• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Network Sorting Algorithm of Multi-Frequency Signal with Adaptive SNR

    2018-06-15 04:41:00XinyongYuYingGuoKunfengZhangLeiLiandHongguangLiInstituteofInformationandNavigationAirForceEngineeringUniversityXian70077ChinaScienceandTechnologyonInformationTransmissionandDisseminationinCommunicationNetworksLaboratory

    Xinyong Yu, Ying Guo, Kunfeng Zhang, Lei Li and Hongguang Li(.Institute of Information and Navigation, Air Force Engineering University, Xi’an 70077, China; 2.Science and Technology on Information Transmission and Dissemination in Communication Networks Laboratory, Shijiazhuang 05008, China)

    Frequency-hopping (FH) communication has been widely used in military communication because of its characteristics of good security, strong anti-interference ability, low probability of interception and strong networking capability. Determining a technique to realize the correct network sorting for multiple frequency hopping signals with different frequency hopping parameters without prior knowledge, is the core problem of frequency hopping signal reconnaissance and countermeasure[1-2].

    For the multiple frequency hopping signals network sorting, the traditional algorithm mainly considers the characteristic parameters of FH signals, such as the hop time, amplitude, direction of arrival and so on, but the accuracy is low and the complexity is high[3-7]. The blind source separation method is proposed in Refs. [8-10] to realize the signal sorting of broadband frequency hopping signal. The idea is novel, but this method is only applicable to the orthogonal frequency hopping signal, which is powerless to the frequency hopping signal of asynchronous network. Two independent component analysis methods are proposed in Refs. [11-12] to separate FH signals. But the performance of the algorithm is poor under the condition of low signal noise ratio (SNR) or signal power disparity, and it is only applicable to the over-determined condition. Yang proposed a maximum SNR blind source separation method in Ref.[13]. For asynchronous non-orthogonal FH signals, the separation accuracy is high and fast, but for synchronous orthogonal FH signals, the accuracy is greatly reduced. The algorithm lacks universal applicability. Then Sha proposed an improved subspace projection method to realize the network separation under undetermined conditions, but the SNR adaptive capacity is weak, where the minimum SNR is 10 dB.

    Based on the above issues, aiming at the multi-FH signal sorting under undetermined and low SNR condition, in accordance with the “two step” method, this paper put forward a SNR-adaptive sorting algorithm using the time-frequency (TF) sparsity of FH signal. The hybrid frequency hopping signal is transformed by the Gabor transform, and the model of network sorting is constructed. Secondly, the mixing matrix is estimated accurately by the TF ratio matrix of TF single source point, and then an improved subspace projection method is used for network sorting. In order to improve the performance of network sorting under low SNR condition, the adaptive SNR TF pivot threshold method is used to find the TF single source point, and the AP clustering method is used to cluster the column vectors of TF ratio matrix. Finally, the algorithm in Ref. [14] is used as the reference algorithm and the simulation results using the two algorithms are compared as well.

    1 Mathematical Model

    1.1 FH signal model

    Suppose that the hopping period of FH signal sn(t) isT, there areKhops within time of Δtin total.ωnkandφnkrepresent the carrier frequency and initial phase ofK-th hop respectively and the time of initial hop is Δt0n. Then sn(t) can be written as[15]

    (1)

    wheret′=t-(k-1)Tn-Δt0n,υnstands for the complex envelope of base band of signal sn(t), andrectis the unit rectangle pulse.

    Suppose thatNFH signals s(t)=[s0(t) …sN-1(t)]Timpinge instantaneously onto anM-element array and the elements in the array are isotropic. Regardless of the effects of channel inconsistency and mutual coupling, the system model can be formulated as

    x(t)=As(t)+v(t)

    (2)

    where x(t)=[x0(t) …xM-1(t)]Tis observation signal; A=[a0…aN-1]T?CM×Nis anm×ncomplex valued mixing matrix whose columns are full rank; and v(t)=[v0(t),…,vM-1(t)]Tis the white Gaussian noise signal with zero mean value and varianceδ2, and the signal is not correlated with it.

    In this paper, multi-FH signal sorting under undetermined condition refers to the situation that the number of FH signal is greater than the received elements i.e.N>M. Since the mixing matrix A is unknown, we need to estimate the mixing matrix firstly. Since Eq.(2) has infinite solutions, we need to use the method of blind separation to solve it.

    1.2 Multi-FH signal sorting model

    TF domain is chosen as the sparse domain because of the good sparsity of FH signal domain. Since the TF ratio matrix is used in the estimation of the mixing matrix, the TF transformation of the observation signal should be linear. The short-time Fourier transform (STFT) and the Gabor transform are both commonly used linear transformations. The Gabor transform is the optimal linear transform whose window is a Gaussian window, which is the function when the window of time domain reaches its minimum. The localization of TF can be achieved as long as the area reaches the lower bound of the uncertainty principle. So the Gabor transform is chosen as the TF transform of the system.

    Since the Gabor transform is a linear TF distribution, we can rewrite the model from Eq.(2) as

    X(t,f)=AS(t,f)+V(t,f)

    (3)

    where X(t,f)=[X0(t,f) …XM-1(t,f)]T, S(t,f)=[S0(t,f) …SN-1(t,f)]Tand V(t,f)=[V0(t,f) …VM-1(t)]Tare the Gabor transform of observation signal x(t), source signal s(t), and additive noise signal v(t) respectively. Eq. (3) represents the model of multi-FH signal sorting under undetermined condition in the TF domain.

    2 Estimation of the Mixing Matrix

    2.1 Adaptive SNR pivot threshold setting

    (4)

    whereεis a threshold of TF pivot point. It can be seen that if the thresholdεis too small, the corresponding TF points of noise will be misinterpreted as TF pivot points. On the other hand, if the thresholdεis too large, some TF support points will be filtered out. In Ref. [14], although the effect of noise is considered, the threshold is set as three times of the noise variance, i.e.ε=3σn, (σnis the noise variance). As a result, the threshold is set too low to filter the noise out which directly influences the effect of subsequent network sorting. In order to solve this problem, the SNR adaptive pivot threshold setting method is proposed. This method takes all the TF points in TF domain into consideration and uses an iterative algorithm to calculate the threshold value. Since the value of TF points varies with the SNR, the threshold has adaptive SNR characteristics.

    The main idea of the algorithm is to find the minimum and maximum frequency module valueW1andWkof all TF points and the initial thresholdε1firstly

    ε1=(W1+Wk)/2

    (5)

    Then divide the TF points into two parts TF1, TF2withε1as the TF pivot point threshold. Calculate the number of TF points and average frequency module values of the two regions as

    (6)

    whereWtfis the frequency module value ofx(t,f). A new threshold is calculated according to the average frequency module value of the two regions.

    εK=(Wtf1+Wtf2)/2

    (7)

    Finally, the threshold is updated using the iterative idea according to the above method. The final iteration is determined until the (K+1)-th result equals theK-th result (i.e.εK+1=εK).

    2.2 Mixing matrix estimation based on the TF ratio matrix

    X(t,f)=akSk(t,f)+V(t,f)

    (8)

    Despite the influence of noise, the TF ratio matrix of observation signals of each receiving array to them-th receiving array is expressed as

    (9)

    It is visible that all columns of the ratio matrix in Eq.(9) are identical, so if we obtain the TF single-source point set the mixed matrix A can be estimated by

    (10)

    Considering the noise, the columns of the ratio matrix in Eq.(9) are different from each other, but have significant clustering characteristics.

    The mixing matrix estimation algorithm is summarized as follows.

    Step1Calculate the Gabor transform of the mixed signals X(t,f) to get the network sorting model by Eq.(3).

    Step2Calculate the initial thresholdε1according to the TF point of mixed signals in TF domain by Eq.(5).

    Step3Calculate the average frequency module value of the two regions by Eq.(6), and get the new thresholdεKby Eq.(7).

    Step4Start threshold iteration, ifεK+1=εK, then stop the iteration to get the final thresholdεK, otherwise go to step 2.

    Step5Get all the TF pivot points by Eq. (4).

    Step6Get the TF ratio matrix W of TF pivoting domain by Eq.(9).

    Step7Calculate the similarity matrix S of column vector data of W, attraction degree and attribution degree.

    Step8Determine the cluster center according to the judging condition, and get the TF single source setΛ(1),…,Λ(N).

    Step9Calculate the estimated mixed matrix by Eq.(10).

    3 Network Sorting under Undetermined Condition

    The improved subspace-based algorithm is used to sort the network, when the number of true FH signal sources is less than the hypothetical sources. Considering the influence of noise, there are not only noise residuals, but also the FH source signal residuals at the time point when calculating the orthogonal projection of the mixed matrix. So the general subspace-based algorithm will lead to non-ideal sorting effect. To solve this problem, Sha[14]proposed an improved subspace-based algorithm for undetermined network sorting to relax sparsity constraints. The improved subspace-based algorithm introduces the comparative powers of sources to the conventional subspace-based algorithm. The comparative powers of the source is set as an index of the FH network sorting. By combining the mixing matrix and comparative powers, the new algorithm can deal with the case whereK≤Mat any TF point. The relative power of the FH signal source can be defined as

    (11)

    where ‖·‖2denotes the 2-norm andLkdenotes the number of vectors contained in the setΛnof time-frequency source.

    Suppose that the number of sources in each TF point isR, and the mixing matrix column vector of the corresponding FH source signal at the TF point (t′,f′) is AR=[an1…anR], so the FH signal network sorting model at the TF point can be expressed as

    X(t′,f′)=ARSR(t′,f′)+V(t′,f′)

    (12)

    where SR(t′,f′)=[Sn1(t′,f′),…,SnR(t′,f′)]. Let H presents the orthogonal project matrix onto noise subspace of ARwhen the number of source signals at TF point (t′,f′) is less than the number of receiving elements. H is expressed as

    (13)

    where I denotes the unit matrix. Taking the noise into account, ARis estimated as

    (14)

    The source signal S(t′,f′) can be calculated by Eq. (12) and Eq. (14) in the case of known ARso as to realize the network sorting. When the number of source signals on the TF point (t′,f′) is equal to the number of receiving array elements, a thresholdεassociated with the relative power deviation of the source signal is used to determine in which case the number of source signal is equal to the number of receiving array elements.

    SinceR=M′, we can rewrite the model from Eq.(12) as

    X(t′,f)=an1Sn1(t′,f′)+…+
    anMSnM+V(t′,f′)

    (15)

    Eq.(15) can be expressed in the form of relative power as

    X(t′,f′)=an1En1ejθn1+…+
    anMEnMejθnM+V(t′,f′)

    (16)

    whereaniEniejθnidenotes the relative power of the FH source signal Sni(t′,f′). The TF active sources at TF point (t′,f′)are estimated by

    (t′,f′)=A-1X(t′,f′)

    (17)

    The network sorting algorithm is summarized as follows.

    Step1Calculate the FH signal network sorting model at the TF point by Eq.(12).

    Step2LetR=M-1, calculate the orthogonal project matrix by Eq.(13).

    4 Simulation and Analysis

    Suppose that the number of received array elementsM=2, the spacing of the elements is 2.5 m, the receiver processing bandwidth is[20 MHz, 500 MHz], and the sampling frequency is 1 000 MHz. In order to meet the narrow-band assumption, the FH signal frequency is set asfRF=10 GHz. The signal parameters of five sources are summarized in Tab.1.

    Tab.1 Parameters of FH source

    4.1 TF distribution of observation signal

    Fig. 1 is the TF distribution of proposed algorithm and reference algorithm in the situations that source signals are S0,S1,S2respectively while SNR=5 dB. It can be seen from Fig. 1 that under the same SNR, the TF spectrum of the proposed algorithm has strong focusing capability and small noise interference which lays a good foundation for the subsequent TF ratio matrix calculation.

    Fig.1 Comparison between T-F images of observed signal

    4.2 Multi-FH signal network sorting

    Fig. 2 is the TF distribution of network sorting results of the source signals S0,S1,S2,S3at SNR=0 dB in the proposed algorithm and reference algorithm. It can be seen from Fig. 2 that compared with the reference algorithm the TF distribution of the FH source signal of proposed algorithm is not affected by the noise and cross-interference term, and the energy of signal spectrum is more concentrated. The proposed algorithm can obtain four FH networks from the mixed signals of the received array elements effectively.

    Fig.2 FH sorting result comparison

    In order to measure the performance of multi-FH signal network sorting, the signal-to-interference ratio (SIR) is taken as the criterion. The SIR is defined as

    (18)

    Fig. 3 displays how the SIR of the proposed algorithm and the reference algorithm changes with the increase of SNR from 0 dB to 35 dB using Monte-Carlo simulation, when the source signals are S0,S1,S2,S0,S1,S2,S3,S0,S1,S2,S3,S4and the array elements remain the same. The results show that our algorithm reaches its limit when SIR=10 dB while the reference algorithm reaches its limit when SIR=15 dB. The sorting performance of the reference algorithm processing source signalN=3 is better thanN=4, but when the number of frequency hopping source signals reaches 5, the sorting performance is greatly reduced, regardless of the SNR; The sorting performance of the proposed algorithm is almost the same whenN=3, 4, 5, and the SIR does not decrease with the increase of FH signal.

    Fig.3 Comparison of SIR

    5 Conclusion

    Under the environment of intensified electronic warfare, especially in wartime, frequency-hopping network density is high, and it is easy to encounter under-determined condition. Multi-FH signal network sorting under undetermined condition is of great significance. We have introduced undetermined blind separation algorithm based on sparse representation to sort the FH signals. The adaptive-SNR threshold setting method improves estimation performance under low SNR conditions. Simulations demonstrated that the new algorithm can separate the FH signals efficiently in low SNR conditions.

    [1] Fu Weihong, Wang Lu, Jia Kun, et al. Blind parameter estimation algorithm for frequency hopping signals based on STFT and SPWVD[J]. Journal of Huazhong University of Science and Technology, 2014(42): 59-63. (in Chinese)

    [2] Sha Z C, Liu Z M, Huang Z T. Online hop timing detection and frequency estimation of multiple FH signals[J]. Etri Journal, 2013,35(5): 748-757.

    [3] Zhang Dongwei, Guo Ying, Qi Zisen, et al. Joint estimation algorithm of direction of arrival and polarization for multiple frequency-hopping signals[J]. Journal of Electronics & Information Technology, 2015,37(7): 1695-1701. (in Chinese)

    [4] Zhang Dongwei, Guo Ying, Qi Zisen, et al. A joint estimation algorithm of multiple parameters for frequency hopping signals using spatial polarimetric time frequency distributions[J]. Journal of Xi’an Jiaotong University, 2015,49(8):17-23. (in Chinese)

    [5] Lin C H, Fang W H. Joint angle and delay estimation in frequency hopping system[J]. IEEE Transactions on Aerospace and Electronic Systems, 2013,49(2):1042-1056.

    [6] Fu W H, Hei Y Q, Li X H. UBSS and blind parameters estimation algorithms for synchronous orthogonal FH signals[J]. Journal of System Engineering and Electronics, 2014,25(6): 911-920.

    [7] Liu X Q, Nicholas D S, Swami A. Joint hop timing and frequency estimation for collision resolution in FH networks[J]. IEEE Transactions on Wireless Communications, 2005,4(6): 3063-3074.

    [8] Wong K T. Blind beamforming/geolocation for wideband-FFHs with unknown hop-sequences[J]. IEEE Transactions on Aerospace and Electronic Systems, 2001,37(1): 65-76.

    [9] Zhang Chaoyang, Cao Qianqian, Chen Wenzheng. Blind separation parameter estimation of multiple frequency-hopping signals[J]. Journal of Zhejiang University, 2005,39(4): 465-470. (in Chinese)

    [10] Comon P, Jutten C. Handbook of blind source separation: independent component analysis and application[M]. New York: Academic Press,2010.

    [11] Chen Chao, Gao Xianjun, Li Dexin. Overlapped frequency-hopping communication signals separation algorithm based on independent component analysis[J]. Journal of Jilin University, 2008,26(4): 347-353. (in Chinese)

    [12] Cardoso J F, Donoho D I. Equivariant adaptive source separation[J]. IEEE Trans Signal Processing, 1996,44(12): 3017-3030.

    [13] Yang Baoping, Chen Yongguang, Yang Luan, et al. A blind separating method for asynchronous nonorthogonal frequency hopping network[J]. High Power Laser and Particle Beams, 2015,27(10): 103251-1-103251-6. (in Chinese)

    [14] Sha S C, Huang Z T, Zhou Y Y, et al. Frequency-hopping signals sorting based on underdetermined blind source separation[J]. IET Communications, 2013,7(14): 1456-1464.

    [15] Fu K C, Chen Y F. Blind iterative maximum likelihood-based frequency and transition for frequency hopping systems[J]. IET Communications, 2013,7(9):883-892.

    午夜精品国产一区二区电影| 老鸭窝网址在线观看| 丰满饥渴人妻一区二区三| 国产成人免费无遮挡视频| 午夜免费鲁丝| 人人澡人人妻人| 亚洲色图综合在线观看| 午夜免费鲁丝| 激情视频va一区二区三区| 亚洲精品久久成人aⅴ小说| 亚洲熟妇熟女久久| 精品熟女少妇八av免费久了| 丰满迷人的少妇在线观看| 欧美乱码精品一区二区三区| 精品亚洲乱码少妇综合久久| 露出奶头的视频| 久久久国产成人免费| 国产高清videossex| a级毛片黄视频| 十八禁高潮呻吟视频| 国产精品久久久人人做人人爽| 国产免费现黄频在线看| 另类亚洲欧美激情| 天天影视国产精品| 国产真人三级小视频在线观看| 欧美在线黄色| 久久人妻福利社区极品人妻图片| 国产国语露脸激情在线看| 怎么达到女性高潮| 亚洲精品在线美女| 亚洲男人天堂网一区| 又大又爽又粗| 亚洲欧美日韩高清在线视频 | 欧美黑人精品巨大| 交换朋友夫妻互换小说| 夫妻午夜视频| 一级a爱视频在线免费观看| 99re在线观看精品视频| 一级,二级,三级黄色视频| 高清av免费在线| 日韩免费高清中文字幕av| 制服人妻中文乱码| 久久久国产精品麻豆| 老鸭窝网址在线观看| 婷婷丁香在线五月| 91九色精品人成在线观看| 国产欧美日韩一区二区三区在线| 男女无遮挡免费网站观看| 久久久国产精品麻豆| av福利片在线| 青青草视频在线视频观看| 亚洲欧美日韩另类电影网站| 精品国产一区二区三区四区第35| 啦啦啦 在线观看视频| 日本黄色日本黄色录像| 午夜福利,免费看| 久久久欧美国产精品| 日本黄色日本黄色录像| 女人久久www免费人成看片| 精品少妇黑人巨大在线播放| 亚洲中文av在线| 久久国产精品大桥未久av| 三级毛片av免费| 热re99久久国产66热| 成人特级黄色片久久久久久久 | 母亲3免费完整高清在线观看| 美女高潮到喷水免费观看| 1024视频免费在线观看| 少妇的丰满在线观看| 最新美女视频免费是黄的| 美国免费a级毛片| 五月天丁香电影| 亚洲精品中文字幕在线视频| 一进一出好大好爽视频| 国产深夜福利视频在线观看| kizo精华| 男女下面插进去视频免费观看| a级毛片在线看网站| 女人精品久久久久毛片| 亚洲精品av麻豆狂野| 亚洲精品一卡2卡三卡4卡5卡| 亚洲中文字幕日韩| 亚洲欧美色中文字幕在线| 国产又爽黄色视频| 久久久欧美国产精品| 五月开心婷婷网| 在线看a的网站| 欧美日韩一级在线毛片| 亚洲欧美一区二区三区久久| avwww免费| a级毛片在线看网站| 搡老乐熟女国产| 一区二区三区激情视频| 亚洲av日韩精品久久久久久密| 91国产中文字幕| 黄色怎么调成土黄色| 国产欧美日韩一区二区三区在线| 叶爱在线成人免费视频播放| 午夜成年电影在线免费观看| 不卡一级毛片| 精品国产一区二区三区久久久樱花| 热99re8久久精品国产| 国产免费视频播放在线视频| 国产一区有黄有色的免费视频| 中文字幕另类日韩欧美亚洲嫩草| 亚洲综合色网址| 九色亚洲精品在线播放| 人人妻人人爽人人添夜夜欢视频| 视频区图区小说| 色播在线永久视频| 久久精品国产亚洲av香蕉五月 | 18禁黄网站禁片午夜丰满| 国产aⅴ精品一区二区三区波| 丁香欧美五月| 一区二区日韩欧美中文字幕| 他把我摸到了高潮在线观看 | 天天操日日干夜夜撸| 久久午夜亚洲精品久久| 亚洲国产中文字幕在线视频| 国产精品久久久久成人av| 欧美在线黄色| 午夜精品久久久久久毛片777| 窝窝影院91人妻| 亚洲 国产 在线| 中文字幕另类日韩欧美亚洲嫩草| 国产精品久久电影中文字幕 | 久久久久久久大尺度免费视频| 十八禁网站免费在线| 一进一出抽搐动态| 欧美精品亚洲一区二区| 国产欧美亚洲国产| 国产亚洲欧美精品永久| 婷婷成人精品国产| 久久人妻熟女aⅴ| 国产成人av教育| 国产aⅴ精品一区二区三区波| 久热这里只有精品99| 国产亚洲精品第一综合不卡| 在线观看66精品国产| 精品少妇内射三级| av国产精品久久久久影院| 中文字幕精品免费在线观看视频| 两性午夜刺激爽爽歪歪视频在线观看 | 99re在线观看精品视频| 久久午夜亚洲精品久久| 亚洲自偷自拍图片 自拍| 日韩欧美一区二区三区在线观看 | 无人区码免费观看不卡 | 欧美精品人与动牲交sv欧美| 啦啦啦视频在线资源免费观看| 男人舔女人的私密视频| 亚洲精华国产精华精| 精品国产乱子伦一区二区三区| 成人av一区二区三区在线看| 国产免费福利视频在线观看| 午夜免费鲁丝| 天天影视国产精品| 最新的欧美精品一区二区| 国产精品电影一区二区三区 | 国产av精品麻豆| av网站在线播放免费| 久久久精品区二区三区| 18禁美女被吸乳视频| 国产97色在线日韩免费| 色综合欧美亚洲国产小说| 十八禁网站免费在线| 99re6热这里在线精品视频| 最新的欧美精品一区二区| 午夜激情久久久久久久| 成人永久免费在线观看视频 | 免费在线观看影片大全网站| 97在线人人人人妻| 久久中文看片网| 少妇裸体淫交视频免费看高清 | 午夜两性在线视频| 叶爱在线成人免费视频播放| 日本av手机在线免费观看| 色在线成人网| 久久香蕉激情| 久热爱精品视频在线9| 亚洲精品国产精品久久久不卡| 久久久精品国产亚洲av高清涩受| 777久久人妻少妇嫩草av网站| 午夜福利,免费看| 免费不卡黄色视频| 麻豆乱淫一区二区| 亚洲欧美一区二区三区黑人| 亚洲欧美日韩高清在线视频 | 黄网站色视频无遮挡免费观看| 亚洲成人国产一区在线观看| 精品欧美一区二区三区在线| 动漫黄色视频在线观看| 高清黄色对白视频在线免费看| 国产片内射在线| 在线亚洲精品国产二区图片欧美| 国产精品久久久久久人妻精品电影 | 自线自在国产av| 亚洲一码二码三码区别大吗| av国产精品久久久久影院| 搡老岳熟女国产| 久久性视频一级片| 免费日韩欧美在线观看| 99re6热这里在线精品视频| 18禁裸乳无遮挡动漫免费视频| 欧美精品啪啪一区二区三区| 91成年电影在线观看| 久久久精品94久久精品| 日本五十路高清| 男女边摸边吃奶| 91精品国产国语对白视频| 精品国产一区二区三区四区第35| 亚洲人成电影免费在线| 国产亚洲av高清不卡| 美女高潮到喷水免费观看| 欧美一级毛片孕妇| 成年版毛片免费区| 捣出白浆h1v1| 在线av久久热| 在线观看舔阴道视频| 精品一品国产午夜福利视频| 菩萨蛮人人尽说江南好唐韦庄| 亚洲色图av天堂| 黄色视频不卡| 男女高潮啪啪啪动态图| 日本五十路高清| 久久性视频一级片| 久久精品亚洲熟妇少妇任你| 国产成人精品在线电影| 脱女人内裤的视频| 久久av网站| 国产成人免费观看mmmm| 91字幕亚洲| 久久精品成人免费网站| 岛国在线观看网站| 欧美日韩亚洲综合一区二区三区_| 丰满人妻熟妇乱又伦精品不卡| 精品福利观看| 国产又色又爽无遮挡免费看| 午夜两性在线视频| 不卡一级毛片| 亚洲男人天堂网一区| 国产色视频综合| 天堂8中文在线网| 麻豆乱淫一区二区| a级片在线免费高清观看视频| 大型av网站在线播放| 中文字幕最新亚洲高清| 国产真人三级小视频在线观看| 国产av又大| 美女国产高潮福利片在线看| 成人免费观看视频高清| 91老司机精品| 国产欧美日韩一区二区三| 日韩大片免费观看网站| 亚洲 国产 在线| 桃红色精品国产亚洲av| 成年人午夜在线观看视频| 国产午夜精品久久久久久| √禁漫天堂资源中文www| 精品人妻1区二区| 国产av又大| av免费在线观看网站| 叶爱在线成人免费视频播放| 色播在线永久视频| 女性生殖器流出的白浆| 91麻豆av在线| 老熟妇乱子伦视频在线观看| 精品亚洲成a人片在线观看| a级毛片黄视频| 精品一区二区三卡| 中文字幕人妻丝袜制服| 亚洲国产av影院在线观看| 国产成人免费无遮挡视频| 久久久久久人人人人人| 日韩熟女老妇一区二区性免费视频| 欧美精品一区二区免费开放| 又黄又粗又硬又大视频| 午夜福利在线免费观看网站| 啦啦啦在线免费观看视频4| 欧美变态另类bdsm刘玥| 国产男女内射视频| 99re在线观看精品视频| 精品欧美一区二区三区在线| 日韩成人在线观看一区二区三区| 黄色片一级片一级黄色片| 精品国产超薄肉色丝袜足j| 天天操日日干夜夜撸| 美国免费a级毛片| 亚洲中文av在线| 亚洲情色 制服丝袜| 欧美黑人精品巨大| 国产精品久久电影中文字幕 | 亚洲精品中文字幕在线视频| 免费人妻精品一区二区三区视频| 欧美日韩精品网址| 天天操日日干夜夜撸| 一本久久精品| 精品国产乱码久久久久久男人| 黄色怎么调成土黄色| 国产精品久久久人人做人人爽| 十分钟在线观看高清视频www| 婷婷成人精品国产| 成人黄色视频免费在线看| 一二三四在线观看免费中文在| 精品国产乱码久久久久久男人| 怎么达到女性高潮| 精品少妇黑人巨大在线播放| 淫妇啪啪啪对白视频| 久久久精品免费免费高清| 精品欧美一区二区三区在线| 日本欧美视频一区| 可以免费在线观看a视频的电影网站| 亚洲国产成人一精品久久久| 亚洲熟女精品中文字幕| 欧美日韩黄片免| 最新的欧美精品一区二区| 9热在线视频观看99| 香蕉丝袜av| 色综合婷婷激情| 大香蕉久久网| 91大片在线观看| 国产深夜福利视频在线观看| 亚洲精品粉嫩美女一区| 欧美午夜高清在线| 99riav亚洲国产免费| 黑人猛操日本美女一级片| 国产亚洲av高清不卡| 女人久久www免费人成看片| 高清av免费在线| 国产视频一区二区在线看| 日本黄色日本黄色录像| 亚洲成a人片在线一区二区| av不卡在线播放| 久久久精品免费免费高清| 免费观看a级毛片全部| 欧美人与性动交α欧美软件| 国产伦理片在线播放av一区| 黑人欧美特级aaaaaa片| 一本一本久久a久久精品综合妖精| av片东京热男人的天堂| 韩国精品一区二区三区| aaaaa片日本免费| 日韩制服丝袜自拍偷拍| 老司机午夜十八禁免费视频| 女人高潮潮喷娇喘18禁视频| 国产成人欧美在线观看 | 十八禁人妻一区二区| 一边摸一边抽搐一进一出视频| 国产精品自产拍在线观看55亚洲 | 18禁观看日本| 18禁黄网站禁片午夜丰满| 纯流量卡能插随身wifi吗| tocl精华| 建设人人有责人人尽责人人享有的| 欧美精品人与动牲交sv欧美| 国产精品1区2区在线观看. | 国产成人影院久久av| 久热爱精品视频在线9| 国产精品 国内视频| 国产精品99久久99久久久不卡| 一夜夜www| 无限看片的www在线观看| 中文字幕另类日韩欧美亚洲嫩草| 搡老熟女国产l中国老女人| 大陆偷拍与自拍| netflix在线观看网站| 亚洲人成77777在线视频| 亚洲国产欧美网| 国产免费现黄频在线看| 国产亚洲精品一区二区www | 婷婷丁香在线五月| 欧美黑人精品巨大| 制服人妻中文乱码| 久久久久精品人妻al黑| 窝窝影院91人妻| av有码第一页| 在线观看舔阴道视频| 极品教师在线免费播放| 亚洲va日本ⅴa欧美va伊人久久| 国产精品av久久久久免费| 搡老熟女国产l中国老女人| 欧美日韩亚洲综合一区二区三区_| 国产成人精品久久二区二区免费| 在线天堂中文资源库| 国产亚洲欧美精品永久| 国产亚洲精品第一综合不卡| 亚洲综合色网址| 国产精品影院久久| 中文欧美无线码| 久久国产精品影院| 久久精品亚洲av国产电影网| 在线亚洲精品国产二区图片欧美| 女警被强在线播放| 十八禁高潮呻吟视频| 十分钟在线观看高清视频www| 精品人妻1区二区| 成人国产av品久久久| 精品国产一区二区久久| 色在线成人网| 欧美中文综合在线视频| 国产xxxxx性猛交| bbb黄色大片| 窝窝影院91人妻| 久久精品亚洲熟妇少妇任你| 一二三四社区在线视频社区8| 热99re8久久精品国产| 另类精品久久| 国内毛片毛片毛片毛片毛片| 国产成人精品久久二区二区免费| h视频一区二区三区| 一本—道久久a久久精品蜜桃钙片| 美国免费a级毛片| 国产欧美日韩精品亚洲av| 精品久久蜜臀av无| 不卡一级毛片| 亚洲av欧美aⅴ国产| 亚洲中文日韩欧美视频| 另类亚洲欧美激情| 国产熟女午夜一区二区三区| www日本在线高清视频| 欧美在线一区亚洲| 亚洲欧美日韩另类电影网站| 69精品国产乱码久久久| 国产野战对白在线观看| 欧美另类亚洲清纯唯美| 午夜福利,免费看| 国精品久久久久久国模美| 免费在线观看完整版高清| 精品国产乱码久久久久久小说| 最新的欧美精品一区二区| 人人澡人人妻人| 80岁老熟妇乱子伦牲交| 国产精品亚洲av一区麻豆| 男人舔女人的私密视频| 亚洲熟女精品中文字幕| 色老头精品视频在线观看| 老汉色av国产亚洲站长工具| 亚洲第一欧美日韩一区二区三区 | 亚洲精品中文字幕在线视频| 黑丝袜美女国产一区| 国产在线精品亚洲第一网站| 另类亚洲欧美激情| 看免费av毛片| 成在线人永久免费视频| 亚洲va日本ⅴa欧美va伊人久久| 高清黄色对白视频在线免费看| 国产精品国产高清国产av | 欧美中文综合在线视频| www.999成人在线观看| 大片免费播放器 马上看| 久久人妻熟女aⅴ| 变态另类成人亚洲欧美熟女 | av线在线观看网站| 久久精品国产99精品国产亚洲性色 | 日韩欧美免费精品| 久久国产精品影院| 在线观看免费午夜福利视频| 久久人人97超碰香蕉20202| 最新在线观看一区二区三区| 另类亚洲欧美激情| 日日爽夜夜爽网站| 51午夜福利影视在线观看| 九色亚洲精品在线播放| 中文字幕人妻熟女乱码| 一个人免费看片子| 亚洲精品国产一区二区精华液| 丝袜喷水一区| 成人国语在线视频| 国产无遮挡羞羞视频在线观看| 99久久人妻综合| 国产欧美日韩一区二区三| 精品久久蜜臀av无| 亚洲全国av大片| 精品一区二区三区四区五区乱码| 欧美日韩亚洲高清精品| 又大又爽又粗| 九色亚洲精品在线播放| a级毛片在线看网站| 老司机亚洲免费影院| 大香蕉久久网| 欧美日韩国产mv在线观看视频| 视频区欧美日本亚洲| 丰满少妇做爰视频| 99国产综合亚洲精品| 国产免费视频播放在线视频| 深夜精品福利| 9色porny在线观看| 国产一卡二卡三卡精品| 国产精品一区二区在线不卡| 国产av一区二区精品久久| 国产精品欧美亚洲77777| 一区二区日韩欧美中文字幕| 国产激情久久老熟女| h视频一区二区三区| 夫妻午夜视频| 国产精品久久久人人做人人爽| 亚洲综合色网址| 男女无遮挡免费网站观看| 人妻久久中文字幕网| 国产精品香港三级国产av潘金莲| 一本—道久久a久久精品蜜桃钙片| 91字幕亚洲| 亚洲国产av新网站| 人人妻,人人澡人人爽秒播| 老司机午夜十八禁免费视频| 国产男靠女视频免费网站| 桃花免费在线播放| 涩涩av久久男人的天堂| 国产成人免费观看mmmm| 丝袜喷水一区| 欧美一级毛片孕妇| 国产淫语在线视频| 黑人猛操日本美女一级片| av有码第一页| 日日摸夜夜添夜夜添小说| 国产欧美亚洲国产| 日日爽夜夜爽网站| 人人妻人人澡人人爽人人夜夜| 久久99热这里只频精品6学生| 美女高潮喷水抽搐中文字幕| 国产一区二区 视频在线| 99re6热这里在线精品视频| av一本久久久久| 久久久精品免费免费高清| 黄色丝袜av网址大全| 亚洲精品一卡2卡三卡4卡5卡| 高清黄色对白视频在线免费看| 欧美性长视频在线观看| 狠狠狠狠99中文字幕| 曰老女人黄片| 久久精品成人免费网站| 国产亚洲一区二区精品| 桃红色精品国产亚洲av| 妹子高潮喷水视频| 久久久国产成人免费| 91字幕亚洲| 亚洲成a人片在线一区二区| 久久国产精品男人的天堂亚洲| 国产人伦9x9x在线观看| 久久中文字幕人妻熟女| 久久久久久免费高清国产稀缺| 久久这里只有精品19| 久热这里只有精品99| 少妇猛男粗大的猛烈进出视频| 亚洲国产精品一区二区三区在线| 午夜两性在线视频| 18禁裸乳无遮挡动漫免费视频| 国产欧美日韩一区二区三| 丰满少妇做爰视频| 亚洲五月婷婷丁香| 国产日韩欧美在线精品| 国产av国产精品国产| 久久亚洲真实| 精品亚洲乱码少妇综合久久| 丰满迷人的少妇在线观看| 免费女性裸体啪啪无遮挡网站| 黄网站色视频无遮挡免费观看| 国产麻豆69| 欧美老熟妇乱子伦牲交| 夜夜骑夜夜射夜夜干| 91国产中文字幕| 搡老岳熟女国产| 啦啦啦在线免费观看视频4| 电影成人av| 午夜免费成人在线视频| 久久人人爽av亚洲精品天堂| 日本a在线网址| 国产精品亚洲一级av第二区| 成人手机av| 国产精品影院久久| 一本色道久久久久久精品综合| 男人舔女人的私密视频| 一本色道久久久久久精品综合| 波多野结衣av一区二区av| 国产成人欧美在线观看 | 一个人免费看片子| 国产单亲对白刺激| 亚洲第一av免费看| 多毛熟女@视频| 欧美黄色片欧美黄色片| 国产99久久九九免费精品| 亚洲人成77777在线视频| 免费日韩欧美在线观看| 亚洲精品自拍成人| 另类精品久久| 久久这里只有精品19| 午夜福利欧美成人| 91老司机精品| 亚洲黑人精品在线| 十八禁高潮呻吟视频| 色视频在线一区二区三区| 欧美在线一区亚洲| 人人妻,人人澡人人爽秒播| 精品一区二区三区av网在线观看 | 精品少妇内射三级| 亚洲五月婷婷丁香| 久久精品熟女亚洲av麻豆精品| 国产av国产精品国产| 一级,二级,三级黄色视频| 亚洲伊人色综图| 人人妻人人添人人爽欧美一区卜| 性色av乱码一区二区三区2| 狠狠精品人妻久久久久久综合| 法律面前人人平等表现在哪些方面| 国产午夜精品久久久久久| 国产视频一区二区在线看| 精品午夜福利视频在线观看一区 | 精品第一国产精品| 亚洲国产精品一区二区三区在线| 成人av一区二区三区在线看| 正在播放国产对白刺激| 亚洲国产精品一区二区三区在线| 女人被躁到高潮嗷嗷叫费观| 色尼玛亚洲综合影院| 国产伦人伦偷精品视频|