| 亚洲性久久影院| 日韩欧美精品v在线| 校园人妻丝袜中文字幕| 国产乱人偷精品视频| 九九在线视频观看精品| АⅤ资源中文在线天堂| 色视频www国产| 欧美人与善性xxx| 少妇人妻一区二区三区视频| 午夜老司机福利剧场| 国产aⅴ精品一区二区三区波| 成年女人看的毛片在线观看| 国产精品日韩av在线免费观看| 国产精品美女特级片免费视频播放器| 国产精品99久久久久久久久| 国产蜜桃级精品一区二区三区| 一级毛片我不卡| 成人美女网站在线观看视频| 日本与韩国留学比较| 欧美日韩乱码在线| 成熟少妇高潮喷水视频| 你懂的网址亚洲精品在线观看 | 久久久成人免费电影| 高清毛片免费观看视频网站| 亚洲人成网站在线观看播放| 午夜福利18| 一夜夜www| 精品午夜福利视频在线观看一区| 日本黄色视频三级网站网址| 少妇的逼好多水| 少妇人妻精品综合一区二区 | 成人特级黄色片久久久久久久| 免费不卡的大黄色大毛片视频在线观看 | 午夜福利视频1000在线观看| 亚洲中文日韩欧美视频| 午夜a级毛片| videossex国产| 久久久久久久亚洲中文字幕| 亚洲真实伦在线观看| 欧美日韩乱码在线| 亚洲人成网站高清观看| 亚洲美女黄片视频| 性插视频无遮挡在线免费观看| 国产大屁股一区二区在线视频| 国内精品美女久久久久久| 欧美一区二区国产精品久久精品| 特大巨黑吊av在线直播| 中文亚洲av片在线观看爽| 变态另类丝袜制服| 久久草成人影院| 变态另类成人亚洲欧美熟女| 哪里可以看免费的av片| 亚洲av电影不卡..在线观看| 你懂的网址亚洲精品在线观看 | 日本精品一区二区三区蜜桃| 亚洲av成人精品一区久久| 久久久久国产网址| 99久久中文字幕三级久久日本| 精品一区二区三区视频在线| 看免费成人av毛片| 天堂动漫精品| 女人被狂操c到高潮| 一个人看视频在线观看www免费| 黄片wwwwww| 一边摸一边抽搐一进一小说| 赤兔流量卡办理| 精品人妻视频免费看| 性插视频无遮挡在线免费观看| 亚洲在线自拍视频| 午夜影院日韩av| 久久韩国三级中文字幕| 真实男女啪啪啪动态图| 国产午夜精品久久久久久一区二区三区 | 国产精品久久久久久久久免| 国产午夜福利久久久久久| 国产精品爽爽va在线观看网站| 国产精品伦人一区二区| av福利片在线观看| 狂野欧美激情性xxxx在线观看| 成年女人毛片免费观看观看9| 婷婷精品国产亚洲av| 精品午夜福利在线看| 51国产日韩欧美| 国产精品99久久久久久久久| АⅤ资源中文在线天堂| 欧美高清性xxxxhd video| 精品熟女少妇av免费看| 国产黄色小视频在线观看| 国产大屁股一区二区在线视频| 91午夜精品亚洲一区二区三区| 日本成人三级电影网站| 老司机午夜福利在线观看视频| 两性午夜刺激爽爽歪歪视频在线观看| 黑人高潮一二区| 少妇人妻精品综合一区二区 | 色5月婷婷丁香| 国产高清激情床上av| 久久九九热精品免费| 亚洲欧美成人精品一区二区| 一进一出好大好爽视频| 欧美丝袜亚洲另类| 少妇熟女aⅴ在线视频| 精品乱码久久久久久99久播| 欧美中文日本在线观看视频| av在线蜜桃| 午夜亚洲福利在线播放| 免费人成在线观看视频色| 国产午夜精品久久久久久一区二区三区 | 99热全是精品| 白带黄色成豆腐渣| 综合色av麻豆| 日本一本二区三区精品| 少妇丰满av| 久久九九热精品免费| 国产伦在线观看视频一区| 久久久久久伊人网av| 中文字幕精品亚洲无线码一区| 白带黄色成豆腐渣| 俄罗斯特黄特色一大片| 久久人妻av系列| av在线观看视频网站免费| 久久天躁狠狠躁夜夜2o2o| 小蜜桃在线观看免费完整版高清| 色综合亚洲欧美另类图片| 51国产日韩欧美| 一个人看的www免费观看视频| 床上黄色一级片| 干丝袜人妻中文字幕| 在线观看免费视频日本深夜| 校园人妻丝袜中文字幕| 赤兔流量卡办理| 99久久精品热视频| 韩国av在线不卡| 日本成人三级电影网站| 国产精品女同一区二区软件| 欧美最黄视频在线播放免费| 久久久久久久久大av| 日本撒尿小便嘘嘘汇集6| 在线观看免费视频日本深夜| av视频在线观看入口| 大又大粗又爽又黄少妇毛片口| 少妇人妻一区二区三区视频| 欧美xxxx性猛交bbbb| 免费无遮挡裸体视频| 麻豆国产97在线/欧美| 啦啦啦啦在线视频资源| 国产高清视频在线播放一区| 久久久久九九精品影院| 国产精品99久久久久久久久| 丰满乱子伦码专区| 国产色爽女视频免费观看| 亚洲欧美日韩无卡精品| 久久精品夜色国产| 国产精品1区2区在线观看.| 噜噜噜噜噜久久久久久91| 中文在线观看免费www的网站| 精品一区二区三区视频在线| 精品福利观看| 国产精品精品国产色婷婷| 国产aⅴ精品一区二区三区波| 国产午夜精品久久久久久一区二区三区 | 国产 一区 欧美 日韩| 午夜影院日韩av| 国产精品嫩草影院av在线观看| 日日摸夜夜添夜夜添小说| 日韩精品有码人妻一区| 免费看日本二区| 91久久精品电影网| 国模一区二区三区四区视频| 伦理电影大哥的女人| 欧美性猛交黑人性爽| 国内久久婷婷六月综合欲色啪| 亚洲精品日韩在线中文字幕 | 真实男女啪啪啪动态图| 久久精品国产亚洲av香蕉五月| 久久精品国产亚洲网站| 欧美一区二区精品小视频在线| 少妇猛男粗大的猛烈进出视频 | 精品人妻视频免费看| 亚洲国产精品成人久久小说 | 久久精品久久久久久噜噜老黄 | 国产精品一区www在线观看| 欧美不卡视频在线免费观看| 校园人妻丝袜中文字幕| av在线亚洲专区| 日本精品一区二区三区蜜桃| 老女人水多毛片| 搡老岳熟女国产| 午夜爱爱视频在线播放| av在线蜜桃| 久久天躁狠狠躁夜夜2o2o| 欧美+日韩+精品| 天堂√8在线中文| 日本在线视频免费播放| 亚洲美女黄片视频| 亚洲欧美中文字幕日韩二区| 亚洲第一区二区三区不卡| 日韩av在线大香蕉| 国产精品乱码一区二三区的特点| 91久久精品国产一区二区三区| 真实男女啪啪啪动态图| 国产精品一及| 亚洲美女搞黄在线观看 | 亚洲国产精品国产精品| 成人国产麻豆网| 在线看三级毛片| av在线蜜桃| 一边摸一边抽搐一进一小说| 国产精品一区二区三区四区免费观看 | 亚洲久久久久久中文字幕| 日本五十路高清| 国产淫片久久久久久久久| 小说图片视频综合网站| 欧美成人一区二区免费高清观看| 成年版毛片免费区| 欧美在线一区亚洲| 免费看光身美女| 91久久精品国产一区二区三区| 精品久久久久久久久久免费视频| 菩萨蛮人人尽说江南好唐韦庄 | 免费人成视频x8x8入口观看| 人妻制服诱惑在线中文字幕| 亚洲av第一区精品v没综合| 午夜视频国产福利| 国产精品日韩av在线免费观看| 久久久久久久亚洲中文字幕| 免费不卡的大黄色大毛片视频在线观看 | 国产男靠女视频免费网站| 在现免费观看毛片| 亚洲成人av在线免费| 狠狠狠狠99中文字幕| 久久久久免费精品人妻一区二区| 中国国产av一级| 国产精品野战在线观看| 亚洲熟妇熟女久久| 欧美潮喷喷水| 精品久久国产蜜桃| 国产伦精品一区二区三区四那| 深夜精品福利| 日本三级黄在线观看| 美女免费视频网站| 晚上一个人看的免费电影| 久久欧美精品欧美久久欧美| 久久人人爽人人片av| 欧美一区二区精品小视频在线| 给我免费播放毛片高清在线观看| 亚洲电影在线观看av| 嫩草影院入口| 在线观看66精品国产| 日日干狠狠操夜夜爽| 欧美日韩国产亚洲二区| 欧美一区二区国产精品久久精品| 亚洲中文日韩欧美视频| 我要看日韩黄色一级片| av在线亚洲专区| 国产一区二区三区在线臀色熟女| 青春草视频在线免费观看| 久久精品国产清高在天天线| 久久人妻av系列| 亚洲av.av天堂| 别揉我奶头 嗯啊视频| 91av网一区二区| 麻豆av噜噜一区二区三区| 日韩精品青青久久久久久| 好男人在线观看高清免费视频| 夜夜看夜夜爽夜夜摸| 精品久久久久久久末码| 变态另类成人亚洲欧美熟女| 插阴视频在线观看视频| 你懂的网址亚洲精品在线观看 | av在线播放精品| 欧美+日韩+精品| 亚洲性夜色夜夜综合| 亚洲精华国产精华液的使用体验 | 97超级碰碰碰精品色视频在线观看| 久久热精品热| 午夜激情福利司机影院| 国产av在哪里看| 在线免费观看不下载黄p国产| 国产爱豆传媒在线观看| 秋霞在线观看毛片| 国产三级在线视频| 欧美丝袜亚洲另类| 国产 一区精品| 男人狂女人下面高潮的视频| 精品久久久久久久久亚洲| 91精品国产九色| 日本色播在线视频| 一卡2卡三卡四卡精品乱码亚洲| 精品久久久久久久久亚洲| 极品教师在线视频| 五月伊人婷婷丁香| 欧美极品一区二区三区四区| 一a级毛片在线观看| 欧美成人精品欧美一级黄| 色在线成人网| 特大巨黑吊av在线直播| 热99在线观看视频| 久久久久精品国产欧美久久久| 亚洲综合色惰| 国产成人a区在线观看| 亚洲精品色激情综合| 国产高清三级在线| 亚洲av免费在线观看| 国产精品一区二区免费欧美| 欧美精品国产亚洲| 天堂av国产一区二区熟女人妻| 久久久久久国产a免费观看| 精品久久久久久久人妻蜜臀av| 女生性感内裤真人,穿戴方法视频| 免费人成在线观看视频色| 国产成人福利小说| 精品久久久久久久人妻蜜臀av| 九九热线精品视视频播放| 中文字幕av在线有码专区| a级毛片a级免费在线| 国产亚洲精品av在线| 国产精品女同一区二区软件| 国产毛片a区久久久久| 男女视频在线观看网站免费| 欧美区成人在线视频| 美女cb高潮喷水在线观看| 国产极品精品免费视频能看的| 99久久精品国产国产毛片| 亚洲一区二区三区色噜噜| 亚洲国产色片| 久久久精品欧美日韩精品| 亚洲人成网站在线观看播放| 我要搜黄色片| h日本视频在线播放| 美女内射精品一级片tv| av.在线天堂| 毛片女人毛片| 91午夜精品亚洲一区二区三区| aaaaa片日本免费| 亚洲欧美日韩无卡精品| 日本三级黄在线观看| 久久中文看片网| 日本在线视频免费播放| 亚洲国产欧洲综合997久久,| 麻豆一二三区av精品| 激情 狠狠 欧美| 国产成人一区二区在线| 免费搜索国产男女视频| 亚洲人成网站在线播放欧美日韩| 麻豆国产av国片精品| 91午夜精品亚洲一区二区三区| 欧美色欧美亚洲另类二区| 男女啪啪激烈高潮av片| 欧美丝袜亚洲另类| 国产高清激情床上av| 老女人水多毛片| 亚洲内射少妇av| 97超碰精品成人国产| 欧美一区二区亚洲| 精品福利观看| 精品欧美国产一区二区三| 22中文网久久字幕| 欧美3d第一页| 男女做爰动态图高潮gif福利片| 国产综合懂色| 国产一区二区激情短视频| 亚洲欧美成人精品一区二区| 丝袜美腿在线中文| 亚洲第一区二区三区不卡| 可以在线观看的亚洲视频| av在线观看视频网站免费| 特大巨黑吊av在线直播| 亚洲成人久久性| 熟女人妻精品中文字幕| 少妇人妻一区二区三区视频| av黄色大香蕉| 国产精品日韩av在线免费观看| 欧美日韩国产亚洲二区| 久久天躁狠狠躁夜夜2o2o| 亚洲欧美精品自产自拍| 亚洲av免费高清在线观看| 天天躁夜夜躁狠狠久久av| 干丝袜人妻中文字幕| 国产伦精品一区二区三区视频9| 真实男女啪啪啪动态图| 亚洲最大成人av| 国产探花极品一区二区| 日韩高清综合在线| 男女啪啪激烈高潮av片| 精品日产1卡2卡| 久久中文看片网| 看片在线看免费视频| 搡老妇女老女人老熟妇| 欧美日韩综合久久久久久| av女优亚洲男人天堂| 免费看a级黄色片| 人妻久久中文字幕网| 99久久中文字幕三级久久日本| 99久久精品一区二区三区| 99九九线精品视频在线观看视频| av福利片在线观看| 能在线免费观看的黄片| 深夜a级毛片| 精品人妻一区二区三区麻豆 | 十八禁国产超污无遮挡网站| 国产一区二区三区在线臀色熟女| h日本视频在线播放| 亚洲欧美日韩高清专用| 欧美日韩在线观看h| av黄色大香蕉| 国产高清视频在线观看网站| 国产精品亚洲美女久久久| 午夜福利在线观看吧| 国产精品综合久久久久久久免费| 极品教师在线视频| 五月玫瑰六月丁香| 中文资源天堂在线| 六月丁香七月| 国内少妇人妻偷人精品xxx网站| 国产单亲对白刺激| 亚洲av免费在线观看| 97超碰精品成人国产| 一个人观看的视频www高清免费观看| 精品熟女少妇av免费看| 美女高潮的动态| 免费av毛片视频| 大又大粗又爽又黄少妇毛片口| 久久久精品94久久精品| 精品福利观看| 精品一区二区三区视频在线| 99国产极品粉嫩在线观看| 男人狂女人下面高潮的视频| 高清日韩中文字幕在线| 欧美日本视频| 在线观看午夜福利视频| 亚洲激情五月婷婷啪啪| 久久精品国产亚洲av天美| 精品久久久久久久久av| 久久鲁丝午夜福利片| 一本一本综合久久| 美女大奶头视频| 观看免费一级毛片| 俄罗斯特黄特色一大片| 全区人妻精品视频| 美女高潮的动态| 国产精品国产三级国产av玫瑰| 中文字幕av在线有码专区| 毛片一级片免费看久久久久| 日本免费一区二区三区高清不卡| 亚洲av电影不卡..在线观看| 国产成人福利小说| 99久久九九国产精品国产免费| 亚洲国产色片| 在线观看一区二区三区| 国产精品野战在线观看| 久久韩国三级中文字幕| 男女啪啪激烈高潮av片| 直男gayav资源| 亚洲国产欧美人成| 看十八女毛片水多多多| 久99久视频精品免费| 欧美日韩精品成人综合77777| 久久久精品大字幕| 最近中文字幕高清免费大全6| 亚洲一区二区三区色噜噜| 蜜桃亚洲精品一区二区三区| 亚州av有码| 久久精品国产亚洲av涩爱 | 大又大粗又爽又黄少妇毛片口| 嫩草影院新地址| 精品一区二区三区视频在线观看免费| 亚洲一区高清亚洲精品| 97超视频在线观看视频| 成人永久免费在线观看视频| 亚洲最大成人手机在线| 亚洲精品日韩av片在线观看| 大又大粗又爽又黄少妇毛片口| 亚洲欧美日韩卡通动漫| 人妻夜夜爽99麻豆av| 亚洲av电影不卡..在线观看| 久久久久久久午夜电影| 亚洲成人av在线免费| 欧美色欧美亚洲另类二区| 国产精品免费一区二区三区在线| 内射极品少妇av片p| 午夜福利视频1000在线观看| 久久国产乱子免费精品| 99精品在免费线老司机午夜| 国产精品久久久久久av不卡| 婷婷精品国产亚洲av在线| 精品久久久久久久久久久久久| 嫩草影院精品99| 你懂的网址亚洲精品在线观看 | 日本撒尿小便嘘嘘汇集6| 国产精品久久久久久精品电影| 国产激情偷乱视频一区二区| 国产精品久久视频播放| 人人妻,人人澡人人爽秒播| 又爽又黄a免费视频| 免费看美女性在线毛片视频| 色哟哟哟哟哟哟| 精品久久久久久成人av| 噜噜噜噜噜久久久久久91| 亚洲国产高清在线一区二区三| 干丝袜人妻中文字幕| 免费高清视频大片| 网址你懂的国产日韩在线| 三级毛片av免费| 亚洲一级一片aⅴ在线观看| 亚洲,欧美,日韩| 亚洲国产精品成人久久小说 | 亚洲va在线va天堂va国产| 亚洲欧美日韩无卡精品| 成人欧美大片| 日韩欧美精品免费久久| av天堂在线播放| 最近最新中文字幕大全电影3| 搡老妇女老女人老熟妇| 久久热精品热| 国产综合懂色| av视频在线观看入口| 嫩草影视91久久| 中文在线观看免费www的网站| 搡老妇女老女人老熟妇| 国产乱人视频| 老师上课跳d突然被开到最大视频| 欧美一区二区亚洲| 12—13女人毛片做爰片一| 亚洲国产精品国产精品| 搡老妇女老女人老熟妇| 日韩一本色道免费dvd| 丝袜喷水一区| 亚洲欧美日韩卡通动漫| av天堂在线播放| 啦啦啦观看免费观看视频高清| 18禁在线无遮挡免费观看视频 | 最近最新中文字幕大全电影3| 一区二区三区四区激情视频 | 国产精品女同一区二区软件| 国产高潮美女av| 一本精品99久久精品77| 天美传媒精品一区二区| 精品人妻偷拍中文字幕| 国产综合懂色| 免费搜索国产男女视频|