• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Genotype-by-environment interaction for grain yield among novel cowpea (Vigna unguiculata L.)selections derived by gamma irradiation

    2018-06-04 03:33:36LydiHornHusseinShimelisFtmSrsuLernmoreMwdzingeniMrkLing
    The Crop Journal 2018年3期

    Lydi Horn,Hussein Shimelis,Ftm Srsu,Lernmore Mwdzingeni,*,Mrk D.Ling

    a

    aAfrican Centre for Crop Improvement,University of KwaZulu-Natal,P/Bag X01,Scottsville 3209,Pietermaritzburg,South Africa

    bDirectorate of Research and Training,Plant Production Research,Ministry of Agriculture,Water and Forestry,Private Bag 13184,Windhoek,Namibia

    cPlant Breeding and Genetics Section,Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture,Vienna,Austria

    1.Introduction

    Cowpea(Vigna unguiculata L.;2n=2×=22)is an important legume crop widely grown in South America,sub-Saharan Africa,and Asia.It withstands harsh growing conditions,particularly drought stress[1,2].The grain,young pods,and succulent leaves are used for human food,while the foliage is an important livestock feed[3].Further,cowpea restores soil fertility through nitrogen fixation,making it an ideal component crop in rotation systems.Production and productivity of cowpea has been low in Namibia,owing to unavailability of seeds of improved cultivars,harsh climatic conditions,diseases,insect pests,and parasitic weeds[2].The present yield of cowpea ranges from 0.10 to 0.60 t ha?1in Namibia,a range far below the potentially attainable yields of 1.5 to 3.0 t ha?1reported elsewhere[4].There is thus a need to breed improved cowpea cultivars with enhanced grain yieldand quality to meet local and regional production and productivity and market demands.

    Design,development,and deployment of improved cultivars require adequate genetic variation,achieved through crosses involving selected parents or targeted mutagenesis[5,6].The potential of chemical and physical mutagenic agents to induce genetic variation of cowpea for grain yield and yield-related traits has been well reported[7,8].Induced mutagenesis has been successfully used to modify several agronomic traits of cowpea,such as plant height,maturity,seed shattering resistance,disease resistance,seed color,seed size,and yield[7–9].

    Genotype-by-environment(G×E)interaction analysis is an important prerequisite for recommendation of novel selections for large-scale production.It enables assessment of the relative performance and stability of genotypes for yield and yield-related traits[1,10,11].The performance of tested genotypes is influenced by the genotype,the environment,and G×E interaction[1].The growing environment often masks the potential genetic expression,leading to poor genetic gain from artificial selection,especially for quantitative traits such as grain yield.G×E analysis involves evaluation of novel selections across representative growing environments,which will assist breeders to recommend promising genotypes based on their narrow or broad adaptation.G×E analyses are valuable during the final stages of selection of elite breeding materials.Several statistical techniques have been widely adapted to analyze and interpret G×E data,including the additive main effect and multiplicative interaction(AMMI)and the genotype main effect plus genotype-by-environment interaction(GGE)biplot analysis[12,13].

    A joint cowpea mutation breeding project was initiated between the government of Namibia and the International Atomic Energy Agency(IAEA)under a Technical Cooperation project to develop improved cultivars with better adaptation[2].This project resulted in the selection of promising mutants with high yield potential,drought tolerance,and insect pest resistance through continuous selfing and selection from the M2 to M7 generations[14].The selected M6 and M7 elite mutants needed to be evaluated across representative growing environments to determine their performance and yield stability for effective cultivar recommendation and to identify suitable production environments.Accordingly,the objectives of this study were to evaluate the effects of G×E interaction and yield stability among elite cowpea selections derived by gamma irradiation and to identify promising genotypes with narrow or broader adaptation for production or future breeding programs in Namibia or similar environments.

    2.Material and methods

    2.1.Study sites and plant material

    The study was conducted at three sites:Bagani(?18°09′61.93″S,21°56′24.14″E),Mannheim(19°12′21.4″S,17°42′29.1″E),and Omahenene(?17°44′29.04″S,14°78′48.21″E)during the 2014/2015 and 2015/2016 cropping seasons.This plan provided six testing environments including Bagani 2014/2015,Bagani 2015/2016,Mannheim 2014/2015,Mannheim 2015/2016,Omahenene2014/2015,and Omahenene2015/2016.The physicochemical properties of soils at Bagani,Mannheim and Omahenene research sites are described by Horn et al.[14].Mean monthly and total rainfall(mm)at the three sites during 2014/2015 and 2015/2016 are presented in Table 1.The study used37cowpea genotypes comprising34newly developed mutant lines,selected for their superior agronomic performance,and three parental checks(Bira,Nakare and Shindimba).The mutants were at the M6 generation in 2014/2015 and M7 in 2015/2016.Details of the genotypes are presented in Table 2.

    2.2.Experimental design and data collection

    The experiments were performed using a randomized complete block design with three replications.Experimental units consisted of 8 rows of 4 m length with spacings of 20 cm within and 75 cm between rows.The crops were established under rainfed conditions with supplementary irrigation when required.Two middle rows(net plots)were harvested to estimate grain yield per plot,later converted to yield per hectare(t ha?1).The outer rows were not used for yield estimation in order to control border effects and to minimize experimental error.

    2.3.Data analysis

    Grain yield data was subjected to a combined analysis of variance(ANOVA)using GenStat 18 statistical software[15].The following AMMI model according to Gauch(16)was used for G×E and yield stability analyses based on the principal component analysis(PCA):

    where Ygeis the yield of genotype g in environment e,μ is the grand mean, αgis the genotype mean deviation, βeis the environment mean deviation,λnis the eigenvalue of the nthprincipal component(PCA)axis,Υgnand ηenare the genotype and environmental PCA scores for the nthPCA axis,and θge,is the residual.The AMMI stability value(ASV)was calculated according to Purchase,Hatting and Van Deventer[17]as follows:

    where SS is the sum of squares of the IPCAs and IPCA1 and IPCA2 are the first and second interaction principal component axes,respectively.Means of the genotypes were used for GGE biplot analysis.

    3.Results

    3.1.AMMI analysis

    Mean yield for the studied traits varied widely,from 0.74 to 2.83 t ha?1.Table 3 shows the mean grain yields(t ha?1)of the34 cowpea mutant genotypes and their three parental lines in six environments in northern Namibia.AMMI analysis of variance revealed highly significant main effects(P<0.001)of genotypes,environments and their interactions(Table 4).Genotype,G×E interaction,and the AMMI model explained respectively 37.95%,33.83%,and 77.49%of the total observed variation.In contrast,interaction principal component axes IPCA1 and IPCA2 explained respectively 44.63%and 23.41%of the total variation.Genotype G9 was ranked first across all the test environments.Mutant lines G19 and G22,developed from the parent Nakare irradiated at 150 Gy,were among the high and stable yielders.Based on the AMMI biplot(Fig.1),acute angles were observed between vectors of genotypes G4,G5,and G15 and those of environments E1,E3,and E5.The acute angle between the lines that connect the biplot origin and environments E1 and E3,as well as E2,E4,and E6 showed their close relationships.Genotype G20 was the most stable,with an ASV of 0.08(Table 5).

    Table 1–Mean monthly and total rainfall(mm)during the study period in 2014/2015 and 2015/2016 at three field sites.

    See codes of genotypes(G1 to G37)in Table 3.Min,minimum;Max,maximum,CV,coefficient of variance.

    3.2.GGE biplot analysis

    A “which won where”polygon view of the relationship between genotypes and environments is presented in Fig.2.The biplot explained 75.57%of the total variation observed,of which 63.57%was explained by the first principal component(PC1),while the second principal component(PC2)explained 12%.Genotypes G3,G6,G9,G24,and G29 were situated at the corners of the “which won where”polygon indicating that they were outstanding genotypes in particular environments[13].Among these,G9 was the highest-yielding genotype in all the test environments.Other genotypes including G1,G2,G13,G17,and G20 were located close to the origin or center of the GGE biplot,indicating that they showed stable performance across the test sites[13].In contrast,all six test environments were grouped into one mega-environment,in which the genotypes G9,G10,G12,and G13 were associated.The best-performing mutant line was G9,followed by G10 and G12 with above-average yield in environments E6 and E3(Fig.3).Fig.4 presents the average-environment coordination(AEC)view comparing environments relative to an ideal environment.It indicates that environments E1 and E3 were located in the direction of the ideal environment.Large IPC1 scores of 0.8 and 1.0 were obtained from E1 and E5,respectively,while E2 and E4 displayed a low IPC1 score of 0.25.G9 fell closer to the centre of the concentric circle of the AEC view,next to E3.Other desirable genotypes were G4,G10,G12,and G14,located on the third and fourth concentric circles.

    Table 2–List of 34 cowpea mutant genotypes and three parental lines evaluated at three sites(Bagani,Mannheim,and Omahenene)during the 2014/2015 and 2015/2016 cropping seasons at the M6 and M7 generations,respectively.

    Table 3 –Mean grain yield(t ha?1)of 34 cowpea mutant genotypes and their three parental lines tested in six environments in northern Namibia.

    4.Discussion

    Significant G×E effects observed in the present study indicate that the genotypes evaluated do not show consistent performance across test environments.This allows for an investigation of the nature and magnitude of G×E,which cannot be achieved by a standard analysis of variance[16,17].Genotype G9,which was ranked as the highest yielder across all environments,could be the best candidate for production across sites.The AMMI biplot reveals the relationship between genotypes and environments,while AMMI stability values provide more information on the variation among genotypes.Stable genotypes have ASV values close to zero[18].Thus,G20,with an ASV of 0.08,could harbor genes for adaptability to various agroclimatic conditions.This mutant line can be used during breeding for yield stability.Similarly,IPCA scores are an indication of genotype stability.The greater the IPCA scores,either negative or positive,the more specifically adapted is a genotype to particular environments.The closer the IPCA scores approach to zero,the more stable or adapted is the genotype across all the test environments,as observed for line G20.

    GGE biplot analysis provides a graphical representation of the relationships between genotypes and environments and can effectively reveal genotype performance and stability[13].The vertex mutant lines G3,G6,G9,G24,and G29 were among the environmentally most responsive genotypes and can be recommended for specific adaptation.In contrast,G1,G2,G13,G17,and G20,located close to the origin,were among the environmentally least responsive lines and can be used in breeding for wide adaptation.The presence of only onemega-environment in the present study suggests that the six sites did not differ significantly in terms of discriminating capacity,so that deploying genotypes in any one of those environments would give similar results[13].This finding implies that future evaluation of the same set of materials could be performed in the most representative of the environments in order to save costs.In this case,the ideal test environment is the one with the largest PC1 scores and should have more power to discriminate genotype main effects[19,20].Thus,E3 and E1,located closest to the ideal environment with a large PC1 score could be the best sites for germplasm evaluation.Despite this observation,genotypes G9,G10,and G12 could be targeted specifically for production in environments E6 and E3,where they performed above average.

    Table 4–AMMI analysis of variance for seed yield of 34 cowpea mutant genotypes and their three parental lines tested in six environments in northern Namibia.

    An ideal genotype is the one that shows the highest mean performance and is highly stable across all test environments[13,19].Based on the average-environment coordination(AEC)view comparison biplot,an ideal genotype is associated with greatest vector length of the high-yielding genotypes,and a desirable genotype is the one that is located closer to an ideal genotype,which is usually at the center of the concentric circles.Mutant line G9 appears to be adapted specifically to E3.This genotype fell at the corners or vertices of the polygon view close to E3(Fig.2),performing above average and close to E3(Fig.3)and positioned close to the ideal environment(Fig.4).This genotype showed the highest yield in all the test environments.Thus,it may be recommended for production over all the present study sites.Genotypes that can be selected for cultivation across the studied environments or for future breeding include G4,G10,G12,and G14 located on the third and fourth concentric circles close to the average environment.Genotype G14(Shindimba)is one of the check varieties,known for high yield and large white grains,but is disfavored by farmers because of its coiled pod shape.The newly developed mutant derivatives of Shindimba,namely G3,G4,G9,G10,and G12 had straight pods,indicating that in addition to grain yield,mutagenesis also created variation for other key traits.

    5.Conclusions

    Table 5–AMMI adjusted combined mean grain yield(t ha?1),IPCA scores of 33 cowpea mutant genotypes and their three parental lines tested in six environments in northern Namibia.

    This study selected promising cowpea mutant genotypes using G×E analyses involving different agroecological conditions.Four mutant selections:G9(ShL3P74),G10(ShR3P4),G12(ShR9P5),and G4(ShL2P4),showed the high grain yields,2.83,2.06,1.99,and 1.95 t ha?1,respectively.Elite mutant selections derived from the parental line Shindimba:G4,G9,G10,and G12,were among the highest grain yielders with the straight pod shape desired by cowpea farmers in northern Namibia.Accordingly,the above novel selections can be recommended for direct production or future cowpea breeding programs in Namibia or similar environments.

    Acknowledgments

    Fig.2––The“which won where”view of the GGE biplot showing which genotypes performed best in which environment.E1,Bagani 2014/2015;E2,Bagani 2015/2016;E3,Mannheim 2014/2015;E4,Mannheim 2015/2016;E5,Omahenene 2014/2015;E6,Omahenene 2015/2016.Dotted vertical and horizontal lines indicate points where the PC1 and PC2 axes had respective values of zero.Vertices of the polygon indicate superior genotypes in each sector.See codes of genotypes(G1 to G37)in Table 3.

    Fig.3–Average-environment coordination(AEC)view ranking test environments in terms of the relative performance of genotypes.E1,Bagani 2014/2015;E2,Bagani 2015/2016;E3,Mannheim 2014/2015;E4,Mannheim 2015/2016;E5,Omahenene 2014/2015;E6,Omahenene 2015/2016.Dotted vertical and horizontal lines indicate points where the PC1 and PC2 axes had respective values of zero.Vertices of the polygon indicate superior genotypes in each sector and green dotted lines help to visualize the distance of genotypes and environments from the biplot origin.See codes of genotypes(G1 to G37)in Table 3.

    Fig.4–The average-environment coordination(AEC)view comparison biplot comparing environments relative to an ideal environment(the center of the concentric circles).E1,Bagani 2014/2015;E2,Bagani 2015/2016;E3,Mannheim 2014/2015;E4,Mannheim 2015/2016;E5,Omahenene 2014/2015;E6,Omahenene 2015/2016.Dotted vertical and horizontal lines indicate points where the PC1 and PC2 axes had respective values of zero.The small circle on the arrowed line shows the average environment,the arrow indicates the ideal environment,and concentric circles indicate the distances of genotypes and environments from the ideal environment.See codes of genotypes(G1 to G37)in Table 3.

    This work was supported by funds from the International Atomic Energy Agency(IAEA)through theTC Project(NAM5012):Developing High Yielding and Drought Tolerant Crops through Mutation Breeding)and the Ministry of Agriculture,Water and Forestry of Namibia.The University of KwaZulu-Natal and the Ministry of Agriculture,Water and Forestry(MAWF)of the government of Namibia are thanked for overall research support to the first author.Loide Aron,Rose-Marry Hukununa,Kangumba Annethe and Nghishekwa Alfeus are thanked for technical support and data collection.

    [1]B.Adewale,C.Okonji,A.Oyekanmi,D.Akintobi,C.Aremu,Genotypic variability and stability of some grain yield components of cowpea,Afr.J.Agric.Res.5(2010)874–880.

    [2]L.Horn,H.Shimelis,M.Laing,Participatory appraisal of production constraints,preferred traits and farming system of cowpea in the northern Namibia:implications for breeding,Legum.Res.38(2015)691–700.

    [3]O.Agbogidi,Screening six cultivars of cowpea(Vignia unguiculata L.)walp for adaptation to soil contaminated with spent engine oil,J.Environ.Chem.Ecotoxicol.2(2010)103–109.

    [4]O.A.Gbaye,G.J.Holloway,Varietal effects of cowpea,Vigna unguiculata,on tolerance to malathion in Callosobruchus maculatus(Coleoptera:Bruchidae),J.Stored Prod.Res.47(2011)365–371.

    [5]J.A.de Ronde,M.Spreeth,N.Mayaba,W.J.van Rensburg,N.Matole,in:Q.Y.Shu(Ed.),Evaluation and characterization of mutant cowpea plants for enhanced abiotic stress tolerance,Induced Plant Mutations in the Genomics Era.Proceedings of an International Joint FAO/IAEA Symposium,Vienna,Austria,2008Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture,International Atomic Energy Agency,Vienna,Austria,2009.

    [6]C.Mba,Induced mutations unleash the potentials of plant genetic resources for food and agriculture,Agron.J.3(2013)200–231.

    [7]S.Goyal,S.Khan,Induced mutagenesis in urdbean(Vigna mungo L.Hepper):a review,Int.J.Bot.6(2010)194–206.

    [8]D.Singh,S.Sharma,M.Lal,B.Ranwah,V.Sharma,Induction of genetic variability for polygenic traits through physical and chemical mutagens in cowpea[Vigna unguiculata(L.)walp],Legum.Res.36(2013)10–14.

    [9]R.M.Gaafar,M.Hamouda,A.Badr,Seed coat color,weight and eye pattern inheritance in gamma-rays induced cowpea M2-mutant line,J.Genet.Eng.Biotechnol.14(2016)61–68.

    [10]Y.Ali,Z.Aslam,F.Hussain,A.Shakur,Genotype and environmental interaction in cowpea(Vigna unguiculata L.)for yield and disease resistance,Int.J.Environ.Sci.Technol.1(2004)119–123.

    [11]O.Ariyo,Assessment of selection techniques in genotype×interaction in cowpea Vigna unguiculata(L.)walp,Afr.J.Agric.Res.2(2007)352–355.

    [12]W.Yan,M.S.Kang,B.Ma,S.Woods,P.L.Cornelius,GGE biplot vs.AMMI analysis of genotype-by-environment data,Crop Sci.47(2007)643–653.

    [13]W.Yan,N.A.Tinker,Biplot analysis of multi-environment trial data:principles and applications,Can.J.Plant Sci.86(2006)623–645.

    [14]L.N.Horn,H.M.Ghebrehiwot,H.A.Shimelis,Selection of novel cowpea genotypes derived through gamma irradiation,Front.Plant Sci.7(2016)1–13.

    [15]R.Payne,A Guide to ANOVA and Design in GenStat,VSN International,Hemel Hempstead,Hertfordshire,UK,2014.

    [16]H.G.Gauch,A simple protocol for AMMI analysis of yield trials,Crop Sci.53(2013)1860–1869.

    [17]J.L.Purchase,H.Hatting,C.S.Van Deventer,Genotype×environment interaction of winter wheat(Triticum aestivum L.)in South Africa:II.Stability analysis of yield performance,S.Afr.J.Plant Soil 17(2000)95–100.

    [18]N.Mahmodi,A.Yaghotipoor,E.Farshadfar,AMMI stability value and simultaneous estimation of yield and yield stability in bread wheat(Triticum aestivum L.),Aust.J.Crop.Sci.5(2011)1837–1844.

    [19]Y.Kaya,M.Ak?ura,S.Taner,GGE-biplot analysis of multienvironment yield trials in bread wheat,Turk.J.Agric.For.30(2006)325–337.

    [20]M.Ding,B.Tier,W.Yan,H.X.Wu,M.B.Powell,T.A.McRae,Application of GGE biplot analysis to evaluate genotype(G),environment(E),and G×E interaction on Pinus radiata:a case study,N.Z.J.For.Sci.38(2008)132–142.

    国产精品一国产av| 色网站视频免费| 精品亚洲成国产av| 久久久久久久大尺度免费视频| 一级黄色大片毛片| 9191精品国产免费久久| 中文字幕色久视频| 欧美日韩视频精品一区| 色精品久久人妻99蜜桃| 夫妻性生交免费视频一级片| 美女午夜性视频免费| 亚洲五月色婷婷综合| 好男人视频免费观看在线| 啦啦啦在线观看免费高清www| 国产国语露脸激情在线看| 亚洲av欧美aⅴ国产| 午夜福利,免费看| 国产午夜精品一二区理论片| 久久狼人影院| 自线自在国产av| 悠悠久久av| 乱人伦中国视频| 亚洲 国产 在线| 男人舔女人的私密视频| 午夜精品国产一区二区电影| 亚洲三区欧美一区| 下体分泌物呈黄色| 手机成人av网站| 一本综合久久免费| 真人做人爱边吃奶动态| 亚洲精品av麻豆狂野| 人人妻人人添人人爽欧美一区卜| 国产激情久久老熟女| 可以免费在线观看a视频的电影网站| 日本vs欧美在线观看视频| 国产麻豆69| 免费观看a级毛片全部| 成人手机av| 国产精品国产三级专区第一集| 汤姆久久久久久久影院中文字幕| 亚洲国产欧美一区二区综合| 美女大奶头黄色视频| 亚洲欧美一区二区三区黑人| 亚洲一码二码三码区别大吗| 99国产综合亚洲精品| 丝袜美腿诱惑在线| 欧美激情高清一区二区三区| 大香蕉久久网| 国产精品.久久久| 啦啦啦 在线观看视频| 在线天堂中文资源库| 欧美黑人精品巨大| 午夜福利乱码中文字幕| 国产精品久久久人人做人人爽| 国产精品久久久人人做人人爽| 午夜福利一区二区在线看| 少妇被粗大的猛进出69影院| 91精品三级在线观看| 亚洲久久久国产精品| 中文字幕人妻丝袜一区二区| 少妇被粗大的猛进出69影院| 80岁老熟妇乱子伦牲交| 在线观看免费视频网站a站| 成人亚洲精品一区在线观看| 国产亚洲精品久久久久5区| 亚洲av欧美aⅴ国产| 日韩一本色道免费dvd| 亚洲av国产av综合av卡| 精品免费久久久久久久清纯 | 国产亚洲av片在线观看秒播厂| 亚洲av成人不卡在线观看播放网 | 国产精品一二三区在线看| 午夜91福利影院| 9191精品国产免费久久| 中文字幕高清在线视频| 91九色精品人成在线观看| 亚洲国产欧美网| 王馨瑶露胸无遮挡在线观看| 91九色精品人成在线观看| 黄色 视频免费看| 婷婷成人精品国产| 午夜精品国产一区二区电影| 精品人妻1区二区| 国产日韩一区二区三区精品不卡| 日本一区二区免费在线视频| 午夜老司机福利片| 日本wwww免费看| 日韩中文字幕视频在线看片| 久久精品久久精品一区二区三区| 高清不卡的av网站| 亚洲欧美日韩高清在线视频 | 80岁老熟妇乱子伦牲交| 久久毛片免费看一区二区三区| 一二三四社区在线视频社区8| av有码第一页| 久久人妻福利社区极品人妻图片 | 亚洲中文日韩欧美视频| 欧美性长视频在线观看| 侵犯人妻中文字幕一二三四区| 久久久精品区二区三区| 午夜视频精品福利| 精品亚洲成a人片在线观看| 精品人妻1区二区| 波多野结衣av一区二区av| 美女中出高潮动态图| 久久久精品免费免费高清| 午夜福利,免费看| 国产一区二区激情短视频 | 欧美日韩亚洲综合一区二区三区_| 男女下面插进去视频免费观看| 午夜av观看不卡| 少妇人妻久久综合中文| av又黄又爽大尺度在线免费看| 欧美中文综合在线视频| 色视频在线一区二区三区| 91九色精品人成在线观看| 老司机在亚洲福利影院| 亚洲图色成人| 国产不卡av网站在线观看| 91精品三级在线观看| 99精国产麻豆久久婷婷| 男的添女的下面高潮视频| 午夜av观看不卡| 在线观看免费午夜福利视频| 国产精品人妻久久久影院| 久久人人爽av亚洲精品天堂| 啦啦啦中文免费视频观看日本| 2021少妇久久久久久久久久久| 亚洲精品国产一区二区精华液| 美女午夜性视频免费| 在线精品无人区一区二区三| 久久女婷五月综合色啪小说| 纵有疾风起免费观看全集完整版| 国产精品香港三级国产av潘金莲 | 老司机午夜十八禁免费视频| 国产伦人伦偷精品视频| 国产精品偷伦视频观看了| 国产熟女午夜一区二区三区| 性少妇av在线| 亚洲免费av在线视频| av网站在线播放免费| 人人澡人人妻人| 精品少妇内射三级| a级毛片黄视频| 欧美日韩亚洲高清精品| 中文字幕制服av| 亚洲少妇的诱惑av| 久久久精品免费免费高清| www.999成人在线观看| 精品免费久久久久久久清纯 | 十分钟在线观看高清视频www| 大片电影免费在线观看免费| 精品少妇久久久久久888优播| 国产成人a∨麻豆精品| 国产1区2区3区精品| 人妻人人澡人人爽人人| 老司机在亚洲福利影院| 蜜桃国产av成人99| 熟女av电影| 欧美亚洲 丝袜 人妻 在线| 在线观看国产h片| 精品少妇内射三级| 一二三四在线观看免费中文在| 妹子高潮喷水视频| 91字幕亚洲| 成年动漫av网址| 黄色视频不卡| 国产成人精品无人区| 日本av免费视频播放| 久久久久久久久免费视频了| 亚洲三区欧美一区| 免费看不卡的av| 欧美黑人欧美精品刺激| 成在线人永久免费视频| 亚洲精品自拍成人| av片东京热男人的天堂| www.精华液| 国产成人免费无遮挡视频| 免费日韩欧美在线观看| 又紧又爽又黄一区二区| 一区福利在线观看| 亚洲激情五月婷婷啪啪| 人体艺术视频欧美日本| 国产欧美日韩综合在线一区二区| 精品一区在线观看国产| 日韩免费高清中文字幕av| 亚洲成人免费电影在线观看 | 免费在线观看黄色视频的| www.精华液| 久久久久久久久免费视频了| 欧美乱码精品一区二区三区| 亚洲熟女毛片儿| 国产真人三级小视频在线观看| 国产av精品麻豆| 精品国产乱码久久久久久小说| 久久国产亚洲av麻豆专区| 中文乱码字字幕精品一区二区三区| 美女视频免费永久观看网站| 午夜福利一区二区在线看| 国产男女超爽视频在线观看| 亚洲av日韩在线播放| 七月丁香在线播放| 在现免费观看毛片| 在线观看免费视频网站a站| 久久鲁丝午夜福利片| 高清黄色对白视频在线免费看| 黄色片一级片一级黄色片| 可以免费在线观看a视频的电影网站| 欧美大码av| netflix在线观看网站| 亚洲精品日本国产第一区| 久久精品国产综合久久久| 另类精品久久| 日本欧美视频一区| 国产精品.久久久| 亚洲精品久久久久久婷婷小说| 亚洲精品乱久久久久久| 丁香六月欧美| 狂野欧美激情性bbbbbb| 飞空精品影院首页| 午夜福利一区二区在线看| 少妇裸体淫交视频免费看高清 | 高清av免费在线| 人人澡人人妻人| 丝袜脚勾引网站| 亚洲av成人不卡在线观看播放网 | 日韩 欧美 亚洲 中文字幕| 国产免费现黄频在线看| 欧美成狂野欧美在线观看| 91麻豆av在线| 午夜91福利影院| 黑人巨大精品欧美一区二区蜜桃| 久久久久精品人妻al黑| 欧美亚洲 丝袜 人妻 在线| 国产人伦9x9x在线观看| 免费看av在线观看网站| 宅男免费午夜| 亚洲激情五月婷婷啪啪| 午夜激情久久久久久久| 最近手机中文字幕大全| 悠悠久久av| 91麻豆精品激情在线观看国产 | 欧美成人精品欧美一级黄| 两个人免费观看高清视频| 天天操日日干夜夜撸| 制服人妻中文乱码| 9热在线视频观看99| 一个人免费看片子| 成年人免费黄色播放视频| 亚洲美女黄色视频免费看| 免费av中文字幕在线| 欧美人与性动交α欧美软件| 精品人妻一区二区三区麻豆| www.av在线官网国产| 国产熟女午夜一区二区三区| 亚洲欧洲精品一区二区精品久久久| 777久久人妻少妇嫩草av网站| 天天躁狠狠躁夜夜躁狠狠躁| 美女脱内裤让男人舔精品视频| 中文字幕人妻熟女乱码| 久久精品久久精品一区二区三区| 伊人久久大香线蕉亚洲五| 国产亚洲欧美在线一区二区| 免费人妻精品一区二区三区视频| 免费av中文字幕在线| 成年人午夜在线观看视频| 国产精品久久久av美女十八| 老鸭窝网址在线观看| 成人三级做爰电影| 真人做人爱边吃奶动态| 人人妻,人人澡人人爽秒播 | 亚洲熟女精品中文字幕| 亚洲av电影在线观看一区二区三区| 精品少妇一区二区三区视频日本电影| 国产av一区二区精品久久| 亚洲精品自拍成人| 精品一区在线观看国产| 久热爱精品视频在线9| 国产午夜精品一二区理论片| 久久久国产精品麻豆| 国产熟女午夜一区二区三区| netflix在线观看网站| 久久精品aⅴ一区二区三区四区| 午夜av观看不卡| 无限看片的www在线观看| 一区二区日韩欧美中文字幕| 免费人妻精品一区二区三区视频| 91精品国产国语对白视频| 男女午夜视频在线观看| 中文字幕另类日韩欧美亚洲嫩草| 一本—道久久a久久精品蜜桃钙片| av电影中文网址| 亚洲欧美色中文字幕在线| 最近最新中文字幕大全免费视频 | 日本五十路高清| 久久毛片免费看一区二区三区| 天天躁夜夜躁狠狠久久av| 黑人猛操日本美女一级片| 我的亚洲天堂| 国产高清视频在线播放一区 | 19禁男女啪啪无遮挡网站| 精品一区二区三区四区五区乱码 | 天天影视国产精品| 永久免费av网站大全| 久久久精品94久久精品| 婷婷成人精品国产| 国产一区二区激情短视频 | 久久久国产一区二区| 我要看黄色一级片免费的| 国产亚洲一区二区精品| 人人妻人人澡人人爽人人夜夜| 国产成人欧美在线观看 | 国产深夜福利视频在线观看| 国产精品一区二区在线观看99| 大片电影免费在线观看免费| 水蜜桃什么品种好| 成人午夜精彩视频在线观看| 国产黄频视频在线观看| 黑人欧美特级aaaaaa片| 欧美成人精品欧美一级黄| 成在线人永久免费视频| 国产精品人妻久久久影院| 黄色视频在线播放观看不卡| 18禁国产床啪视频网站| 如日韩欧美国产精品一区二区三区| 国产成人免费无遮挡视频| 黑人巨大精品欧美一区二区蜜桃| 五月开心婷婷网| 久久久久视频综合| 中文乱码字字幕精品一区二区三区| 亚洲第一青青草原| 别揉我奶头~嗯~啊~动态视频 | 老司机深夜福利视频在线观看 | 日韩精品免费视频一区二区三区| 在线观看免费日韩欧美大片| 午夜福利视频精品| 韩国精品一区二区三区| 国产精品一区二区在线观看99| 少妇的丰满在线观看| 亚洲欧美一区二区三区国产| 精品人妻熟女毛片av久久网站| 日本一区二区免费在线视频| 精品久久久精品久久久| 男人添女人高潮全过程视频| 在线观看免费日韩欧美大片| 国产成人精品久久二区二区免费| 亚洲欧美色中文字幕在线| 18在线观看网站| 欧美日韩视频高清一区二区三区二| 亚洲av在线观看美女高潮| 国产伦人伦偷精品视频| 夫妻午夜视频| 亚洲国产成人一精品久久久| 99国产精品一区二区蜜桃av | 最近手机中文字幕大全| 欧美97在线视频| 制服诱惑二区| 好男人视频免费观看在线| 赤兔流量卡办理| 一级片免费观看大全| 色视频在线一区二区三区| av天堂在线播放| 最近最新中文字幕大全免费视频 | 成年动漫av网址| 欧美日韩视频精品一区| 大片免费播放器 马上看| 欧美黑人精品巨大| 久久九九热精品免费| 日韩免费高清中文字幕av| 男人添女人高潮全过程视频| 欧美日韩成人在线一区二区| 国产成人免费无遮挡视频| 欧美av亚洲av综合av国产av| 国产成人影院久久av| 亚洲精品av麻豆狂野| 男女无遮挡免费网站观看| 一区二区三区精品91| 人人妻人人添人人爽欧美一区卜| 亚洲精品一区蜜桃| 免费女性裸体啪啪无遮挡网站| 成人18禁高潮啪啪吃奶动态图| 极品少妇高潮喷水抽搐| 日本a在线网址| √禁漫天堂资源中文www| 国产无遮挡羞羞视频在线观看| 成人亚洲精品一区在线观看| 色综合欧美亚洲国产小说| 美女视频免费永久观看网站| 大陆偷拍与自拍| 亚洲综合色网址| 国产一级毛片在线| 性色av乱码一区二区三区2| av天堂久久9| 丰满饥渴人妻一区二区三| 人体艺术视频欧美日本| 国产日韩一区二区三区精品不卡| 日本五十路高清| 成年人黄色毛片网站| 一区二区三区乱码不卡18| 午夜免费男女啪啪视频观看| 操出白浆在线播放| 丝袜脚勾引网站| 九草在线视频观看| 可以免费在线观看a视频的电影网站| 午夜两性在线视频| 亚洲中文av在线| 激情五月婷婷亚洲| 99久久人妻综合| 成人手机av| 欧美 亚洲 国产 日韩一| 国产精品香港三级国产av潘金莲 | 国产免费视频播放在线视频| tube8黄色片| 国产精品久久久久久人妻精品电影 | 大片电影免费在线观看免费| 丝袜在线中文字幕| 久久99一区二区三区| 亚洲 欧美一区二区三区| 日韩电影二区| 日本午夜av视频| 下体分泌物呈黄色| av有码第一页| 中文字幕最新亚洲高清| 欧美成人精品欧美一级黄| 一级片'在线观看视频| 午夜两性在线视频| 国产精品av久久久久免费| 欧美黄色淫秽网站| 每晚都被弄得嗷嗷叫到高潮| 国产亚洲精品第一综合不卡| 男人爽女人下面视频在线观看| 国产爽快片一区二区三区| 亚洲国产精品一区二区三区在线| 久久99热这里只频精品6学生| 欧美精品高潮呻吟av久久| 麻豆国产av国片精品| 欧美日韩av久久| 天天添夜夜摸| 国产精品欧美亚洲77777| 亚洲国产精品国产精品| 成人黄色视频免费在线看| 少妇 在线观看| 人体艺术视频欧美日本| 制服人妻中文乱码| 精品亚洲成国产av| 最黄视频免费看| 亚洲一区中文字幕在线| 久久精品aⅴ一区二区三区四区| 别揉我奶头~嗯~啊~动态视频 | 久久久久精品国产欧美久久久 | 欧美日韩黄片免| 久久天躁狠狠躁夜夜2o2o | 人成视频在线观看免费观看| 亚洲成人手机| 国产伦理片在线播放av一区| 高清av免费在线| 午夜福利视频在线观看免费| bbb黄色大片| 三上悠亚av全集在线观看| 国产黄频视频在线观看| 一级黄片播放器| 欧美精品人与动牲交sv欧美| 少妇猛男粗大的猛烈进出视频| 亚洲精品美女久久av网站| 欧美少妇被猛烈插入视频| 丝袜喷水一区| 国产欧美日韩综合在线一区二区| 亚洲欧美激情在线| 99国产精品一区二区蜜桃av | 久久精品久久久久久久性| 国产成人精品久久二区二区91| 久久精品国产综合久久久| 午夜福利,免费看| √禁漫天堂资源中文www| av在线老鸭窝| 最黄视频免费看| 美女视频免费永久观看网站| 日韩av在线免费看完整版不卡| 日本欧美国产在线视频| 肉色欧美久久久久久久蜜桃| 丰满少妇做爰视频| 午夜福利在线免费观看网站| 啦啦啦在线免费观看视频4| 美女中出高潮动态图| 亚洲国产av新网站| 久久久久久人人人人人| 男人操女人黄网站| 天堂俺去俺来也www色官网| 纵有疾风起免费观看全集完整版| 王馨瑶露胸无遮挡在线观看| 人妻一区二区av| 国产片内射在线| 在线观看免费视频网站a站| 欧美黄色淫秽网站| 在线亚洲精品国产二区图片欧美| 免费高清在线观看视频在线观看| 国产片特级美女逼逼视频| 国产精品av久久久久免费| 好男人视频免费观看在线| 欧美激情极品国产一区二区三区| 人人妻人人添人人爽欧美一区卜| 欧美在线黄色| 一本—道久久a久久精品蜜桃钙片| 天天躁夜夜躁狠狠躁躁| 亚洲美女黄色视频免费看| 又紧又爽又黄一区二区| 最近最新中文字幕大全免费视频 | 亚洲人成77777在线视频| 国精品久久久久久国模美| 亚洲成av片中文字幕在线观看| 久久ye,这里只有精品| 考比视频在线观看| 国产精品 欧美亚洲| 日韩欧美一区视频在线观看| 亚洲综合色网址| 久久国产精品男人的天堂亚洲| 亚洲av男天堂| 十八禁高潮呻吟视频| 老司机午夜十八禁免费视频| 久久精品久久久久久久性| 欧美日韩成人在线一区二区| 啦啦啦啦在线视频资源| 久久免费观看电影| 国产老妇伦熟女老妇高清| 免费观看av网站的网址| 99久久99久久久精品蜜桃| 亚洲av日韩精品久久久久久密 | www.自偷自拍.com| 欧美日韩福利视频一区二区| 久久久久久免费高清国产稀缺| 十八禁人妻一区二区| 秋霞在线观看毛片| 日韩人妻精品一区2区三区| 国产片特级美女逼逼视频| 美女大奶头黄色视频| 国产黄色视频一区二区在线观看| av网站免费在线观看视频| 国产老妇伦熟女老妇高清| 你懂的网址亚洲精品在线观看| 99久久综合免费| 亚洲人成77777在线视频| 咕卡用的链子| 99国产综合亚洲精品| 9191精品国产免费久久| 亚洲人成77777在线视频| 咕卡用的链子| 99精国产麻豆久久婷婷| 亚洲精品国产av成人精品| 肉色欧美久久久久久久蜜桃| 夜夜骑夜夜射夜夜干| 国产伦人伦偷精品视频| 亚洲国产最新在线播放| 亚洲人成77777在线视频| 亚洲欧美清纯卡通| 国产成人精品久久久久久| 亚洲一区中文字幕在线| 男女免费视频国产| 国产老妇伦熟女老妇高清| 亚洲av欧美aⅴ国产| 亚洲欧美中文字幕日韩二区| 交换朋友夫妻互换小说| 亚洲欧美一区二区三区国产| 麻豆av在线久日| 一级黄片播放器| 成人手机av| 欧美成人精品欧美一级黄| 少妇人妻 视频| 丝袜喷水一区| 国产激情久久老熟女| 亚洲人成网站在线观看播放| 国产精品一区二区在线不卡| 欧美黄色片欧美黄色片| 日本av手机在线免费观看| 看免费成人av毛片| 黄色毛片三级朝国网站| 叶爱在线成人免费视频播放| 亚洲精品国产av成人精品| 高清黄色对白视频在线免费看| 国产精品99久久99久久久不卡| 日韩av在线免费看完整版不卡| 国产亚洲av高清不卡| 一级毛片黄色毛片免费观看视频| 曰老女人黄片| 亚洲熟女精品中文字幕| av在线app专区| 黑人猛操日本美女一级片| 久久鲁丝午夜福利片| 国产精品久久久久成人av| 汤姆久久久久久久影院中文字幕| 每晚都被弄得嗷嗷叫到高潮| 日韩大片免费观看网站| 午夜免费观看性视频| xxxhd国产人妻xxx| 成在线人永久免费视频| 9热在线视频观看99| 久久精品亚洲av国产电影网| 乱人伦中国视频| 欧美中文综合在线视频| 久久精品国产亚洲av涩爱| 日韩免费高清中文字幕av| 视频在线观看一区二区三区| 亚洲精品国产av蜜桃| 中文精品一卡2卡3卡4更新| 欧美激情 高清一区二区三区| 中文字幕高清在线视频| 欧美精品一区二区大全| 欧美成人精品欧美一级黄| 十分钟在线观看高清视频www| 熟女av电影| 丰满少妇做爰视频| 1024视频免费在线观看| 久久久久久久国产电影| 国产精品人妻久久久影院| 一本一本久久a久久精品综合妖精| 精品国产国语对白av|