• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Nonlinear robust control of a quadrotor helicopter with finite time convergence

    2018-06-04 02:47:54GuozhouZHENGBinXIAN
    Control Theory and Technology 2018年2期

    Guozhou ZHENG,Bin XIAN

    School of Electrical and Information Engineering,Tianjin University,Tianjin 300072,China

    1 Introduction

    The navigation and control of unmanned aerial vehicles(UAVs),also known as drones,has become an important research area over the past decades[1,2].As a micro helicopter,the quadrotor UAV attracts great attention from military and civil applications due to its special advantages such as simple structure,vertical taking off and landing(VTOL),and rapid maneuvering.It has been widely used in a variety of situations including surveillance,fire flighting,environmental monitoring,etc.[3–5].Comparing to the flapping-wing aircraft and other configurations,quadrotor UAV is simple in mechanism,and its four identical rotors are the only moving parts onboard.The simplicity in mechanism is a trade-off with the dependency of sophisticated flight controller[6,7].However,the quadrotor is a highly nonlinear and time-varying system,and it has an unstable open-loop dynamics[8].Additionally,due to its small size and weight,the quadrotor is very sensitive to external aerodynamic disturbances such as wind gusts and ground effect.Therefore,the design of highperformance nonlinear control mechanisms for quadrotors in the presence of structural uncertainties and unknown external disturbances is still a challenging task.

    To guarantee a safe and steady flight against external disturbances,various control methods have been developed for quadrotors in recent years.In[9],the authors developed an H∞based attitude controller for the quadrotor’s attitude subsystem.In[10],the timevarying disturbance was treated as a new unknown state and estimated by an extended observer.Then,a sliding mode based feedback controller was employed for the attitude stabilization,and numerical simulation results were included.An integral sliding mode based robust controller is proposed for the control of a quadrotor in[11],though the proof of the stability and numerical simulation results were presented,the control gains were not very easy to be tuned.In[12],the authors developed a nonlinear robust attitude control algorithm for a quadrotor with uncertain dynamics by combing a PD controller with a robust compensator,and ultimately bounded attitude tracking result was proven.Based on these works in[12],the authors former extend the control strategy in[13],where both position and attitude controllers were developed,the tracking error were proven to be kept within a known neighborhood of the origin ultimately.A nonlinear robust adaptive was developed in[14]for a quadrotor with linear parameterized(LP)uncertain-ties and bounded disturbances,semiglobally asymptotic tracking of a time-varying position trajectory and yaw angle trajectory was proved via a Lyapunov-based stability analysis.In[15],authors designed an attitude controller by using exponential coordinatesto avoid singuarlities,and trajectory linearization method was employed to facilitate the control design procedure.

    Though a lot of controller have been developed for the control of quadrotors,most of them can not guarantee the convergence time for the quadrotor’s outputs.The super twisting algorithm,which is a second order continuous sliding mode control technique that ensures robustness in the presence of the smooth matched disturbance with bounded gradient,is implemented for attitude control of a quadrotor in[16]with known knowledge of the boundary of the disturbance gradient.

    Motivated by the control methodology presented in[17],we develop a new nonlinear robust controller for the quadrotor with the attitude angles and altitude position selected as the system’s outputs.An adaptive super-twisting algorithm is combined with backstepping method to formulate the controller.The proposed controller does not require the exact knowledge of the boundary of the disturbance or its gradient.By using the super-twisting algorithm,the control inputs to the quadrotor suffers little from the chattering phenomenon,and the adaptive laws ensure that the control gains will be easy to be tuned.Lyapunov based stability analysis is employed to show that the closed-loop operation is stable,and the tracking errors converges to an eighbor hood of the origin with finite convergence time.Moreover,to increase the measurement accuracy for the altitude channel where low-cost on board sensor were very sensitiveto noise,anonlinear complementary filter isdeveloped to fuse the raw data from the onboard accelerometer and barometer.The stability and convergence of the filter is also proven via Lyapunov based analysis.Realtime experimental results are implemented on a selfmade quadrotor helicopter testbed,the results show that the proposed control strategy has achieved good control performance for the quadrotor.

    Therefore,the contribution of the proposed design includes that:1)a nonlinear complementary filter is designed to provide accurate estimation for the quadrotor helicopter’saltitudebased on raw datafrom theonboard low cost sensors;2)the super-twisting based nonlinear controller can achieve finite time convergence of the attitude tracking error under the effects of unknown external disturbances without exact knowledge of the disturbances’upper bound;and 3)real-time flight experimental results have testified the good performance of the proposed methodology.

    This paper is organized as follows:The dynamics model of the quadrotor helicopter and control objective are described in Section 2.Section 3 presents the design of the nonlinear complementary filter design for the altitude channel.Section 4 provides details of the control development and stability analysis.Real-timeexperimental results are included in Section 5 to validate the controller’s performance.Finally,some conclusion remarks are included in Section 6.

    2 Dynamic model of the quadrotor

    The quadrotor UAV can be considered as a rigid body with 6 degree-of-freedom(DOF):three translational motions and three rotational motions As illustrated in Fig.1,two frames are utilized to represent the motion of the quadrotor.Let I={xI,yI,zI}denote the right-hand inertia reference frame,and B={xB,yB,zB}denote the right-hand body-fixed reference frame.The altitude of the UAV with respect to I is denoted by z(t)∈R,and Euler angle vector of the UAV with respect to I is denoted by η(t)=[φ(t) θ(t) ψ(t)]T∈ R3where φ(t),θ(t)and ψ(t)are the quadrotor’s roll angle,pitch angle,and yaw angle,respectively.The rotation matrix from B to I is presented as follows[18]:

    where c(·)is the abbreviation for cos(·),and s(·)is the abbreviation for sin(·).In Fig.1,fifor i=1,...,4,represents the independent thrust force generated by the four rotors of the quadrotor.

    Fig.1 Schematic of a quadrotor UAV.

    The attitude dynamics of the quadrotor considered in this paper can be modeled via the following differential equations[18]:

    where Ω(t)=[p(t)q(t)r(t)]Trepresents the angular velocity vector of the quadrotor with respect to B,τ(t)=[τφ(t) τθ(t) τψ(t)]T∈ R3denotes the control torque input vector,d(t)=[dφ(t)dθ(t)dψ(t)]T∈ R3is the unknown external disturbance moment vector.In(2),J=diag{[JφJ(rèn)θJψ]}∈ R3×3denotes the inertia matrix with Jφ,Jθ,and Jψbeing some positive constants,the matrix Φ(η)∈ R3×3represents the rotational velocity transfer matrix from B to I which has the following form[4]

    The following assumption will be employed in the subsequent control development.

    Assumption 1The disturbance term d and its time derivative˙d are bounded such thatwhere δ1and δ2are some unknown positive constants.

    The dynamic model for the altitude channel of the quadrotor is shown as follows[18]:

    where m∈R represents the mass of the quadrotor,ut∈R is the total thrust in the z-direction,g is the acceleration of gravity,and dt(t)∈R denotes the unknown external disturbance force in the z-direction.The following assumption will be utilized in the subsequent control development.

    Assumption 2The disturbance item dtand its time derivativeare bounded such thatδz2where δz1and δz2are some unknown positive constants.

    Assumption 3Therollangleφ(t)and the pitch angle θ(t)satisfy the following inequalities:

    This assumption has also been employed in[13].

    The relationship between the control inputs[τφτθτψut]Tand the rotor thrusts force[f1f2f3f]Tis given by

    where lfis the distance from each rotor to the center of the quadrotor,and pfis the force-to-moment scaling factor.

    The main control objective is to design control inputs(τ,ut)to drive the quadrotor’soutputs(η(t),z(t))to track some pre-defined reference trajectory(ηd(t),zd(t)).

    3 Nonlinear complementary filter for the altitude measurement

    In this paper,two low cost and light weight onboard sensors are employed to provide altitude measurements for the quadrotor,the first one is the barometer,and the other one is the accelerometer.The onboard barometer can provide a rough relative altitude measurement with an accuracy of about±0.5m which is not good enough for accurate hovering control of the quadrotor,and the onboard accelerometer returns an acceleration measurement in the altitude direction which is characterized with high noise levels and biases.A nonlinear complementary filter is introduced to deal with the misalignment of the accelerometer axes and factitious placement failure as well as some other nonlinearities,thus good altitude estimation can be obtained via the raw outputs from the barometer and the accelerometer.

    To implement the nonlinear altitude fusion algorithm,an altitude measurement dynamics model with consideration of the proposed nonlinearities is introduced as follows:

    where z(t)is defined in(4)and denotes the real altitude value of the quadrotor,P ∈ R3×3denote a matrix relevant to the misalignment of the sensor axes and measuring sensitivity differences among each axis,3denotes the transpose of the third column of the rotation matrix R defined in(1),Q∈R3denote the bias vector,and Am∈R3denotes the outputs from the accelerometer.

    Remark 1In an ideal circumstance where the accelerometer’s outputs reflect the real acceleration value of the quadrotor,P will equal to an identity matrix I3,and Q will be a zero vector.

    Assumption 4The matrix P and Q in(7)are unknown constant terms such thatAnd the altitude channel is assumed to be measurable for low frequency such that zm(t)≈z(t)where zm(t)denotes a reconstructed altitude measurement[22].

    Let the auxiliary estimation errors em(t),σm(t)∈ R be defined as follows:

    whereis the output of the following nonlinear complementary filter,and λzis a positive constant.The nonlinear complementary filter for the altitude channel is designed as follows:

    where αzis a positive constant,?v(t)denotes the estimation for the vertical speed.The adaptive laws ofand ?Q(t)are designed as

    Let the auxiliary error signals ez(t)∈ R,σz∈ R,,andbe defined as follows:

    Taking Assumption 2 into account,(9)and(10)can be rewritten as

    and

    Theorem 1The proposed filter in(9)and(10)ensures an accurate estimation for the altitude and vertical speed such that

    ProofAfter taking the time derivative of(12)and substituting(13)into the result,the following dynamics forcan be obtained

    Let the Lyapunov function candidate Vez(t)∈R be defined as

    By taking the time derivative of Vez(t)and substituting(8),(11)and(14)into the result,it can be obtained that

    considering that P,Amand Y in(15)can be denoted by,and Am={aj}3×1.By substituting(13)into(16),it can be obtained that

    From(17)and(15),it is not difficult to show that σz(t)converges to zero asymptotically.Recalling thatwith λzbeing a positive constant,then it can be shown that.Thus,it can be shown thatvia(11).Finally,since ez(t)→ 0 as t→ 0,we know thatbased on the first entry of(12).□

    4 Control development

    This section presents the control design procedure for attitude angles and altitude position of the quadrotor under modeling uncertainties and unknown external disturbances.

    4.1 Design of the attitude controller

    A modified backstepping method is combined with the adaptive super-twisting algorithm to formulate the proposed control strategy.Before presenting the control laws,we introduce the following error signals:

    where ηd(t) ∈ R3denotes the desired attitude trajectory vector.The stabilization of e1can be obtained by introducing a virtual control input for e2as follows:

    where K=diag{ki}∈ R3×3with ki> 0,i= φ,θ,ψrepresent a gain matrix.By defining σ =e2d?e2,the time derivative of(18)can be obtained as

    It is worth noting that if σ=0,then e1converges asymptotically to zero.Our control objective is to force σ to stay in a bounded domain,and,therefore,e1is also bounded in a domain.

    The attitude controller is designed as follows:

    where α and β denote some diagonal positive-definite adaptive gain matrixes such that α =diag{αi}and β =diag{βi}for(i= φ,θ,ψ),sgn(·)denotes the standard signum function.The gains αiand βihave the following adaptive laws

    where εi, γi1, μiand piare some positive constants.The parameter αimrepresents an arbitrary small positive constant which is used as the switching threshold value.In(21),the auxiliary function vectors Π ∈ R3×1and H ∈ R3×1are defined as follows:

    where the defined function K(x)=0 for x≥0 and K(x)=x for x<0,e1idenotes the i th element of e1and Φi(η)represents the i th row of Φ(η).

    The main stability result of the adaptive attitude controller proposed in(21)is stated by the following theorem.

    Theorem 2The proposed attitude controller in(21)can drive e1(t)and its time derivativeto the domain W in finite time where W is defined as

    with ζ1and ζ2being some positive constants.

    ProofBy substituting from(21)and defining ω=ν +J?1d={ωi}3×1,the closed-loop system dynamics(20)can be rewritten as follows:

    To facilitate Lyapunov based stability analysis,we will present the dynamics listed in(27)into a state-space form.To this end,the following state vector is introduced

    where σiand ωidenote the i th element of σ and ω,respectively.Taking the time derivative of xi,it can be obtained that

    where ρiis some bounded functions that 0 ≤ |ρi|≤ 2δ3.Substituting from(30),(29)can be rewritten in a vector matrix format

    where

    and

    Note that ifthen(for i= φ,θ,ψ),since Φi(η)is bounded(due to Assumption 3),thenIn view of(27),the convergence of e1iis guaranteed as well.Thus,the Lyapunov’s direct method is employed for the convergence of xi.After that,the stability analysis for e1iis presented.The Lyapunov function candidate Viis defined as

    withbeing some positive constants.The nonnegative function Vioin(35)is defined aswhere

    is positive definite if λi> 0 and εiare real number.Substituting from(31),the time derivative of Viocan be obtained as

    By substituting from(25),(33),(36),in(37)can be rewritten as

    where

    with

    Substituting from(23),The matrix Qiwill be positive definite with a minimal eigenvalue λmin(Qi)≥ εiif

    where(see proof in[17]).

    Taking the time derivative of Vi1and substituting from(27)yields

    By substituting from(35),(42),(43),can be rewritten as follows:

    The following two cases will be considered to obtained the result listed in Theorem 2.

    Case 1Suppose that|σi| > μiand αi(t) > αim,?t≥ 0.Then,in view of(22),we have

    Selectingand differentiating(23),we obtain

    Substituting from(24),Fiis computed such that Fi≤0.Substituting from(45),(46),the first two terms on the right hand side of(44)are can celled.Thus,it is easy to have χi≤ 0 and

    As soon as(41)is satisfied,σiconverges to the domain|σi| ≤ μiin finite time tFi(see Lemma 1 in the appendix).

    Case 2Suppose that|σi|< μi,then the control gain αi(t)is reducing in accordance with(22)such that

    Note the term Fiincluded in χibecomes?e1iΦi(η)σ,and in view of the structure of χiwhen substituting from(48),χibecomes sign indefinite as well as˙Viwhich comprises χi.

    Thus,the above two cases forensure that after a finite time tFi,σiwill always stay in a domain|σi|≤ ρiwith ρi> μi(See the discussion presented in[17]).

    In other words,σconvergesto the domain Wσin finite time tF=max{tFi}(for i= φ,θ,ψ)where

    with||·||∞denoting infinity norm,ρ being defined as ρ =max{ρi}(for i= φ,θ,ψ).

    Notice that Φ(η)={?i}3×3is bounded due to Assumption 3 such that|?i|≤ ξ,ξ > 0,we have the second term on the right side of(27)bounded such that|Φi(η)σ|≤ 3ξρ.Then,according to(27),we can conclude that e1iconverges to the domain|e1i|≤ 6ξρ/kias well as its time derivativeto the domainin finite time tHi(see Lemma 2 in the appendix).In other words,the finite time convergence of e1and its time derivativeto the domain W is guaranteed where

    where ζ1=6ξρ/k,k=min{ki}for i= φ,θ,ψ,and ζ2=9ξρ.

    4.2 Design of the altitude controller

    To facilitate the control objective for the altitude channel of the quad rotor,the altitude tracking error signal ez(t)and its sliding mode manifold σz(t)are introduced as follows:

    where λ is a positive gain.

    By taking the time derivative of σz(t)and substituting(4)into the result,it can be obtained that

    whereSimilar as the control development for the attitude controller τ(t),the altitude controller is designed as follows:

    whereαzandβzare the adaptive gains with the following updating laws:

    with εz,γz1,μzand pzbeing some positive constants.The parameter αzmdenotes an arbitrary small positive constant which is employed as the switching threshold value.

    The main stability result of the adaptive altitude controller proposed in(53)is stated by the following theorem.

    Theorem 3The proposed controller can drive ez(t)and its time derivativeto the domain Wzin finite time where Wzis defined as follows:

    with ζz1and ζz2being some positive constants.

    ProofThe proof of Theorem 3 can be completed by the following the similar steps for the proof of Theorem 2.

    5 Experimental results

    In this section,the proposed control strategy in Sections 3 and 4 is implemented on a self-built quadrotor helicopter flying testbed in an indoor environment to validate its performance as shown in Fig.2.The physical parameters of the quadrotor helicopter are listed in Table 1.The control loop runs at a frequency of 1kHz to ensure high performance of real-time response.

    The nonlinear complementary filter proposed in Section 3 provides the altitude estimation information for the closed-loop operation.Its reliability is validated by a comparison between the estimated value and true value as shown in Fig.3.A OptiTrack motion capture system is employed to provide ground truth values for the quadrotor helicopter during the flighting test,these ground truth information is used only for the purpose of comparison,but not utilized in the closed-loop control.In Fig.3,?z(t)and?v(t)represent the altitude estimation and vertical velocity estimation valuesobtained from the nonlinear complementary filter in(12),zr(t)and vr(t)represent the real altitude and vertical velocity values obtained from the motion capture system.From Fig.3,it can be seen that the maximum estimation error for the quadrotor’s altitude position is less than ±0.2m,and the maximum estimation error for the quadrotor’s vertical velocity is less than±0.18m/s.Considering about the fact that the accuracy for the direct altitude measurement from the onboard barometer is about±0.5m,the nonlinear complementary filter proposed in(12)has achieved a good accuracy for the altitude position and vertical velocity measurement.

    Fig.2 Quadrotor helicopter flight testbed.

    Table 1 Parameters for the quadrotor helicopter testbed.

    Fig.3 Comparision between the estimation values(z(t),v(t))and real values(z r(t),v r(t)).

    To validate the performance for the attitude and altitude controllers proposed in Section 4,a stabilization flight test is implemented on the quadrotor helicopter testbed.The control objective is to stabilize the quadrotor’s attitude angle(φ(t), θ(t), ψ(t))to be[φdθdψd]T=[0 0 0]T,and the quadrotor’s altitude z(t)to be some desired value as zd=1.94m.The quadrotor is first taken off manually to a proper position,and then the pilot flips the switcher on the RC controller to turn the quadrotor into automatic stabilizing control procedure,and the automatic control period lasts about 60 seconds.The control gains for attitude and altitude controllers are selected as follows for the best control performance:

    Fig.4 shows the actual attitude response and its desired value.It can be seen that maximum stabilization error for the roll channel is about±1.1°,the maximum stabilization error for the pitch channel is about±0.8°,the maximum stabilization error for the yaw channel is about±1.2°,thus the proposed control strategy has shown good attitude control performance.The stabilization performance for the altitude channel is shown in Fig.5 where?z(t)is used as the closed-loop response for the quadrotor’s altitude position.It can be seen that the maximum altitude stabilization error is about±0.12m,and the maximum vertical velocity stabilization error is less than±0.12m/s,thus the proposed control strategy has achieve good altitude control performance for the quadrotor.From both Fig.4 and Fig.5,it can be seen that the quadrotor’s outputs(φ(t),θ(t),ψ(t),z(t))converge to their desired values very quickly.The adaptive control gains(αφ,αθ,αψ,αz)designed in(22)and(54)are depicted in Fig.6,they are all bounded.The control inputs(τφ,τθ,τψ,ut)are illustrated in Fig.7,they all stay with some reasonable values.

    Fig.4 Actual attitude angles(φ(t),θ(t),ψ(t))and their desired values.

    Fig.5 Actural altitude?z(t),vertical velocity?v(t)and their desired value(z d,v d).

    Fig.6 Adaptive gains(αφ,αθ,αψ,αz).

    Fig.7 Control inputs(τφ,τθ,τψ,u t).

    6 Conclusions

    This paper considers the control problem for a quadrotor helicopter which is subjected to modeling uncertainties and unknown non vanishing external disturbances.The quadrotor’s roll angle,pitch angle,yaw angle,and altitude are selected as the system’s outputs.To improve the measurement accuracy for the altitude channel,a nonlinear complementary is developed and its convergence is proven.Based on the adaptive supert wisting scheme,a nonlinear adaptive controller for the quadrotor is developed and its finite time convergence is proven via the Lyapunov-based stability analysis.Realtime flight experimental results are presented to validate the performance of the proposed control strategy.Future work will focus on developing position controller together with the attitude controller for the quadrotor helicopter to achieve finite time convergence of the position tracking error under effects of parametric uncertainties and external disturbances.

    [1]Y.Du,J.Fang,C.Miao.Frequency domain system identification of an unmanned helicopter based on adaptive genetic algorithm.IEEE Transactions on Industrial Electronics,2014,61(2):870–881.

    [2]M.D.Hua,T.Hamel,P.Morin,et al.Introduction to feedback control of under actuated VTOL vehicles:a review of basic control design ideas and principles.IEEE Control System Magzine,2013,33(1):61–75.

    [3]K.Alexis,G.Nikolakopoulos,A.Tzes.Model predictive quadrotor control:attitude,altitude and position experimental studies.IET Control Theory and Applications,2012,6(12):1812–1827.

    [4]B.Zhao,B.Xian,Y.Zhang,et al.Nonlinear robust adaptive tracking control of aqua drotor UAVvia immersion and invariance methodology.IEEE Transactions on Industrial Electronics,2015,62(5):2891–2902.

    [5]B.Xian,X.Zhang,S.Yang.Nonlinear controller design for an unmanned aerical vehicle with a slung-load.Control Theory&Applications,2016,33(3):273–279(in Chinese).

    [6]W.Hao,B.Xian.Nonlinear fault tolerant control design for quadrotor unmanned aerial vehicle attitude system.Control Theory&Applications,2015,32(11):1457–1463(in Chinese).

    [7]X.Zhang,B.Xian,B.Zhao,et al.Autonomous flight control of a nano quadrotor helicopter in a GPS-denied environment using on-board vision.IEEE Transactions on Industrial Electronics,2015,62(10):6392–6403.

    [8]J.Toledo,L.Acosta,D.Perea,et al.Stability and performance analysis of unmanned aerial vehicles:quadrotor against hexrotor.IET Control Theory and Applications,2015,9(8):1190–1196.

    [9]G.V.Raffo,M.G.Ortega,F.R.Rubio.An integral predictive/nonlinear H∞control structure for a quadrotor helicopter.Automatica,2010,46(1):29–39.

    [10]R.Zhang,Q.Quan,K.Y.Cai.Attitude control of a quad rotor aircraft subject to a class of time-varying disturbances.IETControl Theory and Applications,2011,5(1):1140–1146.

    [11]H.Ramirez-Rodriguez,V.Parra-Vega,A.Sanchez-Orta,et al.Robust backstepping control based on integral sliding modes for tracking of quadrotors.Journal of Intelligent and Robotic Systems,2014,73(1/4):51–66.

    [12]H.Liu,Y.Bai,G.Lu,et al.Robust motion control of uncertain quadrotors.Journal of the Franklin Institute,2014,351(12):5494–5510.

    [13]H.Liu,Y.Bai,G.Lu,et al.Robust tracking control of a quadrotor helicopter.Journal of Intelligent and Robotic Systems,2014,75(3/4):595–608.

    [14]B.J.Bialy,J.Klotz,K.Brink,et al.Lyapunov-based robust adaptive control of a quadrotor UAV in the presence of modeling uncertainties.Proceedings of the American Control Conference,Washington:IEEE,2013:13–18.

    [15]Y.Yu,X.Ding,J.Zhu.Attitudetracking control of aquadrotor UAV in the exponential coordinates.Journal of the Franklin Institute,2013,350(8):2044–2068.

    [16]L.Derafaa,A.Benallegueb,L.Fridman.Super twisting controlal gorithm for the attitude tracking of a four rotors UAV.Journal of the Franklin Institute,2012,349(2):658–699.

    [17]Y.Shtesse,M.Taleb,F.Plestan.A novel adaptive-gain supertwisting sliding mode controller:methodology and application.Automatica,2012,48(5):759–769.

    [18]F.Kendoul,Z.Yu,K.Nonami.Guidance and nonlinear control system for autonomous flight of minirotorcraft unmanned aerial vehicles.Journal of Field Robotics,2010,27(3):311–334.

    [19]B.Xian,C.Diao,B.Zhao,et al.Nonlinear robust output feedback tracking control of a quadrotor UAV using quaternion representation.Nonlinear Dynamics,2015,79(4):2735–2752.

    [20]I.Gonzalez,S.Salazar,R.Lozano,et al.Real-time altitude robust controller for a quad-rotor aircraft using sliding-mode control technique.Proceeding of the International Conference on Unmanned Aircraft Systems,Atlanta:IEEE,2013:650–659.

    [21]J.Hu,H.Zhang.Immersion and invariance based command filtered adaptive back stepping control of VTOL vehicles.Automatica,2013,49(7):2160–2167.

    [22]R.Mahony,T.Hamel,J.M.Pflimlin.Nonlinear complementary filters on the special orthogonal group.IEEE Transactions on Automatic Control,2008,53(5):1203–1218.

    有码 亚洲区| 天天躁夜夜躁狠狠躁躁| 亚洲国产最新在线播放| 在线观看国产h片| 两个人看的免费小视频| 久久久国产一区二区| 自拍欧美九色日韩亚洲蝌蚪91| 男女边吃奶边做爰视频| 精品午夜福利在线看| 中文精品一卡2卡3卡4更新| 亚洲内射少妇av| 有码 亚洲区| 综合色丁香网| 免费观看无遮挡的男女| 国产免费视频播放在线视频| 热99国产精品久久久久久7| 久久久久网色| 国产亚洲一区二区精品| 18禁动态无遮挡网站| 午夜福利视频在线观看免费| 人妻系列 视频| 久久久久久久大尺度免费视频| 久久久久久久大尺度免费视频| 欧美 日韩 精品 国产| 国产黄色视频一区二区在线观看| 春色校园在线视频观看| 美国免费a级毛片| 午夜福利影视在线免费观看| av电影中文网址| 精品久久久精品久久久| 观看美女的网站| 久久国产亚洲av麻豆专区| 老司机亚洲免费影院| 精品国产国语对白av| 欧美国产精品va在线观看不卡| 好男人视频免费观看在线| 国产精品女同一区二区软件| 人人澡人人妻人| 亚洲欧美一区二区三区久久| 久久99热这里只频精品6学生| 精品卡一卡二卡四卡免费| 免费日韩欧美在线观看| 欧美人与性动交α欧美软件| 女性被躁到高潮视频| 色婷婷久久久亚洲欧美| 久久久久久免费高清国产稀缺| 日韩制服丝袜自拍偷拍| 91成人精品电影| 男人添女人高潮全过程视频| 宅男免费午夜| 欧美激情极品国产一区二区三区| 99re6热这里在线精品视频| 欧美激情 高清一区二区三区| 岛国毛片在线播放| 丝袜美腿诱惑在线| 午夜福利在线免费观看网站| 久久精品国产综合久久久| av又黄又爽大尺度在线免费看| 欧美少妇被猛烈插入视频| 妹子高潮喷水视频| 妹子高潮喷水视频| 免费观看在线日韩| 亚洲成av片中文字幕在线观看 | 桃花免费在线播放| 亚洲综合色网址| 91精品伊人久久大香线蕉| 最近2019中文字幕mv第一页| 曰老女人黄片| 超碰97精品在线观看| 天天躁夜夜躁狠狠躁躁| 1024香蕉在线观看| 亚洲成人av在线免费| 日韩av不卡免费在线播放| 国产黄色免费在线视频| 91国产中文字幕| 亚洲综合色惰| 国产一区亚洲一区在线观看| 亚洲欧洲国产日韩| 中文精品一卡2卡3卡4更新| 亚洲精品国产色婷婷电影| 亚洲av福利一区| 黑人欧美特级aaaaaa片| 欧美日韩国产mv在线观看视频| 国产片特级美女逼逼视频| 色婷婷久久久亚洲欧美| 一区二区三区激情视频| 纯流量卡能插随身wifi吗| 精品一品国产午夜福利视频| 国产精品二区激情视频| 精品国产露脸久久av麻豆| 国产精品.久久久| 老鸭窝网址在线观看| 男人操女人黄网站| 国产精品秋霞免费鲁丝片| www.熟女人妻精品国产| 日日摸夜夜添夜夜爱| 9191精品国产免费久久| 欧美日韩精品网址| 久久久久久人妻| 国产精品久久久av美女十八| 国产毛片在线视频| 1024香蕉在线观看| 久久精品国产亚洲av高清一级| 超色免费av| 国产精品秋霞免费鲁丝片| 国产男女内射视频| 91精品国产国语对白视频| 精品久久久精品久久久| 如何舔出高潮| 女人高潮潮喷娇喘18禁视频| 一区二区日韩欧美中文字幕| 国产成人精品在线电影| 一级,二级,三级黄色视频| 又大又黄又爽视频免费| 久久久精品94久久精品| 天天躁日日躁夜夜躁夜夜| 麻豆乱淫一区二区| tube8黄色片| 国产一区二区三区综合在线观看| 亚洲成人av在线免费| 亚洲人成电影观看| 2022亚洲国产成人精品| 美女国产视频在线观看| 十分钟在线观看高清视频www| 综合色丁香网| 在线免费观看不下载黄p国产| 亚洲av在线观看美女高潮| 1024香蕉在线观看| 亚洲人成77777在线视频| 久久99精品国语久久久| 18禁裸乳无遮挡动漫免费视频| 国产精品女同一区二区软件| 欧美日韩精品网址| 新久久久久国产一级毛片| 成年动漫av网址| videosex国产| 欧美日韩一级在线毛片| 男女边吃奶边做爰视频| 欧美人与性动交α欧美软件| 女人被躁到高潮嗷嗷叫费观| 国产不卡av网站在线观看| 免费高清在线观看日韩| 精品人妻偷拍中文字幕| 日本午夜av视频| 国产高清国产精品国产三级| a 毛片基地| 亚洲av在线观看美女高潮| 日韩,欧美,国产一区二区三区| 肉色欧美久久久久久久蜜桃| 日韩中字成人| 搡老乐熟女国产| 亚洲欧美清纯卡通| 久久久久久久大尺度免费视频| 国产成人一区二区在线| 欧美老熟妇乱子伦牲交| 欧美精品人与动牲交sv欧美| 日日撸夜夜添| 久久综合国产亚洲精品| 人妻人人澡人人爽人人| 如何舔出高潮| 老汉色av国产亚洲站长工具| 成人毛片60女人毛片免费| 少妇人妻久久综合中文| 欧美少妇被猛烈插入视频| 久久久久网色| 18禁观看日本| 飞空精品影院首页| 在线免费观看不下载黄p国产| 亚洲图色成人| 国产在线视频一区二区| 男女免费视频国产| 十分钟在线观看高清视频www| 丰满少妇做爰视频| 黄网站色视频无遮挡免费观看| tube8黄色片| 久久久久久久久久人人人人人人| 精品国产乱码久久久久久小说| 黑人欧美特级aaaaaa片| 下体分泌物呈黄色| 久久久久久久亚洲中文字幕| 午夜福利在线观看免费完整高清在| 搡女人真爽免费视频火全软件| 观看美女的网站| 亚洲欧美一区二区三区国产| 丝袜喷水一区| 国产精品一区二区在线观看99| 成人手机av| 黄片播放在线免费| 精品少妇一区二区三区视频日本电影 | 国产欧美亚洲国产| 男人操女人黄网站| 免费观看性生交大片5| 欧美亚洲日本最大视频资源| 伦精品一区二区三区| 亚洲精品,欧美精品| 久久热在线av| 国产乱来视频区| 99久久人妻综合| 久久久久国产网址| 亚洲天堂av无毛| √禁漫天堂资源中文www| 中文字幕精品免费在线观看视频| 国产精品久久久久久久久免| 国产成人一区二区在线| 天天躁夜夜躁狠狠久久av| 亚洲一级一片aⅴ在线观看| 国产免费一区二区三区四区乱码| 亚洲国产欧美日韩在线播放| 国产毛片在线视频| 亚洲精品久久久久久婷婷小说| 一边亲一边摸免费视频| 女性被躁到高潮视频| 免费黄频网站在线观看国产| 看免费成人av毛片| 国产一区二区三区av在线| av天堂久久9| 蜜桃国产av成人99| 黄色一级大片看看| 日本色播在线视频| 免费久久久久久久精品成人欧美视频| 亚洲精品日本国产第一区| 男女无遮挡免费网站观看| 国产av精品麻豆| 欧美日韩视频精品一区| 久久午夜综合久久蜜桃| 欧美精品亚洲一区二区| 亚洲国产看品久久| 伊人亚洲综合成人网| 免费久久久久久久精品成人欧美视频| 欧美国产精品va在线观看不卡| 天天影视国产精品| 精品国产一区二区三区久久久樱花| 色婷婷av一区二区三区视频| 一区二区三区乱码不卡18| 日本91视频免费播放| 午夜福利网站1000一区二区三区| 国产精品欧美亚洲77777| 天堂俺去俺来也www色官网| 青春草视频在线免费观看| 成人毛片a级毛片在线播放| 精品一区二区免费观看| 亚洲欧美清纯卡通| 日韩视频在线欧美| 天天操日日干夜夜撸| √禁漫天堂资源中文www| 曰老女人黄片| 久久这里有精品视频免费| 超色免费av| 成人18禁高潮啪啪吃奶动态图| 妹子高潮喷水视频| 国产一区二区激情短视频 | 久久影院123| 纯流量卡能插随身wifi吗| 日韩,欧美,国产一区二区三区| 欧美精品人与动牲交sv欧美| 有码 亚洲区| 国产精品一国产av| 久久久久视频综合| 一本大道久久a久久精品| 精品一区二区三卡| 久久99一区二区三区| 国产精品 欧美亚洲| 久久精品夜色国产| 国产精品香港三级国产av潘金莲 | 精品亚洲成a人片在线观看| 亚洲欧美精品自产自拍| 欧美精品国产亚洲| 最近2019中文字幕mv第一页| 亚洲视频免费观看视频| 成人手机av| 少妇猛男粗大的猛烈进出视频| 欧美成人午夜免费资源| 波野结衣二区三区在线| 国产麻豆69| 在现免费观看毛片| 一区福利在线观看| 国产成人精品久久二区二区91 | 日韩精品有码人妻一区| 亚洲,一卡二卡三卡| 涩涩av久久男人的天堂| 寂寞人妻少妇视频99o| 国产片内射在线| 亚洲精品成人av观看孕妇| 亚洲精品一二三| 亚洲一区二区三区欧美精品| 激情五月婷婷亚洲| 亚洲五月色婷婷综合| 国产毛片在线视频| 美女主播在线视频| 亚洲情色 制服丝袜| 丰满饥渴人妻一区二区三| kizo精华| 国产精品成人在线| 国精品久久久久久国模美| 亚洲伊人色综图| 成人毛片a级毛片在线播放| 国产日韩一区二区三区精品不卡| 麻豆乱淫一区二区| 在线天堂中文资源库| 亚洲美女视频黄频| 下体分泌物呈黄色| 亚洲,欧美,日韩| 日韩不卡一区二区三区视频在线| 黄色毛片三级朝国网站| 亚洲欧美色中文字幕在线| 国产精品国产三级专区第一集| 观看美女的网站| 亚洲国产精品国产精品| 制服丝袜香蕉在线| 两个人看的免费小视频| 精品99又大又爽又粗少妇毛片| 国产av码专区亚洲av| 精品久久蜜臀av无| 九色亚洲精品在线播放| 午夜免费男女啪啪视频观看| 国产一区二区三区av在线| 亚洲成人手机| 老女人水多毛片| 这个男人来自地球电影免费观看 | 久久久久久久久免费视频了| 亚洲美女搞黄在线观看| 日本免费在线观看一区| 久久精品国产自在天天线| 在现免费观看毛片| 18禁国产床啪视频网站| 免费高清在线观看视频在线观看| 精品少妇久久久久久888优播| 男人舔女人的私密视频| 国产精品av久久久久免费| 免费久久久久久久精品成人欧美视频| 亚洲欧美一区二区三区国产| 成人午夜精彩视频在线观看| 男人操女人黄网站| 午夜福利影视在线免费观看| 人妻 亚洲 视频| 国产极品粉嫩免费观看在线| 欧美国产精品va在线观看不卡| kizo精华| 亚洲欧洲国产日韩| 日韩欧美精品免费久久| 久久精品aⅴ一区二区三区四区 | 久久人人爽av亚洲精品天堂| 久久人人97超碰香蕉20202| 成人毛片a级毛片在线播放| 国产日韩一区二区三区精品不卡| 久久久久久久大尺度免费视频| 免费观看av网站的网址| 国产激情久久老熟女| 国产成人欧美| 亚洲第一区二区三区不卡| 欧美国产精品一级二级三级| 久久人人97超碰香蕉20202| 美女大奶头黄色视频| 久久97久久精品| 波多野结衣av一区二区av| 老鸭窝网址在线观看| 久久韩国三级中文字幕| 日韩制服丝袜自拍偷拍| 日韩av在线免费看完整版不卡| 人人澡人人妻人| 欧美av亚洲av综合av国产av | 日韩不卡一区二区三区视频在线| 国产精品久久久久久精品电影小说| 午夜免费男女啪啪视频观看| 久久久精品国产亚洲av高清涩受| www日本在线高清视频| av视频免费观看在线观看| 99热国产这里只有精品6| 中文字幕精品免费在线观看视频| av视频免费观看在线观看| 中文欧美无线码| av电影中文网址| 亚洲精品久久成人aⅴ小说| 亚洲色图 男人天堂 中文字幕| 久久韩国三级中文字幕| 欧美97在线视频| 久久精品亚洲av国产电影网| 欧美国产精品va在线观看不卡| 免费大片黄手机在线观看| 日韩精品有码人妻一区| 9热在线视频观看99| 国产探花极品一区二区| 各种免费的搞黄视频| 免费黄色在线免费观看| 波野结衣二区三区在线| 亚洲精品国产一区二区精华液| 国产精品蜜桃在线观看| 大话2 男鬼变身卡| 久久久精品94久久精品| 男女午夜视频在线观看| 大香蕉久久成人网| 日韩欧美精品免费久久| 午夜福利一区二区在线看| 国产麻豆69| 丝袜脚勾引网站| 国产成人精品婷婷| 韩国高清视频一区二区三区| 亚洲av电影在线进入| 欧美精品国产亚洲| 国产无遮挡羞羞视频在线观看| 日本-黄色视频高清免费观看| 午夜激情久久久久久久| 亚洲国产欧美日韩在线播放| 天堂中文最新版在线下载| 久久热在线av| 久久久久久久亚洲中文字幕| 欧美精品一区二区免费开放| 最近手机中文字幕大全| 不卡视频在线观看欧美| 中文精品一卡2卡3卡4更新| 成年av动漫网址| 久久久亚洲精品成人影院| 亚洲婷婷狠狠爱综合网| 黄片小视频在线播放| 日韩三级伦理在线观看| 久久久久久久大尺度免费视频| a级毛片在线看网站| 一二三四中文在线观看免费高清| 久久毛片免费看一区二区三区| 日本vs欧美在线观看视频| 妹子高潮喷水视频| 中文天堂在线官网| 国语对白做爰xxxⅹ性视频网站| 亚洲,欧美,日韩| 欧美中文综合在线视频| 久久精品国产鲁丝片午夜精品| 边亲边吃奶的免费视频| 国产免费视频播放在线视频| 一区二区日韩欧美中文字幕| 桃花免费在线播放| 亚洲av综合色区一区| 一级片免费观看大全| 又黄又粗又硬又大视频| 久久鲁丝午夜福利片| 2018国产大陆天天弄谢| 国产精品蜜桃在线观看| 国产精品 国内视频| 欧美 亚洲 国产 日韩一| 伦理电影大哥的女人| 人人妻人人添人人爽欧美一区卜| 热re99久久精品国产66热6| 亚洲一码二码三码区别大吗| 啦啦啦视频在线资源免费观看| 国产av一区二区精品久久| 精品午夜福利在线看| 色吧在线观看| 不卡av一区二区三区| 亚洲av电影在线进入| 久久99热这里只频精品6学生| 国产又色又爽无遮挡免| 久久久久国产一级毛片高清牌| 国产乱人偷精品视频| 亚洲色图 男人天堂 中文字幕| 成年人午夜在线观看视频| 国产男女超爽视频在线观看| 人人妻人人添人人爽欧美一区卜| 成人午夜精彩视频在线观看| 一级片'在线观看视频| 少妇精品久久久久久久| 欧美人与性动交α欧美精品济南到 | 亚洲精品国产av成人精品| 久久久久精品人妻al黑| 国产精品一区二区在线不卡| 青春草视频在线免费观看| 成人国产av品久久久| 国产成人精品婷婷| 精品亚洲成a人片在线观看| 少妇被粗大猛烈的视频| 亚洲av综合色区一区| 日产精品乱码卡一卡2卡三| 97人妻天天添夜夜摸| 亚洲欧美一区二区三区黑人 | 久久精品人人爽人人爽视色| 黄色怎么调成土黄色| 国产不卡av网站在线观看| 伦理电影免费视频| 极品少妇高潮喷水抽搐| 男人操女人黄网站| 久久久久久免费高清国产稀缺| 免费人妻精品一区二区三区视频| 亚洲精品av麻豆狂野| 亚洲精品一二三| 欧美少妇被猛烈插入视频| 80岁老熟妇乱子伦牲交| 亚洲av福利一区| 天天影视国产精品| av又黄又爽大尺度在线免费看| 国产深夜福利视频在线观看| 久久精品久久久久久噜噜老黄| 中文字幕亚洲精品专区| 免费高清在线观看视频在线观看| 久久精品夜色国产| 中文字幕另类日韩欧美亚洲嫩草| 日日摸夜夜添夜夜爱| www.av在线官网国产| 精品少妇久久久久久888优播| 高清视频免费观看一区二区| 久久ye,这里只有精品| 日韩视频在线欧美| 免费不卡的大黄色大毛片视频在线观看| 韩国精品一区二区三区| 69精品国产乱码久久久| 亚洲精品中文字幕在线视频| av在线观看视频网站免费| 国产精品一二三区在线看| 国产黄色免费在线视频| 人妻少妇偷人精品九色| 在线看a的网站| 色婷婷久久久亚洲欧美| 在线看a的网站| 热99国产精品久久久久久7| 久久精品人人爽人人爽视色| 大片免费播放器 马上看| 久久久久久久亚洲中文字幕| 爱豆传媒免费全集在线观看| 波多野结衣av一区二区av| 99久久中文字幕三级久久日本| 男人舔女人的私密视频| 免费在线观看黄色视频的| 国产一级毛片在线| 最黄视频免费看| 999久久久国产精品视频| 亚洲av成人精品一二三区| 男人舔女人的私密视频| 精品国产一区二区久久| 国产深夜福利视频在线观看| 亚洲欧美成人综合另类久久久| 亚洲av综合色区一区| 日韩中字成人| 亚洲图色成人| 国产麻豆69| 国产亚洲av片在线观看秒播厂| 一本—道久久a久久精品蜜桃钙片| 日本91视频免费播放| 日韩中文字幕视频在线看片| 精品一区二区三卡| 亚洲内射少妇av| 18+在线观看网站| 亚洲av.av天堂| 日韩视频在线欧美| 有码 亚洲区| 国产精品不卡视频一区二区| 人人澡人人妻人| 国产成人精品福利久久| 国产成人免费无遮挡视频| 色94色欧美一区二区| 王馨瑶露胸无遮挡在线观看| 99精国产麻豆久久婷婷| 久久国内精品自在自线图片| 寂寞人妻少妇视频99o| 国产精品嫩草影院av在线观看| 纵有疾风起免费观看全集完整版| 亚洲欧美精品综合一区二区三区 | 国产成人精品一,二区| 国产精品免费大片| 久久久欧美国产精品| 精品一区在线观看国产| 深夜精品福利| 久久午夜综合久久蜜桃| 91精品三级在线观看| 卡戴珊不雅视频在线播放| 人体艺术视频欧美日本| 一本大道久久a久久精品| 最近最新中文字幕大全免费视频 | 亚洲av成人精品一二三区| 涩涩av久久男人的天堂| 国产精品人妻久久久影院| 在线观看免费视频网站a站| 午夜久久久在线观看| 日韩一区二区视频免费看| 国产高清国产精品国产三级| 欧美黄色片欧美黄色片| 亚洲精品av麻豆狂野| 熟女电影av网| a 毛片基地| 亚洲精品,欧美精品| 成年av动漫网址| 日韩三级伦理在线观看| 国产成人午夜福利电影在线观看| 午夜免费鲁丝| 免费大片黄手机在线观看| 亚洲国产欧美网| 久久精品国产亚洲av高清一级| 最近的中文字幕免费完整| 超色免费av| 纯流量卡能插随身wifi吗| 国产97色在线日韩免费| 欧美97在线视频| 亚洲国产精品一区三区| av有码第一页| 毛片一级片免费看久久久久| 欧美激情高清一区二区三区 | 秋霞在线观看毛片| 69精品国产乱码久久久| 男女午夜视频在线观看| 国产男女内射视频| 国产不卡av网站在线观看| 看免费av毛片| 精品国产乱码久久久久久男人| 亚洲欧美中文字幕日韩二区| 亚洲精品视频女| 婷婷色av中文字幕| 国产麻豆69| 男女无遮挡免费网站观看| 在线观看国产h片| 在线精品无人区一区二区三| 91在线精品国自产拍蜜月| 久久久国产精品麻豆| 老司机影院成人| 制服诱惑二区| 日本91视频免费播放| 国产亚洲最大av| 久久女婷五月综合色啪小说| 人妻少妇偷人精品九色| 亚洲熟女精品中文字幕|