• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Flocking control of a fleet of unmanned aerial vehicles

    2018-06-04 02:47:34AdelBELKADIZhixiangLIULaurentCIARLETTAYouminZHANGDidierTHEILLIOL
    Control Theory and Technology 2018年2期
    關(guān)鍵詞:高達(dá)游說總計(jì)

    Adel BELKADI,Zhixiang LIU ,Laurent CIARLETTA ,Youmin ZHANG ,Didier THEILLIOL?

    1.CRAN,University of Lorraine,Nancy,France;

    2.Department of Mechanical,Industrial and Aerospace Engineering,Concordia University,Montreal,Canada;

    3.Lorraine Research Laboratory in Computer Science and its Applications(LORIA),University of Lorraine,Nancy,France

    1 Introduction

    The last decade has seen an increasing number of unmanned aerial vehicles(UAVs)applied to a variety of applications,such as forest health/fire surveillance[1,2],search and rescue[3],natural resources exploration[4],environmental surveillance[5],and military missions[6].As an important type of UAV,unmanned quadrotor helicopter(UQH)has also been dedicated significant investigations due to their numerous advantages including decreased operation complexity,affordable development cost[7],and improved maneuverability[8].These characteristics have contributed tremendous benefits to avariety of applications demanded by many universities,research institutes,commercial entities,and military[8].

    In order to greatly enhance the capabilities of UQHs against system failures,improve their efficiencies,and extend their coverage of surveillance and measurement applications,current research on UQH has already gone beyond single system.Inspired by the study of biologists on the flocking phenomenon of animals in nature,such as schools of fish,swarms of insects,herds of quadruped,and flocks of birds,Reynolds[9]has introduced the following three heuristic rules for the flocking control of a group of agents[10]:

    1)flock centering(cohesion):stay close to nearby agents;

    2)collision avoidance(separation):avoid collisions with surrounding agents;and

    3)velocity matching(alignment):match velocity with neighboring agents.

    These three rules have been considered as the basic elements of developing the theoretical framework and control strategies for the flocking control of multiple agents systems(including heterogeneous numbers and categories).

    The flocking control of multiple UQHs for a diversity of applications,including environmental surveillance,search and rescue,and natural resources exploration,has likewise attracted much attention from researchers around the world.On the early stage of flocking control development,several distinct flocking models have been developed.The first flocking model is proposed in[9].Then,the Cucker-Smale model is constructed in[11],while[12]develops the Vicsek model.Later on,an improvement to Vicsek model is made in[13].Following these models,numerous relative flocking control methods have also been investigated.Whereas these works solely concentrate on the alignment problem,while other rules of flocking control are not well studied.To improve the performance of flocking,further investigations are conducted.One research in[10]has combined the alignment rule with an additional repulsive/attractive term for keeping all agents within a desired region,whiletheunified velocityhasbeen matched by all agents.In addition to that,numerous studies have also extended the Cucker-Smale model[11]to maneuvre a fleet of unmanned vehicles[14].In[15],a repulsive force is incorporated in the flocking control design to maintain the safety distance among agents,a rigorous proof is provided to guarantee the collision avoidance capabilities of agents.Works in[16]and[17]extend the Cucker-Smale model by introducing additional interaction terms among agents for the purpose of achieving both collision avoidance functions and tighter spatial configurations.Other relative works on this subject are carried out in[18,19]which derive a decoupled control term based on a potential function;this term is devised to achieve the separation and cohesion among agents,together with using the velocity consensus control rule,both formation-keeping and collision avoidancecan be guaranteed.However,the above-mentioned approaches tend to be quite dangerous in the presence of low accurate measurements or actuator and sensor faults.Furthermore,most of the existing flocking control methodologies are designed and validated only on a simple system with double integrator dynamics without consideration of system uncertainties and nonlinear dynamics.These adverse effects may dramatically deteriorate the performance of flocking,as well as cause significant oscillations[20]and even divergence.

    In order to surmount the aforementioned challenging issues,this paper proposes a new flocking control approach which is an extension of authors’previous work summarized in[21].Different from the method adopted in[18,19],the solution proposed by this work is to consider all agents as a group without specifying any distances among them.The proposed method,which is expected to achieve the satisfactory performance(cohesion,separation and alignment)of multiple UQHs,treats the whole system as the following three layers:

    1)guidance system(flocking rule)for the translational control design in kinematics level;

    2)motion control system for rotational control design in kinetics level;and

    3)UQHs systems.

    The contributions of this paper can be highlighted as follows:1)design of a new flocking control method and implementation of it on a group of UQHs with nonlinear dynamics to make the proposed method applicable in practice;and

    2)it is normally difficult to guarantee the fixed neighbouring distance required by some existing works and model uncertainties and disturbances in practice can cause significant oscillations of agents.

    In addition,by using the formation control algorithm with fixed neighbouring distance requirement,it may become quite complicated to satisfy the anticipated formation control performance when the number of agents remarkably increases.However,the proposed flocking control method requires no fixed distance among agents,providing more flexibility to the formation control,especially for the practical implementation.

    Therest of this paper is organized as follows:Section 2 introduces the modelling of UQH and some preliminaries of flocking control system design.Section 3 illustrates the design procedure of the presented flocking control system.Section 4 addresses the conducted numerical simulations and their results analyses.The last section summarizes the conclusions and future works.

    2 Preliminaries

    2.1 Nonlinear model of unmanned quadrotor helicopter

    As shown in Fig.1,the UQH is usually operated by four motor-driven propellers which situate at the front,rear,left,and right corners of UQH,respectively,generating their corresponding thrusts u1,u2,u3,and u4.

    Fig.1 Schematic diagram of a typical UQH.

    Generally,the motion of UQH can be illustrated as follows:

    1)identical amount of control signals are distributed to each motor to achieve the vertical translation;and

    2)distinct amount of control signals are assigned to the opposite motors to fulfil the horizontal translation[8,22].

    For a common dynamical model of UQH in regard to the earth-fixed coordinate system,one can obtain that

    Moreover,the following relationship between accelerations and lift/torques can be formulated:

    The propeller force and its corresponding pulse width modulation(PWM)signal has the foll owing relationship:

    To facilitate the control scheme design,borrowing the ideas of existing research works[8,23],the following model simplification can be obtained as

    Therefore,equation(3)can be reduced to

    where Kmand ωmare theoretically assumed to be identical for all motors.

    The definition of above-mentioned symbols are all included in Table 1 for readers’convenience.

    Table 1 Nomenclature(earth-fixed coordinate system).

    2.2 Linearization of the unmanned quadrotor helicopter

    As UQH’s model is highly nonlinear,translational and rotational motions are coupled,in order to match the dynamics of UQH with double integrator model to enable the design of the flocking control algorithm,Assumption 1 is thereby made for linearizing the dynamics of UQH.

    Assumption 1The UQH is assumed to be in a near hovering condition which implies that:1)uz≈m g points toward the vertical direction;2)pitch and roll angles are so small that sinφ≈φand sinθ≈θ;3)there is no yaw angle(ψ=0).

    Based on Assumption 1 and equation(1),the new translational and rotational dynamicsof UQHin the similar formulation of double integrators can be achieved as equations(5)and(6),respectively.

    1)Translational dynamics of UQH:

    2)Rotational dynamics of UQH:

    3 Flocking control scheme design

    As addressed in Fig.2,the system architecture of the proposed method can be divided into three levels:the high level(translational motion control)guidance system,middle level(rotational motion control)control system,and low level(UQH system)[24].First,based on the mission command and states of formation,the high level guidance system produces the rotational reference command,which is then distributed to the middle level control system for maneuvering the low level UQHs to follow the desired references.

    貪污腐敗的形式之一是私相授受,一方是政府官員受賄,游說團(tuán)體的說客們往往就扮演了上門賄賂的腳色。第八、九章的分析對(duì)象就是這些活動(dòng)越趨頻繁、勢(shì)力日漸龐大的游說團(tuán)體。2007年,美國首都華盛頓有經(jīng)注冊(cè)的說客約35 800人。游說這一行,作者稱之為“游說業(yè)” (the lobbying industry),2007年向其客戶收取的費(fèi)用總計(jì)高達(dá)29億美元。游說業(yè)之勢(shì)力由此可見一斑。

    Fig.2 Control architecture of the proposed approach for each agent.

    3.1 Modified Cucker-Smale model design

    As a widely employed model for flocking control design,the Cucker-Smale model introduced by[11]is also used in this study.In this flocking model,each agent updates its velocity in every sampling time by adding to it with a time-varying value,which is the weighted average of the differences of its velocity with those of its neighboring agents.

    Assume a continuous model consists of n agents,xi(t)and vi(t)(i=1,...,n)denote the position and velocity of the i th agent,respectively.The dynamics of flocking model is then defined by

    where the weighting function aij(t),which represents the inter-agents distance between agents i and j,can be obtained by

    where H > 0,σ > 0,and β ≥ 0 are a given set of system parameters.

    The performance of Cucker-Smale model(7)depends on the selection of β,which satisfies the following conditions to guarantee the convergence of flocking:

    with

    It is worth noting that the convergence of the formation towards a flocking behavior(like a common velocity)can be obtained relying solely on the initial state conditions(x(0),v(0))of theflock if any of the conditions in equation(9)have been satisfied.

    In addition to guaranteeing the convergence feature of a flock of agents,it is also critical to ensure the collision avoidance among agents in order to fulfill the desired mission with a safe and satisfactory performance.Reference[15]proposes a flocking control method ensuring all agents converge to an identical velocity,while simultaneously satisfy the demand for collision avoidance.Furthermore,a solid mathematical stability proof is also provided.By borrowing the concept proposed in[15],the flocking model(7)can then be rewritten as follows:

    where

    λ(t)is designed to moderate the repelling force,while λ(t)=0 indicates that all agents in the flock align at a common velocity,r0>0 denotes the safety distance among all agents,and the differentiable function f(r)should be subjected to the following conditions:

    The first condition in equation(11)is used for ensuring collision avoidance,while the second one is devised for guaranteeing the convergence of flock to alignment.

    Thus,it is possible to summarize the three objectives of equation(10)as follows:

    ·asymptotic velocity convergence of pairwise agents:

    ·asymptotic formation keeping:

    whereand R(n,r0)> r0denote the distance between the i th and j th agents and maximum radius of the formation,respectively;and

    ·collision avoidance among neighboring agents:

    3.2 Translational motion control scheme design

    The translational motion control law is designed using flocking theory based on the modified Cucker-Smale model.From equation(5),solely considering the variables related to the operation of UQHs in X-Y coordinate system,one can then obtain the position and velocity vectors for each UQH asandrespectively.The corresponding control input is selected as ui=[gθ,?gφ]T.

    Thus,the translational dynamics of UQH can be written as follows:

    In order to satisfy the three objectives proposed in equations(12)–(14),in addition to using equation(10)to meet the velocity matching and collision avoidance requirements,additional scheme for keeping the formation within a desired circle to flock centering is still required.Actually,this issue has been widely discussed in the literature,and solid mathematical proof are also provided.To guarantee the cohesion property of fleet with out changing the overall dynamics of flocking model(10)introduced in[15],this study proposes to add abounded attractive force term to equation(10)for constraining all agents within a circle with specific radius.Thus,with this additional term,equation(10)can be rewritten as

    where the bounded attractive force termis obtained by calculating the distance between the ith agent and the average positionandwhile functionsatisfies

    Functionis calculated by

    where Hcis a positive constant.

    Equation(17)indicates that the bounded attracting force affects the agent which is outside the specific circle for keeping the desired formation;while the attracting force vanishes when the agent is within the desired circle.

    Since the proposed flocking control algorithm is designed based on the linearized models(5)of UQH,while the simulation/experiment is conducted on the nonlinear model(1).It is thereby inevitably required to consider the uncertainties from the model linearizati on and external disturbances without causing much unexpected oscillations and serious performance degradation.In this study,the additional tuning gains are added to the three terms in equation(16)in order to compensate the uncertainties of linearized model and disturbances.Based on this design,the further modified flocking control law(16)becomes

    where Kp>0,Kd>0 and Ka>0 represent the user defined tuning gains.

    3.3 Rotational motion control scheme design

    The linear quadratic regulator(LQR)control methodology,which is well-known and widely applied for a variety of industrial,academic,and scientific research applications,can be a suitable solution for the controller design of single UQH[25].Therefore,in this study,the LQR control scheme is adopted to develop the state feedback control strategy.

    Without loss of generality,the linearized UQH model(6)with consideration of merely pitch and roll motion,can be rewritten into the following state-space representation:

    where x(t)∈Rnis the state vector,u(t)∈Rmdenotes the control input,A ∈ Rn×n,and B ∈ Rn×m.ω(t)=[g,ωd(t)]Tincludes acceleration of gravity g and bounded external disturbance ωd(t)∈ Rr.In this study,

    As an effective mechanism for eliminating the steady state error,the integral term is further introduced into the control scheme design[26].After incorporating this integral term,system(20)can then be augmented as follows:

    includes ω(t)and reference signal yref(t).

    Sr∈ Rl×pis used for selecting the required system states.

    Then,the employment of LQR controller is to design an appropriate control input u(t)to operate the augmented system from any initial state xa(t0)to the equivalent state within an infinite time period.This can be achieved by minimizing the following objective function[27]:

    where Q ∈ R(n+l)×(n+l)is a symmetric matrix,and R ∈R(m+l)×(m+l)is a positive symmetric definite matrix.The state feedback gain K is then obtainable by solving algebraic Riccati equations.

    Ultimately,the optimal augmented state feedback control input can be obtained as

    4 Simulation validation

    In order to demonstrate the effectiveness of the proposed flocking control method,numerical simulations on a group of UQH nonlinear models(a total of 12 agents)have been conducted.System parameters of the studied UQH,which are adopted from a real one,are listed in Table 2.

    Table 2 Values of used system parameters.

    Initially,UQHs in the fleet are allocated with different velocities and distributed in distinct positions.The safety distance of pairwise UQHs is set as 1m.The values for the adopted flocking controller parameters are selected as follows:H=1,β=0.4,Hc=0.1,r0=1m,Kp=0.5,Kd=0.7,Ka=1.7.The control gains for the motion controller is computed as

    As shown in Fig.3,the radius of the fleet is first assigned with R(n,r0)=12m,then changed to R(n,r0)=10m and R(n,r0)=8m at the 30th and 60th second,respectively.The result demonstrates that the desired fleet reformation is achieved by the proposed flocking control method.

    Fig.3 The flocking movement of the fleet.(a)t=0s,Radius=12m.(b)t=25s,Radius=12m.(c)t=50s,Radius=10m.(d)t=100s,Radius=8m.

    Fig.4 displays the velocity histories of all UQHs along the x and y coordinates.It can be observed from Fig.4 that the fleet can converge to the common velocity within around 20 seconds.

    To investigate the performance of the fleet of UQHs in a clearer fashion,Fig.5 shows the minimum and the maximum distances between each two agents,these distances are calculated by

    From Fig.5,the safety distance 1m between neighbouring agents can always be guaranteed,while the maximum distance for keeping the desired formation is satisfied as well.

    Fig.6 shows the average distance difference Φ(t)and average velocity difference Ψ(t)of pairwise UQHs.It clearly shows that the desired formation keeping and velocity matching performance are achieved.The Φ(t)and Ψ(t)are calculated by

    Fig.4 The velocities of all agents.

    Fig.5 The distances of the fleet.(a)Distances between agents and flocking center.(b)Minimum&maximum distances between pairwise agents.

    Fig.6 The average distance and velocity differences of pairwise UQHs.

    5 Conclusions

    This paper presents the development and application of a new flocking control algorithm on a fleet of unmanned quadrotor helicopters(UQHs)with nonlinear dynamics.The three critical characteristics of flocking,the cohesion,separation and alignment have been guaranteed in this work.First,the linearized model of unmanned quadrotor helicopter is demonstrated to be effective for designing both flocking control and motion control algorithms.Then,the satisfactory performance of the proposed method on multiple UQH nonlinear models is achieved in the numerical simulation.

    In the future,it is expected to extend the proposed work to considering both sensor and actuator faults in the scheme design to enhance the reliability and safety of the system.Further experimental tests on a group of real UQHs in the authors’lab have also been planned to further validate the proposed method.

    [1]C.Yuan,Y.Zhang,Z.Liu.A survey on technologies for automatic forest fire monitoring,detection,and fighting using unmanned aerial vehicles and remote sensing techniques.Canadian Journal of Forest Research,2015,45(7):783–792.

    [2]C.Yuan,Z.Liu,Y.Zhang.Aerial images-based forest fire detection for firefighting using optical remote sensing techniques and unmanned aerial vehicles.Journal of Intelligent&Robotic Systems,2017,88(2/4):635–654.

    [3]D.Kingston,R.W.Beard,R.S.Holt.Decentralized perimeter surveillance using a team of UAVs.IEEE Transactions on Robotics,2008,24(6):1394–1404.

    [4]A.Rango,A.Laliberte,J.E.Herrick,et al.Unmanned aerial vehicle-based remote sensing for rangeland assessment,monitoring,and management.Journal of Applied Remote Sensing,2009,3(1):DOI 10.1117/1.3216822.

    [5]J.E.Gomez-Balderas,G.Flores,L.G.Carrillo,et al.Tracking a ground moving target with a quadrotor using switching control.Journal of Intelligent&Robotic Systems,2013,70(1/4):65–78.

    [6]J.Escareno,S.Salazar,H.Romero,et al.Trajectory control of a quadrotor subject to 2D wind disturbances.Journal of Intelligent&Robotic Systems,2013,70(1/4):51–63.

    [7]Z.Liu,C.Yuan,X.Yu,et al.Retrofit fault-tolerant tracking control design of an unmanned quadrotor helicopter considering actuator dynamics.International Journal of Robust and Nonlinear Control,2017:DOI https://doi.org/10.1002/rnc.3889.

    [8]Z.Liu,C.Yuan,Y.Zhang,et al.A learning-based fault tolerant tracking control of an unmanned quadrotor helicopter.Journal of Intelligent&Robotic Systems,2015,84(1/4):145–162.

    [9]C.W.Reynolds.Flocks,herds and schools:A distributed behavioral model.ACM SIGGRAPH Computer Graphics,1987,21(4):25–34.

    [10]R.Olfati-Saber.Flocking for multi-agent dynamic systems:Algorithms and theory.IEEE Transactions on Automatic Control,2006,51(3):401–420.

    [11]F.Cucker,S.Smale.On the mathematics of emergence.Japanese Journal of Mathematics,2007,2(1):197–227.

    [12]T.Vicsek,A.Czir′ok,E.Ben-Jacob,et al.Novel type of phase transition in a system of self-driven particles.Physical Review Letters,1995,75(6):1226–1229.

    [13]Z.Liu,L.Guo.Connectivity and synchronization of Vicsek model.Science in China Series F:Information Sciences,2008,51(7):848–858.

    [14]L.Perea,E.Pedro,G.Gerard.Extension of the Cucker-Smale control law to space flight formations.Journal of Guidance,Control,and Dynamics,2009,32(2):527–537.

    [15]F.Cucker,J.G.Dong.Avoiding collisions in flocks.IEEE Transactions on Automatic Control,2010,55(5):1238–1243.

    [16]J.Park,H.J.Kim,S.Y.Ha.Cucker-Smale flocking with inter particle bonding forces.IEEE Transactions on Automatic Control,2010,55(11):2617–2623.

    [17]S.M.Ahn,H.Choi,S.Y.Ha,et al.On collision-avoiding initial configurations to Cucker-Smale type flocking models.Communications in Mathematical Sciences,2012,10(2):625–643.

    [18]R.Olfati-Saber,R.M.Murray.Consensus problems in networks of agents with switching topology and time-delays.IEEE Transactions on Automatic Control,2004,49(9):1520–1533.

    [19]N.Moshtagh,N.Michael,A.Jadbabaie,et al.Visionbased,distributed control laws for motion coordination of nonholonomic robots.IEEE Transactions on Robotics,2009,25(4):851–860.

    [20]O.Saif,F.Isabelle,Z.R.Arturo.Real-time flocking of multiple quadrotor system of systems.IEEE Conference on System of Systems Engineering(SoSE),San Antonio:IEEE,2015:286–291.

    [21]A.Belkadi,D.Theilliol,L.Ciarletta,et al.Robust flocking control design for a fleet of autonomous agents.IEEE Conference on Control and Fault-Tolerant Systems(SysTol),Barcelona:IEEE,2016:1–6.

    [22]Z.Liu,C.Yuan,Y.Zhang.Active fault-tolerant control of unmanned quadrotor helicopter using linear parameter varying technique.Journal of Intelligent&Robotic Systems,2017,88(2/4):415–436.

    [23]Y.Zhang,A.Chamseddine,C.A.Rabbath,et al.Development of advanced FDD and FTC techniques with application to an unmanned quadrotor helicopter testbed.Journal of Franklin Institute,2013,350(9):2396–2422.

    [24]Z.Liu,Y.Zhang,X.Yu,et al.Unmanned surface vehicles:An overview of developments and challenges.Annual Reviews in Control,2016,41:71–93.

    [25]K.J.?str¨om,B.Wittenmark.Computer-Controlled Systems:Theory and Design.Englewood Cliffs:Prentice-Hall,1984.

    [26]Y.Zhang,J.Jiang.Integrated design of reconfigurable faulttolerant control systems.Journal of Guidance,Control,and Dynamics,2001,24(1):133–136.

    [27]B.Kedjar,A.H.Kamal.DSP-based implementation of an LQR with integral action for a three-phase three-wire shunt active power filter.IEEE Transactions on Industrial Electronics,2009,56(8):2821–2828.

    猜你喜歡
    高達(dá)游說總計(jì)
    美國科技巨頭游說政府費(fèi)用大增
    損耗率高達(dá)30%,保命就是保收益!這條70萬噸的魚要如何破存活率困局?
    2017公路交通管理十大熱詞
    中國公路(2018年1期)2018-01-27 21:54:10
    萬代FW GUNDAM CONVERGE《機(jī)動(dòng)武斗傳G高達(dá)》惡魔高達(dá)最終型態(tài)
    玩具世界(2017年10期)2018-01-22 02:52:45
    進(jìn)擊的磊編
    印度應(yīng)該使政治游說合法化嗎
    動(dòng)漫名人大聯(lián)歡
    Vishay推出開關(guān)頻率高達(dá)1.5MHz的同步降壓穩(wěn)壓器
    全國各地區(qū)、各類期刊出版的種數(shù)、印數(shù)、總印張、總金額
    游說公共關(guān)系對(duì)我國立法制度的影響
    一本一本综合久久| 国产av国产精品国产| 美女脱内裤让男人舔精品视频| 80岁老熟妇乱子伦牲交| 国产爽快片一区二区三区| 亚洲欧美日韩另类电影网站 | 欧美激情久久久久久爽电影| 夜夜爽夜夜爽视频| 少妇熟女欧美另类| 舔av片在线| 只有这里有精品99| 伦精品一区二区三区| 久热久热在线精品观看| 日本爱情动作片www.在线观看| 成人毛片60女人毛片免费| 赤兔流量卡办理| av在线app专区| 欧美丝袜亚洲另类| 听说在线观看完整版免费高清| 交换朋友夫妻互换小说| 特级一级黄色大片| 丝袜喷水一区| 欧美高清性xxxxhd video| 国产美女午夜福利| 有码 亚洲区| 久久久久久伊人网av| 在线观看av片永久免费下载| 少妇高潮的动态图| 日本熟妇午夜| a级一级毛片免费在线观看| 亚洲天堂国产精品一区在线| 国产亚洲一区二区精品| 国产视频内射| 成人免费观看视频高清| 18禁裸乳无遮挡动漫免费视频 | 亚洲av成人精品一二三区| 国产精品一区二区性色av| 国产在线男女| tube8黄色片| 99热这里只有是精品50| 五月天丁香电影| 天美传媒精品一区二区| 中文精品一卡2卡3卡4更新| 免费观看a级毛片全部| 免费看日本二区| 国产精品久久久久久精品电影小说 | av线在线观看网站| 久久精品国产亚洲网站| 亚洲精品日本国产第一区| av国产久精品久网站免费入址| 免费大片18禁| 丰满乱子伦码专区| 欧美精品国产亚洲| 黄片wwwwww| 91久久精品电影网| 欧美区成人在线视频| 国产精品一区二区在线观看99| h日本视频在线播放| 伊人久久精品亚洲午夜| 久久久精品免费免费高清| 国产高清三级在线| 热99国产精品久久久久久7| 国产成人91sexporn| 免费高清在线观看视频在线观看| 欧美日韩一区二区视频在线观看视频在线 | 精品人妻一区二区三区麻豆| 欧美成人精品欧美一级黄| 狂野欧美白嫩少妇大欣赏| 一区二区三区免费毛片| 欧美日韩视频高清一区二区三区二| 舔av片在线| 九色成人免费人妻av| 国产一区二区三区av在线| 亚洲激情五月婷婷啪啪| 少妇熟女欧美另类| 久久6这里有精品| 成人漫画全彩无遮挡| 在线观看三级黄色| 国产精品一及| 国产精品一及| 草草在线视频免费看| 日本色播在线视频| 日本色播在线视频| 国产黄频视频在线观看| 22中文网久久字幕| 国产熟女欧美一区二区| 国产男女超爽视频在线观看| 久久久久久久久久久免费av| 国产毛片在线视频| 久久这里有精品视频免费| 久久精品熟女亚洲av麻豆精品| 成人美女网站在线观看视频| 亚洲图色成人| 超碰97精品在线观看| 一级av片app| 狂野欧美激情性bbbbbb| 下体分泌物呈黄色| 人妻少妇偷人精品九色| 日韩精品有码人妻一区| 肉色欧美久久久久久久蜜桃 | 一区二区三区精品91| 免费观看av网站的网址| 亚洲色图av天堂| 免费人成在线观看视频色| 国产精品蜜桃在线观看| 黄色视频在线播放观看不卡| 五月天丁香电影| 国产v大片淫在线免费观看| 特大巨黑吊av在线直播| 日韩 亚洲 欧美在线| 最近中文字幕高清免费大全6| 偷拍熟女少妇极品色| 91精品伊人久久大香线蕉| 欧美日韩国产mv在线观看视频 | 又粗又硬又长又爽又黄的视频| 丰满人妻一区二区三区视频av| 一区二区av电影网| 久久精品国产自在天天线| 自拍偷自拍亚洲精品老妇| 91午夜精品亚洲一区二区三区| 久久精品人妻少妇| 成人毛片a级毛片在线播放| 国产 一区精品| 国产成人免费观看mmmm| 久久久久久久久大av| 看非洲黑人一级黄片| 亚洲精品久久久久久婷婷小说| 中文天堂在线官网| 国产免费福利视频在线观看| 人体艺术视频欧美日本| 亚洲成人av在线免费| 成人免费观看视频高清| 少妇高潮的动态图| 久久久久久久久久久免费av| 亚洲av二区三区四区| 网址你懂的国产日韩在线| 看十八女毛片水多多多| 国产精品.久久久| 内射极品少妇av片p| 日韩成人伦理影院| 日日摸夜夜添夜夜添av毛片| 日韩在线高清观看一区二区三区| 一级毛片aaaaaa免费看小| av在线老鸭窝| 新久久久久国产一级毛片| 久久久久久久大尺度免费视频| 久久精品国产亚洲网站| 黄色视频在线播放观看不卡| 久久久色成人| 国产成人免费无遮挡视频| 亚洲av一区综合| av一本久久久久| 精品久久国产蜜桃| 2018国产大陆天天弄谢| 久久久久久久久大av| 久久久成人免费电影| 免费观看a级毛片全部| 成人黄色视频免费在线看| 汤姆久久久久久久影院中文字幕| 国产午夜福利久久久久久| 高清午夜精品一区二区三区| 网址你懂的国产日韩在线| 大陆偷拍与自拍| 九草在线视频观看| 日本免费在线观看一区| 国产有黄有色有爽视频| 天堂中文最新版在线下载 | 日本免费在线观看一区| 免费观看在线日韩| 免费观看av网站的网址| 午夜福利网站1000一区二区三区| 寂寞人妻少妇视频99o| 熟女电影av网| 日产精品乱码卡一卡2卡三| av在线观看视频网站免费| 中文欧美无线码| 一区二区三区精品91| 美女主播在线视频| 男女下面进入的视频免费午夜| 日韩大片免费观看网站| 国产成人福利小说| 久久久久久国产a免费观看| 精品久久久久久久久av| 国产男人的电影天堂91| 久久久国产一区二区| 久久人人爽人人爽人人片va| 亚洲国产欧美在线一区| 丰满人妻一区二区三区视频av| 日韩三级伦理在线观看| 国产男女内射视频| 欧美国产精品一级二级三级 | 午夜免费鲁丝| 在线观看美女被高潮喷水网站| 午夜亚洲福利在线播放| 能在线免费看毛片的网站| 禁无遮挡网站| 一级黄片播放器| 直男gayav资源| 波多野结衣巨乳人妻| 五月开心婷婷网| 亚洲欧美精品自产自拍| 神马国产精品三级电影在线观看| 哪个播放器可以免费观看大片| 免费电影在线观看免费观看| 亚洲精品国产成人久久av| 日本av手机在线免费观看| 一区二区三区免费毛片| 最近2019中文字幕mv第一页| 国产探花在线观看一区二区| 国产午夜福利久久久久久| 精品久久久久久久久av| 亚洲成人久久爱视频| 另类亚洲欧美激情| 亚洲成人精品中文字幕电影| 国产视频首页在线观看| 麻豆精品久久久久久蜜桃| av专区在线播放| 亚洲av欧美aⅴ国产| 大码成人一级视频| 国产精品熟女久久久久浪| 又爽又黄a免费视频| 熟女电影av网| 精品国产三级普通话版| 在线观看美女被高潮喷水网站| 亚洲精品第二区| 久久这里有精品视频免费| 男人舔奶头视频| 亚洲精品国产成人久久av| 99久久精品国产国产毛片| 国产探花在线观看一区二区| 欧美精品一区二区大全| 搡老乐熟女国产| 毛片女人毛片| 免费少妇av软件| 黄色一级大片看看| 亚洲成色77777| 蜜臀久久99精品久久宅男| 日韩不卡一区二区三区视频在线| 久久人人爽av亚洲精品天堂 | 亚洲国产最新在线播放| 男插女下体视频免费在线播放| 在线免费十八禁| 久热久热在线精品观看| 国产免费又黄又爽又色| 日本熟妇午夜| 国产高潮美女av| 最新中文字幕久久久久| 色哟哟·www| 亚洲欧美日韩卡通动漫| 亚洲欧美中文字幕日韩二区| 在线亚洲精品国产二区图片欧美 | 最近最新中文字幕大全电影3| 亚洲国产精品999| 免费观看av网站的网址| 亚洲精品日韩av片在线观看| 国产成人免费观看mmmm| 久久综合国产亚洲精品| 性色avwww在线观看| 亚洲精品第二区| 中文字幕人妻熟人妻熟丝袜美| 成年女人在线观看亚洲视频 | 舔av片在线| 禁无遮挡网站| 久久久久国产精品人妻一区二区| 中文字幕免费在线视频6| 成年女人在线观看亚洲视频 | 男女国产视频网站| 成人无遮挡网站| 别揉我奶头 嗯啊视频| 成人免费观看视频高清| 精品国产乱码久久久久久小说| 国产av国产精品国产| 国产在线一区二区三区精| a级一级毛片免费在线观看| 国产成人精品福利久久| 人妻夜夜爽99麻豆av| 欧美日韩精品成人综合77777| 一级片'在线观看视频| 国产免费视频播放在线视频| 麻豆乱淫一区二区| videos熟女内射| 国产一区二区三区综合在线观看 | 毛片一级片免费看久久久久| 熟女人妻精品中文字幕| 99久久人妻综合| 亚洲精华国产精华液的使用体验| 全区人妻精品视频| 欧美日韩在线观看h| 一级片'在线观看视频| 国模一区二区三区四区视频| 婷婷色av中文字幕| 精品久久久久久久人妻蜜臀av| 国产高清不卡午夜福利| av国产免费在线观看| 亚洲精品国产成人久久av| 日本一二三区视频观看| 国产欧美日韩一区二区三区在线 | 亚洲av成人精品一区久久| av在线亚洲专区| 91久久精品电影网| 亚洲一级一片aⅴ在线观看| 午夜亚洲福利在线播放| 亚洲欧美日韩另类电影网站 | 2021少妇久久久久久久久久久| 国产69精品久久久久777片| 国产色婷婷99| 精品国产一区二区三区久久久樱花 | 五月天丁香电影| 亚洲美女搞黄在线观看| 岛国毛片在线播放| 日韩中字成人| 亚洲精品久久午夜乱码| 亚洲久久久久久中文字幕| 日韩国内少妇激情av| 亚洲精品久久久久久婷婷小说| 国产黄a三级三级三级人| 国产精品熟女久久久久浪| 国产 一区 欧美 日韩| 网址你懂的国产日韩在线| 婷婷色综合大香蕉| 日韩成人av中文字幕在线观看| 一级av片app| 亚洲无线观看免费| 久久久午夜欧美精品| 精品久久久久久久久av| 午夜老司机福利剧场| 99久久人妻综合| 中文天堂在线官网| 一级毛片久久久久久久久女| 成年免费大片在线观看| 男女无遮挡免费网站观看| 在线天堂最新版资源| 少妇人妻 视频| 久久韩国三级中文字幕| 蜜桃亚洲精品一区二区三区| 黄色配什么色好看| 日产精品乱码卡一卡2卡三| 男女国产视频网站| 久久99热6这里只有精品| 麻豆成人av视频| 国产一区二区三区av在线| 69人妻影院| 国产爽快片一区二区三区| 伊人久久精品亚洲午夜| 久久99热这里只有精品18| 2021少妇久久久久久久久久久| 亚洲天堂国产精品一区在线| 国内精品美女久久久久久| 亚州av有码| 成年人午夜在线观看视频| 成人综合一区亚洲| 国产高潮美女av| 啦啦啦在线观看免费高清www| 久久久久国产精品人妻一区二区| 免费av观看视频| 2021天堂中文幕一二区在线观| 久久精品久久精品一区二区三区| 中文字幕免费在线视频6| 99精国产麻豆久久婷婷| 久久久久久伊人网av| 成年人午夜在线观看视频| 亚洲av中文字字幕乱码综合| 免费高清在线观看视频在线观看| 国产亚洲最大av| 久久99热6这里只有精品| 国产伦理片在线播放av一区| 少妇人妻一区二区三区视频| 嫩草影院精品99| 少妇人妻精品综合一区二区| 欧美高清成人免费视频www| 欧美日韩在线观看h| 中国国产av一级| 亚洲不卡免费看| 午夜福利在线观看免费完整高清在| 大码成人一级视频| 久久久色成人| 国产伦理片在线播放av一区| 美女主播在线视频| 久久午夜福利片| 一级爰片在线观看| 午夜福利高清视频| 午夜免费鲁丝| 久久精品国产鲁丝片午夜精品| 边亲边吃奶的免费视频| 国产一区二区亚洲精品在线观看| 日本黄色片子视频| 成年版毛片免费区| 97超视频在线观看视频| 精品人妻熟女av久视频| 亚洲无线观看免费| 国内揄拍国产精品人妻在线| 美女内射精品一级片tv| 国产精品麻豆人妻色哟哟久久| 中文天堂在线官网| 成人漫画全彩无遮挡| 亚洲精品国产av蜜桃| 国产有黄有色有爽视频| 亚洲精品国产色婷婷电影| 国产精品久久久久久精品电影小说 | 舔av片在线| 91精品国产九色| 久久久久久久久久人人人人人人| 亚洲av.av天堂| 午夜激情福利司机影院| 亚洲国产日韩一区二区| 亚洲精品色激情综合| 日韩一区二区三区影片| 一个人看视频在线观看www免费| 久久久久久久久大av| 在线免费十八禁| 黄色配什么色好看| 大码成人一级视频| 最近的中文字幕免费完整| 亚洲成色77777| 男女国产视频网站| 国产乱人偷精品视频| 天堂中文最新版在线下载 | 国产在视频线精品| 联通29元200g的流量卡| 久久99蜜桃精品久久| 六月丁香七月| 久久精品熟女亚洲av麻豆精品| 亚洲一区二区三区欧美精品 | 亚洲av欧美aⅴ国产| 噜噜噜噜噜久久久久久91| 美女视频免费永久观看网站| 黄色日韩在线| 九色成人免费人妻av| 性色av一级| h日本视频在线播放| 啦啦啦在线观看免费高清www| 免费黄色在线免费观看| 久久鲁丝午夜福利片| 免费不卡的大黄色大毛片视频在线观看| 简卡轻食公司| 亚洲精品一二三| 一区二区av电影网| 亚洲精品日本国产第一区| 中国美白少妇内射xxxbb| 国产精品av视频在线免费观看| 国产老妇伦熟女老妇高清| 亚洲无线观看免费| 亚洲伊人久久精品综合| 国产精品熟女久久久久浪| 亚洲av中文字字幕乱码综合| 婷婷色综合大香蕉| 禁无遮挡网站| 亚洲欧美成人精品一区二区| 日韩精品有码人妻一区| 亚洲av免费高清在线观看| 欧美老熟妇乱子伦牲交| 国产精品秋霞免费鲁丝片| 国产淫片久久久久久久久| 91狼人影院| 国产精品久久久久久精品电影| 国产精品99久久99久久久不卡 | 午夜亚洲福利在线播放| 国产日韩欧美亚洲二区| 亚洲精品视频女| 毛片一级片免费看久久久久| 国产探花在线观看一区二区| 深夜a级毛片| 少妇 在线观看| 在线a可以看的网站| 国产一区亚洲一区在线观看| 热re99久久精品国产66热6| 插逼视频在线观看| 久久影院123| 亚洲天堂国产精品一区在线| 精品一区在线观看国产| 日韩一区二区三区影片| 夫妻性生交免费视频一级片| 激情五月婷婷亚洲| 极品少妇高潮喷水抽搐| 日产精品乱码卡一卡2卡三| 国模一区二区三区四区视频| 国产精品不卡视频一区二区| 一区二区av电影网| 在线免费观看不下载黄p国产| 女人久久www免费人成看片| 亚洲内射少妇av| 九九爱精品视频在线观看| 亚洲激情五月婷婷啪啪| 精品久久久久久久末码| 国产精品人妻久久久久久| 一级毛片 在线播放| 啦啦啦啦在线视频资源| 肉色欧美久久久久久久蜜桃 | 亚洲在线观看片| 黄片wwwwww| 少妇 在线观看| 国产熟女欧美一区二区| 视频中文字幕在线观看| 日韩电影二区| 草草在线视频免费看| 久久人人爽人人片av| 亚洲电影在线观看av| 免费观看性生交大片5| 可以在线观看毛片的网站| 久久99热这里只有精品18| 一级黄片播放器| 国产精品久久久久久久电影| 国产黄片视频在线免费观看| 国产色婷婷99| 亚洲美女视频黄频| 久久精品久久久久久久性| 永久免费av网站大全| 国产免费一区二区三区四区乱码| 欧美老熟妇乱子伦牲交| 亚洲自偷自拍三级| 熟妇人妻不卡中文字幕| 亚洲精品亚洲一区二区| 一级毛片我不卡| 亚洲精华国产精华液的使用体验| 中国三级夫妇交换| 欧美 日韩 精品 国产| 日韩一本色道免费dvd| 亚洲国产最新在线播放| 日本熟妇午夜| 91久久精品国产一区二区三区| 国产成人a区在线观看| 又大又黄又爽视频免费| 久久久久性生活片| 国产免费一级a男人的天堂| 美女内射精品一级片tv| 人人妻人人爽人人添夜夜欢视频 | 亚洲va在线va天堂va国产| 久久久久久久久久成人| 男女边吃奶边做爰视频| 免费黄频网站在线观看国产| 成人国产麻豆网| 又爽又黄无遮挡网站| 日韩av在线免费看完整版不卡| 久久久久九九精品影院| 久久久久国产网址| 听说在线观看完整版免费高清| 精品视频人人做人人爽| 亚洲av男天堂| 如何舔出高潮| 国产黄频视频在线观看| 水蜜桃什么品种好| 日本黄大片高清| 一级毛片我不卡| 女人久久www免费人成看片| 18禁在线播放成人免费| 99久久精品一区二区三区| 国产伦精品一区二区三区视频9| 99热全是精品| 国产乱人视频| 2021少妇久久久久久久久久久| 免费av不卡在线播放| 校园人妻丝袜中文字幕| 亚洲精华国产精华液的使用体验| 高清av免费在线| 国产精品麻豆人妻色哟哟久久| 日韩伦理黄色片| 91精品国产九色| 国产精品成人在线| 熟女人妻精品中文字幕| 人妻夜夜爽99麻豆av| 精品久久久精品久久久| 如何舔出高潮| 国产一区二区三区av在线| 少妇人妻精品综合一区二区| 欧美精品一区二区大全| 99久国产av精品国产电影| 精品国产一区二区三区久久久樱花 | 又黄又爽又刺激的免费视频.| 亚洲国产精品专区欧美| 如何舔出高潮| 97人妻精品一区二区三区麻豆| 少妇熟女欧美另类| 男女边摸边吃奶| 亚洲成人久久爱视频| 亚洲精品aⅴ在线观看| 日韩亚洲欧美综合| 国产午夜福利久久久久久| 久久久久九九精品影院| 精品国产露脸久久av麻豆| 国产免费一区二区三区四区乱码| 国产毛片a区久久久久| 一区二区三区四区激情视频| 搞女人的毛片| 亚洲精品久久午夜乱码| 国产精品99久久久久久久久| 一级毛片久久久久久久久女| 熟女av电影| 深爱激情五月婷婷| 麻豆成人av视频| 校园人妻丝袜中文字幕| 高清视频免费观看一区二区| 国产综合精华液| 日韩,欧美,国产一区二区三区| 免费观看性生交大片5| 九草在线视频观看| 久久韩国三级中文字幕| 亚洲成色77777| 亚洲va在线va天堂va国产| 欧美日韩一区二区视频在线观看视频在线 | 青春草亚洲视频在线观看| 尾随美女入室| 久久久久久久精品精品| 少妇高潮的动态图| 欧美日韩国产mv在线观看视频 | 久久久久久久久久久免费av| 美女内射精品一级片tv| 精品国产露脸久久av麻豆| 国产精品嫩草影院av在线观看| 永久免费av网站大全| 亚洲人与动物交配视频| 亚洲精品自拍成人| 韩国高清视频一区二区三区| 亚洲天堂av无毛| 亚洲精品一区蜜桃| 麻豆国产97在线/欧美|