• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Genome-wide association mapping of vitamins B1 and B2 in common wheat

    2018-06-04 03:33:26JieyunLiJindongLiuWeiWenPingzhiZhngYingxiuWnXinhunXiYnZhngZhonghuHe
    The Crop Journal 2018年3期

    Jieyun Li,Jindong Liu,Wei'e Wen,Pingzhi Zhng,Yingxiu Wn,Xinhun Xi,Yn Zhng,*,Zhonghu He,b,**

    aInstitute of Crop Science,National Wheat Improvement Center,Chinese Academy of Agricultural Sciences,Beijing 100081,China

    bInternational Maize and Wheat Improvement Center(CIMMYT)China Office,c/o CAAS,Beijing 100081,China

    cCrop Research Institute,Anhui Academy of Agricultural Sciences,Hefei 230001,Anhui,China

    1.Introduction

    Vitamin B,one of the important microelements,is essential for maintaining normal life activities in human and animals.The vitamin B complex comprises eight water-soluble components,viz.thiamin(vitamin B1),riboflavin(vitamin B2),pantothenic acid(vitamin B3),nicotinic acid(vitamin B5),pyridoxine(vitamin B6),biotin(vitamin B7),folic acid(vitamin B9),and cobalamine(vitamin B12)that play important roles in the metabolism of carbohydrates,proteins and fats.Thiamin deficiency is associated with neurological problems,including Alzheimer's disease,cognitive deficit and encephalopathy[1–2].Riboflavin deficiency destroys mucosal membranes in the digestive system and can lead to cardiovascular disease and colorectal cancer[3–4].Instead of biosynthesizing these vitamins within their own bodies,humans and animals must obtain them from external sources in order to remain healthy.

    Vitamins B1 and B2 often occur together in the same foods and were initially regarded as a single component.In cereals,the most important staple food sources,the complex vitamin B complex is concentrated in the bran and germ,with 32%to 64%of the vitamin B1 and 26%to 37%of the vitamin B2 being present in the aleurone layer and embryo,respectively[5–6].A number of studies of vitamin B1 and B2 contents in wheat have been reported.For example,Davis et al.[7]evaluated 231 cultivars grown at 49 locations over three years and determined variation in vitamins B1 and B2 levels ranging from 3.3 to 6.5 μg g?1and 1.0 to 1.7 μg g?1,respectively.Batifoulier et al.[8]determined the variation in vitamin B1(2.6–6.1 μg g?1)and vitamin B2(0.5–1.1 μg g?1)contents in 49 wheat cultivars.Shewry et al.[9]showed that there were large and significant variations in B1 and B2 contents among 24 wheat cultivars,ranging from 5.5 to 13.6 μg g?1for vitamin B1,and from 0.8 to 1.4 μg g?1for vitamin B2.Davis et al.[7]indicated that the total contents of vitamins B1 and B2 were influenced by genotype,environment and genotype×environment(G×E).However,there are no reports on QTL mapping and genome-wide association studies(GWAS)of the genetic bases of variation in vitamin B1 and B2 contents to date.

    GWAS is an efficient approach to identify associations between genotypes and phenotypes in plants[10–11].For example,Rasheed etal.[12]identified 44marker-trait associations(MTAs)for nine yield and related traits using a GWAS of 123 wheat cultivars and 14,960 SNP markers.Dong et al.[13]detected 52 MTAs for stem water-soluble carbohydrate in 166 bread wheat cultivars using GWAS based on data obtained with the wheat 90 K SNP array.These studies were carried to determine genetic factors affecting complex traits.In the present study,a GWAS of vitamin B1 and B2 contents was performed using the same panel of 166 Chinese and foreign bread wheat cultivars and the wheat 90 K iSelect assay.The aim was to identify loci associated with vitamins B1 and B2 for quality improvement in bread wheat.

    2.Materials and methods

    2.1.Plant materials

    A collection of 166 bread wheat cultivars and advanced lines from the Yellow and Huai Valley Facultative Region and foreign countries was used for the study(Table S1);144 of them were from China,nine from Italy,seven from Argentina,four from Japan,one from Australia and one from Turkey.Field trials were conducted in randomized complete blocks with three replicates in Anyang(Henan province)and Suixi(Anhui province)during the 2015–2016 cropping season,providing data for two environments.Each plot contained three 2 m rows spaced 20 cm apart.

    2.2.Genotyping and quality control

    Genomic DNA was extracted by a modified method according to Lagudah et al.[15];samples were sent to CapitalBio Corporation(Beijing,China;http://www.capitalbio.com/)for genotyping with the high-density illumina 90 K infinium SNP array[16].PowerMarker V3.2.5 was used to calculate gene diversity,minor allele frequency(MAF)and polymorphism information content(PIC).Genotyping and quality control was described in our previous study[13].Markers were removed if their locations in chromosomes were unknown,there were>30%missing values,they showed a MAF of<5%,or were represented by>10%heterozygosis.

    2.3.Milling

    Thirty g kernel samples were milled using a Cyclotec 1093 Mill(Foss Tecator).The ground whole meal was stored at?20 °C prior to analysis.The water contents of the whole meal samples were measured in a drying oven at 130°C for 1 h after freezing.

    2.4.Vitamin B1 and B2 extraction and determination

    Vitamins B1 and B2 were extracted following Ndaw et al.[17]with minor modifications,in which the extraction solvent contents were reduced by 50%.A finely ground sample(2.5 g)was weighed into a 100 mL reagent bottle.Twenty-five ml of 0.05 mol L?1sodium acetate(pH 4.5)were added to the sample,followed by a mixture of papain(50 mg),1%glutathione(250 μL),acid phosphatase(10 mg)and α-amylase(5 mg).The sample was mixed completely and incubated in a shaker at 37°C for 20 h,then diluted with distilled water in a 50 mL volumetric flask.The supernatant was filtered through filter paper.The filtrate obtained after a second filtration through a cellulose acetate filter(0.2 μm)was used for chromatographic determination of vitamin B2.An aliquot of the first filtrate(2 mL)was added to a 10 mL tube with an alkaline solution of potassium ferricyanide(2 mL).The mixture was agitated and then left to stand for exactly 5 min.Two mL of butanol was added with vortexing,and the tube was stood for stratification.The supernatant fluid filtered through a cellulose acetate filter(0.2 μm)was used for the chromatographic determination of vitamin B1.

    2.5.Chromatographic determination

    A high performance liquid chromatography(HPLC)system(a 2010 Shimadzu Model)and an RF10Axl fluorescence detector(Shimadzu,Shimane,Japan)was used to determine vitamins B1 and B2 contents.Separation by HPLC was accomplished using a XTerra RP18 column(150.0 mm × 4.6 mm,5 μm,Waters Corporation,Massachusetts,USA)following Arella et al.[18].

    2.6.Statistical analyses

    Analysis of variance(ANOVA)was performed using PROC GLM in SAS software version 9.2(SAS Institute Inc.,Cary,NC,USA).Least square means were calculated for each parameter and used to test the significance of differences(P<0.001)between samples.Broad-sense heritabilities(h2)were calculated following Lin and Allaire[19].

    2.7.Population structure analysis

    Population structure was described in our previous study[13].Briefly,Structure v.2.3.4 was used to estimate population structure based on 5624 SNP markers distributed evenly across the entire genome using Bayesian cluster analysis;markers were chosen on the basis of a MAF of over 5%and<30%missing data,and showed heterozygosis of<10%[20].Each K value was run repeatedly and independently to ensure the sampling variance of inferred population structure.A range of K from 1 to 10 was based on admixture and correlated allele frequencies models.Each run was carried out with 10,000 replicates for the burn-in period and 100,000 replicates during analysis.The optimum value of K was chosen by the highest ΔK[21].

    Table 1–Analysis of variance of vitamin B1 and B2 contents in 166 cultivars grown in two environments.

    2.8.Association analysis

    Vitamin B1and B2 contents,genotype and populationstructure(Q-matrix)were implemented in TASSEL software version 5.0 using the mixed linear model(MLM)for association analysis.The significance of SNP markers was determined by a threshold P-value of 0.001[13,14],and MTAs within 5-cM intervals were declared to be the same loci according to Wang et al.[16].The distributions of observed and expected P-values.Manhattan plots were used to map SNP markers significantly associated with vitamin B1 and B2 contents.Both the Quantile-Qantile and Manhattan plots were drawn in R Language(R version 3.1.2;http://www.r-project.org/).

    3.Results

    3.1.Phenotypic variation

    There was continuous variation for vitamin B1 and B2 contents in both environments(Fig.S1).The averaged vitamin B1 and B2 contents among cultivars ranged from 5.34 to 16.74 μg g?1and from 0.48 to 0.74 μg g?1,respectively.Cultivars Lumai 23,Xiaoyan 22,Zhengmai 366,Zhoumai 16,Nidera Baguette 10,and Nidera Baguette 20 had the highest vitamin B1 contents,whereas Aifeng 3,Xinmai 19,Xiaoyan 54,Bima 1,and Zhengzhou 3 had the highest vitamin B2 contents(Table S1).ANOVA showed significant differences for vitamins B1(P<0.001)and B2 contents(P<0.01)among genotypes(Table 1).No significant differences were identified among three sub-populations for vitamin B2 content,whereas the mean value of vitamin B1 content of sub-population 3 was significantly(P<0.05)less than those of sub-populations 1 and 2 based on multiple comparison analysis(Table S2).The heritabilities of vitamin B1 and B2 contents were 0.83 and 0.77,respectively.

    Table 2–SNP markers significantly associated with vitamin B1 content in the association panel.

    Table 3–SNP markers significantly associated with vitamin B2 content in the association panel.

    3.2.Analysis of SNP markers and population structure

    Among the 81,587 SNP markers in the 90 K array,40,267(49.4%)were mapped to individual chromosomes[16].Finally,18,207(22.3%)markers were selected after a strict quality control in our association panel and were integrated into a linkage map involving all 21 wheat chromosomes.These markers covered a genetic distance of 3700 cM,with an average density of one marker per 0.2 cM.The marker density was much lower for the D genome(254.4 markers per chromosome)compared to the A(1007.7markersper chromosome)and B(1338.9 markers per chromosome)genomes.Among D genome chromosomes,and 4D had the lowest(50).The average SNP diversity(H)and PIC values were 0.35 and 0.29,respectively.

    3.3.Marker-trait associations

    Fig.1 –Manhattan plots from GWAS for vitamin B1 in two environments.The horizontal line depicts the 1E–03 threshold for significant association.A,Anyang;B,Suixi.

    Fig.2 –Manhattan plots from GWAS for vitamin B2 in two environments.The horizontal line depicts the 1E–03 threshold for significant association.A,Anyang;B,Suixi.

    Considering the criteria(P<0.001),17 loci were significantly associated with vitamin B1 content,and 7 were associated with vitamin B2 content;these were distributed on 12 chromosomes(Tables 2 and 3).The largest numbers of MTAs were on chromosomes 4A and 6A,and no MTA was detected on chromosomes 1B,3A,3D,4D,5A,5D,6D,7A,and 7D(Figs.1 and 2).MTAs consistently identified in both environments were considered to be stable.Among them,multiple SNP markers associated with vitamin B1 were identified on chromosomes 6AS(0 cM)and 6AS(13 cM)in both environments,explaining 7.7%and 8.4%of the phenotypic variation(R2),respectively(Table 2).There were multiple SNP markers associated with vitamin B2 on chromosomes 1DS(68 cM),5BL(49 cM)and 6AS(59 cM).QQ plots for the distribution of expected and observed P-values of associated SNP markers are shown in Fig.S2.

    3.4.Effects of favorable alleles on vitamins B1 and B2

    Alleles with positive effects increasing vitamin B1 and B2 contents were considered to be favorable.Significantly positive correlations were observed between vitamin B1(r=0.97,P<0.001)or vitamin B2(r=0.94,P<0.001)contents and the number of favorable alleles(Fig.3).The numbers of favorable alleles present in a cultivar ranged from 5 to 16 for vitamin B1 content,and from 0 to 6 for vitamin B2(Table S1).

    4.Discussion

    4.1.Marker–trait associations for vitamins B1 and B2

    The present results confirmed previous findings[8]that Vitamin B contents of cereal products are controlled mainly by genetic factors[8].Therefore,identification of QTL associated with vitamins B1 and B2 should be helpful for wheat improvement.Previously,work on vitamin B in cereals primarily focused on extraction[17],content determination[18]and synthesis pathways[22–24].In the present study,we used a GWAS approach to analyse a panel of 166 bread wheat cultivars by assaying 18,207 SNP markers to identify chromosomal regions associated with vitamin B1 and B2 contents.This is the first attempt to identify genes controlling vitamin B1 and B2 contents in wheat by GWAS.The results provide a basis for improving vitamin B1 and B2 contents.ANOVA indicated that the G×E contributed largely phenotypic variance in vitamin B1(24.53%)and vitamin B2(49.11%)contents(Table 1),resulting in some inconsistencies in MTA across environments.

    Fig.3–Linear regression analysis for number of favorable alleles and vitamin B.A,vitamin B1;B,vitamin B2.

    Markers IWB12483(1DL,100 cM),IWB6046(2AS,156 cM),IWB1795(2BL,146 cM),IWB11577(3B,33 cM),IWB48019(5BL,105 cM),IWB43809(6AS,0 cM)and IWB69903(6AS,13 cM)were significantly associated with vitamin B1 content.Among them,IWB12483(R2=10.6%),IWB6046(10.3%)and IWB1795(9.2%)loci explained the highest phenotypic variations.Notably,MTAs at IWB43809 and IWB69903 on chromosome 6AS were identified in both environments,indicating the QTL were stable.Markers IWB11044(1AS,51 cM),IWB23595(1DS,68 cM),IWB58793(3B,62 cM),IWB56921(4AL,75 cM),IWA8005(5BL,49 cM),IWB58995(6AS,59 cM)and IWB65016(7BL,159 cM)were significantly associated with vitamin B2 content.Among the IWB23595(R2=10.5%),IWA8005(9.0%)and IWB65016(9.7%)loci explained the highest phenotypic variations.

    4.2.Putative candidate genes

    The biosynthetic pathways of vitamins B1 and B2 have been well studied in prokaryotes Escherichia coli[25–26]and Bacillus subtilis[27–28],but the biosynthesis in eukaryotes is much less understood.The results of the present GWAS study provides a basis for searching for candidate genes involved in vitamin B1 and B2 biosynthesis in wheat.

    In bacteria 12 genes involving 11 enzymatic steps are required for vitamin B1 biosynthesis[29–30];in yeast 19 genes are involved[31].The functions of several of these genes have been elucidated,e.g.,THI2,THI3,THI6,THI20 and THI21.One of the most important genes is THI3,which has an important role in pyrimidine biosynthesis and DNA repair[31–33],and has been isolated in Arabidopsis thaliana[22]and Solanum lycopersicum[34].However,the homologous gene in common wheat remains unidentified.The biosynthesis of one riboflavin molecule requires one molecule of GTP and two molecules of ribulose 5–phosphate.GTP cyclohydrolase II is the first committed step in biosynthesis of the key enzyme involved in riboflavin,catalyzing the opening of the imidazole ring of GTP and release of pyrophosphate[35–36].The encoding gene(rib A)has been isolated in bacteria[37]and yeast[38],but little information is available in plants.No QTL related to this gene has been identified.

    4.3.Potential implications for wheat breeding

    Wheat,with a total estimated production of 120 Mt.during 2015–2016(http://data.stats.gov.cn/),is one of the three most important crops in China.It is mainly consumed in human nutrition and is regarded as an important source of vitamins[39].Markers for MTAs explaining higher phenotypic variation,such as IWB12483,IWB6046,and IWB1795 identified in this study could be used for improvement of vitamin B1 in marker–assisted breeding.Markers IWB23595,IWA8005 and IWB65016 with high phenotypic variation explained could be used for improvement of vitamin B2.The cultivars Lumai 15,Jimai 19,Aifeng 3 and Bima 1 had higher contents of both vitamins B1 and B2,and therefore can be used as parents in breeding programs.There were also multiple MTAs associated with vitamin B1 on chromosomes 4A and 6A,implying that these regions are important for vitamin B1 content only.Germplasms of this type with higher numbers of favorable alleles included Zhoumai 31,Nidera Baguette 10 and Nidera Baguette 20(Table S1).Likewise,cultivars Lankao 2,Mantol and Funo have higher numbers of favorable alleles for vitamin B2 content,and these can be used as parents to improve vitamin B contents in breeding programs with the expectation of human health benefits.

    Acknowledgments

    This work was supported by National Key Research and Development Programs of China (2016YFD0101802,2016YFE0108600,2014CB1381050),Gene Transformation Projects(2016ZX08002003–003)and Core Research Budget of the Non–profit Governmental Research Institutions(Y2016XT06).

    Supplementary data

    Supplementary data for this article can be found online at https://doi.org/10.1016/j.cj.2017.08.002.

    [1]G.E.Gibson,J.A.Hirsch,P.Fonzetti,B.D.Jordan,R.T.Cirio,J.Elder,Vitamin B1(thiamin)and dementia,J.Cereal Sci.1367(2016)21–30.

    [2]J.L.Rodriguez,N.Qizilbash,J.Lopez-Arrieta,Thiamin for alzheimer's disease,Cochrane Database Syst.Rev.272(2001),CD001498.

    [3]M.Buijssen,J.Eeuwijk,N.M.Vonk,Literature search and review related to specific preparatory work in the establishment of dietary reference values for riboflavin,EFSA Supporting Publications,11,2014,pp.245–258.

    [4]Y.S.Yoon,S.Y.Jung,X.H.Zhang,S.J.Ogino,E.L.Giovannucci,E.Y.Cho,Vitamin B2 intake and colorectal cancer risk:results from the nurses'health study and the health professionals follow–up study cohort,Int.J.Cancer 139(2016)996–1008.

    [5]P.M.Keagy,B.Borensterin,P.Ranum,M.A.Connor,K.Lorena,W.E.Hobbs,G.Hills,A.L.Bachman,W.A.Boyd,K.Kulp,Natural levels of nutrients in commercially milled wheat flours,Cereal Chem.57(1980)59–65.

    [6]P.M.Ranum,F.F.Barrett,R.J.Loewe,K.Kulp,Nutrient levels in internationally milled wheat flours,Cereal Chem.57(1980)361–366.

    [7]K.R.Davis,R.F.Cain,L.J.Peters,D.L.Tourneau,J.McGinnis,Evaluation of the nutrient composition of wheat II.Proximate analysis,thiamin,riboflavin,niacin and pyridoxine,Cereal Chem.58(1981)116–120.

    [8]F.Batifoulier,M.A.Verny,E.Chanliaud,C.Rémésy,C.Demigné,Variability of B vitamin concentrations in wheat grain,milling fractions and bread products,Eur.J.Agron.25(2006)163–169.

    [9]P.R.Shewry,F.V.Schaik,C.Ravel,G.Charmet,M.Rakszegi,Z.Bedo,J.L.Ward,Genotype and environment effects on the contents of vitamins B1,B2,B3,and B6 in wheat grain,J.Agric.Food Chem.59(2011)10564–10571.

    [10]M.T.Hamblin,E.S.Buckler,J.K.Jannink,Population genetics of genomics–based crop improvement methods,Trends Genet.27(2011)98–106.

    [11]C.S.Zhu,M.Gore,E.S.Buckler,J.M.Yu,Status and prospects of association mapping in plants,Plant Genome 1(2008)5–20.

    [12]Q.Ain,A.Rasheed,A.Anwar,T.Mahmood,M.Imtiaz,T.Mahmood,X.C.Xia,Z.H.He,U.M.Quraishi,Genome–wide association for grain yield under rainfed conditions in historical wheat cultivars from Pakistan,Front.Plant Sci.6(2015)743–756.

    [13]Y.Dong,Y.Zhang,A.Rasheed,Y.G.Xiao,L.P.Fu,J.Yan,J.D.Liu,W.E.Wen,Y.Zhang,R.L.Jing,X.C.Xia,Z.H.He,Genome–wide association for stem water soluble carbohydrates in bread wheat,PLoS One 11(2016),e0164293.

    [14]M.Maccaferri,J.L.Zhang,P.bulli,Z.Abate,S.Chao,D.Cantu,E.Bossolini,X.M.Chen,M.Pumphrey,J.Dubcovsky,A genome–wide association study of resistance to stripe rust(Puccinia striiformis f.sp.tritici)in a worldwide collection of hexaploid spring wheat(Triticum aestivum L.),G3:Genes Genom.Genet.5(2015)449–465.

    [15]E.S.Lagudah,R.Appels,A.H.D.Brown,The Nor–D3 locus of Triticum tauschii:natural variation and linkage to markers in chromosome 5,Genome 34(1991)387–395.

    [16]S.C.Wang,D.B.Wong,K.Forrest,A.Allen,S.M.Chao,B.E.Huang,Characterization of polyploid wheat genomic diversity using a high–density 90,000 single nucleotide polymorphism array,Plant Biotechnol.J.12(2014)787–796.

    [17]S.Ndaw,M.Bergaentzle,W.D.Aoude,C.Hasselmann,Extraction procedures for the liquid chromatographic determination of thiamin,riboflavin and vitamin B6 in foodstuffs,Food Chem.71(2000)129–138.

    [18]F.Arella,S.Lahely,J.B.Bourguignon,C.Hasselmann,Liquid chromatographic determination of vitamins B1 and B2 in foods:a collaborative study,Food Chem.56(1996)81–86.

    [19]C.Y.Lin,F.R.Allaire,Heritability of a linear combination of traits,Theor.Appl.Genet.51(1977)1–3.

    [20]J.K.Pritchard,M.Stephens,P.Donnelly,Inference of population structure using multilocus genotype data,Genetics 155(2000)945–959.

    [21]G.Evanno,S.Regnaut,J.Goudet,Detecting the number of clusters of individuals using the software structure:a simulation study,Mol.Ecol.14(2005)2611–2620.

    [22]D.Y.Kong,Y.X.Zhu,H.L.Wu,X.D.Cheng,H.Liang,H.Q.Ling,AtTHIC,a gene involved in thiamin biosynthesis in Arabidopsis thaliana,Cell Res.18(2008)566–576.

    [23]I.Ajjawi,Y.Tsegaye,D.Shintani,Determination of the genetic,molecular,and biochemical basis of the Arabidopsis thaliana thiamin auxotroph th1,Arch.Biochem.Biophys.459(2007)107–114.

    [24]F.J.Sandoval,S.Roje,F.M.N.An,Hydrolase is fused to a riboflavin kinase homolog in plants,J.Biol.Chem.280(2005)38337–38345.

    [25]M.Kriek,F.Martins,M.R.Challand,A.Croft,P.L.Roach,Thiamine biosynthesis in Escherichia coli:identification of the intermediate and by–products derived from tyrosine,Angew.Chem.-Int.Edit.46(2007)9223–9226.

    [26]E.Settembre,T.P.Begley,S.E.Ealick,Structural biology of enzymes of the thiamin biosynthesis pathway,Curr.Opin.Struct.Biol.13(2003)739–747.

    [27]Y.Zhang,S.V.Taylor,H.J.Chiu,T.P.Begley,Characterization of the Bacillus subtilis thiC operon involved in thiamine biosynthesis,J.Bacteriol.179(1997)3030–3035.

    [28]G.Richter,M.Fischer,C.Krieger,S.Eberhardt,H.Luttgen,I.Gerstenschlager,A.Bacher,Biosynthesis of riboflavin:characterization of the bifunctional deaminase–reductase of Escherichia coli and Bacillus subtilis,J.Bacteriol.179(1997)2022–2028.

    [29]T.P.Begley,D.M.Downs,S.E.Ealick,F.W.McLafferty,L.A.P.Van,S.Taylor,N.Campobasso,H.J.Chiu,C.Kinsland,J.J.Reddick,J.Xi,Thiamin biosynthesis in prokaryotes,Arch.Microbiol.171(1999)293–300.

    [30]D.A.Rodionov,A.G.Vitreschak,A.A.Mironov,M.S.Gelfand,Comparative genomics of thiamin biosynthesis in prokaryotes,J.Biol.Chem.277(2002)48949–48959.

    [31]K.Nosaka,Recent progress in understanding thiamin biosynthesis and its genetic regulation in Saccharomyces cerevisiae,Appl.Microbiol.Biotechnol.72(2006)30–40.

    [32]P.C.Dorrestein,H.L.Zhai,S.V.Taylor,F.W.McLafferty,T.P.Begley,The biosynthesis of the thiazole phosphate moiety of thiamin(vitamin B1):the early steps catalyzed by thiazole synthase,J.Am.Chem.Soc.126(2004)3091–3096.

    [33]M.Touchon,C.Hoede,O.Tenaillon,V.Barbe,S.Baeriswyl,P.Bidet,E.Bingen,S.Bonacorsi,C.Bouvet,A.Calteau,H.Calteau,O.Clermont,S.Cruveiller,A.Danchin,M.Diard,C.Dossat,M.E.Karoui,E.Frapy,L.Garry,J.M.Ghigo,A.M.Gilles,J.Johnson,C.L.Bouguenec,M.Lescat,S.Mangenot,V.Martinez-Jehanne,I.Matic,X.Nassif,S.Oztas,M.A.Petit,C.Pichon,Z.Rouy,C.S.Ruf,D.Scheider,J.Tourret,B.Vacherie,D.Vallenet,C.Medigue,E.P.Rocha,E.Denamur,Organised genome dynamics in the Escherichia coli species results in highly diverse adaptive paths,PLoS Genet.5(2009)e1000344.

    [34]W.N.Zhao,X.D.Cheng,Z.A.Huang,H.J.Fan,H.L.Wu,H.Q.Ling,Tomato LeTHIC is an Fe–requiring HMP–P synthase involved in thiamin synthesis and regulated by multiple factors,Plant Cell Physiol.52(2011)967–982.

    [35]M.Fischer,W.Romisch,B.IIIarionov,W.Eisenreich,A.Bacher,Structures and reaction mechanisms of riboflavin synthases of eubacterial and archaeal origin,Biochem.Soc.Trans.33(2005)780–784.

    [36]J.S.Ren,M.Kotaka,M.Lockyer,H.K.Lamb,A.R.Hawkins,D.K.Stammers,GTP cyclohydrolase II structure and mechanism,J.Biol.Chem.280(2005)36912–36919.

    [37]Y.S.Koh,J.Choih,J.H.Lee,J.H.Roe,Regulation of the ribA gene encoding GTP cyclohydrolase II by the soxRS locus in Escherichia coli,Mol Gen Genet 251(1996)591–598.

    [38]O.Oltmanns,A.Bacher,Biosynthesis of riboflavine in Saccharomyces cerevisiae:the role of genes rib 1 and rib 7,J.Bacteriol.110(1972)818–822.

    [39]H.S.Balyan,P.K.Gupta,S.Kumar,R.Dhariwal,V.Jaiswal,S.Tyagi,P.Agarwal,V.Gahlaut,S.Kumari,Genetic improvement of grain protein content and other health-related constituents of wheat grain,Plant Breed.132(2013)446–457.

    一本色道久久久久久精品综合| 久久久久久久久久人人人人人人| 久久久精品区二区三区| 性色avwww在线观看| 久久久久视频综合| 久久久久久久久大av| 日韩精品有码人妻一区| 熟女电影av网| 97超碰精品成人国产| 久久久久久久久久成人| 欧美变态另类bdsm刘玥| 精品少妇黑人巨大在线播放| 日本黄色日本黄色录像| 精品熟女少妇av免费看| 日韩熟女老妇一区二区性免费视频| 99热这里只有精品一区| 香蕉精品网在线| 免费看av在线观看网站| 91精品伊人久久大香线蕉| 国产在视频线精品| 五月天丁香电影| 亚洲成人一二三区av| 久久99热6这里只有精品| 一边摸一边做爽爽视频免费| 人妻系列 视频| 国产亚洲av片在线观看秒播厂| 国产深夜福利视频在线观看| 两个人免费观看高清视频| 免费大片黄手机在线观看| 看十八女毛片水多多多| 人人妻人人澡人人爽人人夜夜| av有码第一页| 色网站视频免费| 亚洲精品日韩在线中文字幕| 日韩人妻高清精品专区| 亚洲人成77777在线视频| 人妻制服诱惑在线中文字幕| 精品酒店卫生间| 夫妻性生交免费视频一级片| 国产极品天堂在线| 五月伊人婷婷丁香| 久久久午夜欧美精品| 免费人妻精品一区二区三区视频| 亚洲中文av在线| 国产欧美亚洲国产| 国产女主播在线喷水免费视频网站| 少妇高潮的动态图| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 久久毛片免费看一区二区三区| 国产午夜精品一二区理论片| 黄色配什么色好看| 国产又色又爽无遮挡免| 亚洲人成网站在线观看播放| 在线播放无遮挡| 久久国产精品男人的天堂亚洲 | 亚洲欧美中文字幕日韩二区| 国产日韩一区二区三区精品不卡 | 在线免费观看不下载黄p国产| 欧美精品亚洲一区二区| 韩国av在线不卡| 乱人伦中国视频| 涩涩av久久男人的天堂| 久久精品熟女亚洲av麻豆精品| 日韩视频在线欧美| 亚洲三级黄色毛片| 丝瓜视频免费看黄片| 日韩精品免费视频一区二区三区 | 国产黄色视频一区二区在线观看| 国产亚洲精品久久久com| 老司机亚洲免费影院| 99热6这里只有精品| 亚洲精品456在线播放app| 乱人伦中国视频| 丝袜喷水一区| 欧美变态另类bdsm刘玥| 色5月婷婷丁香| 人妻 亚洲 视频| 十八禁网站网址无遮挡| 简卡轻食公司| 丝袜脚勾引网站| 熟妇人妻不卡中文字幕| 麻豆成人av视频| 久久久久久久久久人人人人人人| 另类亚洲欧美激情| 18+在线观看网站| 久热这里只有精品99| 国产成人精品福利久久| 大陆偷拍与自拍| 日韩av不卡免费在线播放| 一本色道久久久久久精品综合| av国产精品久久久久影院| 国产爽快片一区二区三区| 伦理电影大哥的女人| 一区在线观看完整版| 在线观看美女被高潮喷水网站| 亚洲精品第二区| 精品人妻在线不人妻| 午夜日本视频在线| av国产精品久久久久影院| 18禁观看日本| 日本黄大片高清| √禁漫天堂资源中文www| 国产精品一区www在线观看| 两个人免费观看高清视频| 久久99精品国语久久久| 亚洲婷婷狠狠爱综合网| 国产亚洲av片在线观看秒播厂| 精品国产一区二区三区久久久樱花| 亚洲av成人精品一二三区| 欧美日韩国产mv在线观看视频| 国产日韩欧美亚洲二区| 亚洲激情五月婷婷啪啪| 日日爽夜夜爽网站| 午夜福利视频在线观看免费| 亚洲av国产av综合av卡| 天堂8中文在线网| 国产精品久久久久久精品古装| 日韩成人伦理影院| 成人国产麻豆网| 久久国产亚洲av麻豆专区| 欧美亚洲日本最大视频资源| 一区二区日韩欧美中文字幕 | 亚洲色图 男人天堂 中文字幕 | 精品少妇黑人巨大在线播放| 天堂中文最新版在线下载| 亚洲精品日韩在线中文字幕| 极品人妻少妇av视频| av电影中文网址| 午夜影院在线不卡| av播播在线观看一区| 9色porny在线观看| 精品亚洲乱码少妇综合久久| 亚洲一区二区三区欧美精品| 男男h啪啪无遮挡| 精品亚洲成a人片在线观看| 亚洲第一区二区三区不卡| 日本vs欧美在线观看视频| 最近手机中文字幕大全| 另类亚洲欧美激情| 国产精品秋霞免费鲁丝片| 婷婷色综合www| 秋霞伦理黄片| 国产欧美日韩综合在线一区二区| 免费观看性生交大片5| 99热这里只有精品一区| 亚洲精品美女久久av网站| 精品一区二区免费观看| 精品卡一卡二卡四卡免费| 国产无遮挡羞羞视频在线观看| 精品一品国产午夜福利视频| 午夜av观看不卡| av国产久精品久网站免费入址| 久久久久久久久久久丰满| 在线看a的网站| 色哟哟·www| 午夜激情福利司机影院| 亚洲精品美女久久av网站| 国产成人免费观看mmmm| 亚洲欧美日韩另类电影网站| 亚洲精品美女久久av网站| 99热网站在线观看| 简卡轻食公司| 秋霞伦理黄片| 精品一区二区免费观看| 国产精品久久久久久精品电影小说| 少妇被粗大的猛进出69影院 | 波野结衣二区三区在线| 国产熟女欧美一区二区| 夫妻性生交免费视频一级片| 国产女主播在线喷水免费视频网站| 日韩av不卡免费在线播放| 日韩不卡一区二区三区视频在线| √禁漫天堂资源中文www| 亚洲欧美清纯卡通| 亚洲成人一二三区av| 亚洲经典国产精华液单| 亚洲av福利一区| 日韩一区二区三区影片| 日本-黄色视频高清免费观看| 精品久久蜜臀av无| 天堂俺去俺来也www色官网| 国产欧美亚洲国产| 亚洲欧洲精品一区二区精品久久久 | 午夜福利视频在线观看免费| 亚洲色图 男人天堂 中文字幕 | av女优亚洲男人天堂| 青春草视频在线免费观看| 只有这里有精品99| 免费日韩欧美在线观看| www.av在线官网国产| 亚洲国产精品专区欧美| 婷婷色av中文字幕| 日本-黄色视频高清免费观看| 少妇的逼好多水| 九色亚洲精品在线播放| 国产成人精品福利久久| 青春草亚洲视频在线观看| 亚洲人成网站在线播| 最近中文字幕2019免费版| av一本久久久久| 美女视频免费永久观看网站| 美女大奶头黄色视频| 视频中文字幕在线观看| 成人午夜精彩视频在线观看| 成年女人在线观看亚洲视频| 夫妻性生交免费视频一级片| 日本wwww免费看| 美女cb高潮喷水在线观看| 精品99又大又爽又粗少妇毛片| 一个人看视频在线观看www免费| 久久久亚洲精品成人影院| 日韩中字成人| 中文字幕最新亚洲高清| 下体分泌物呈黄色| 午夜免费观看性视频| 伊人亚洲综合成人网| 2018国产大陆天天弄谢| 美女国产高潮福利片在线看| 日本欧美视频一区| 日本-黄色视频高清免费观看| 日本午夜av视频| 99热网站在线观看| 亚州av有码| 人人妻人人添人人爽欧美一区卜| 在线观看美女被高潮喷水网站| 免费观看的影片在线观看| 亚洲欧美一区二区三区国产| 成人午夜精彩视频在线观看| 亚洲伊人久久精品综合| 欧美成人精品欧美一级黄| 午夜福利网站1000一区二区三区| 精品少妇久久久久久888优播| 高清在线视频一区二区三区| 只有这里有精品99| 亚洲欧美中文字幕日韩二区| 夫妻性生交免费视频一级片| 久久青草综合色| 乱人伦中国视频| 婷婷色麻豆天堂久久| 王馨瑶露胸无遮挡在线观看| 精品人妻熟女毛片av久久网站| 色婷婷av一区二区三区视频| 亚洲精品中文字幕在线视频| 日产精品乱码卡一卡2卡三| 亚洲高清免费不卡视频| 日韩成人伦理影院| 国产精品三级大全| 精品人妻一区二区三区麻豆| 成人黄色视频免费在线看| 亚洲欧美中文字幕日韩二区| 国产成人精品在线电影| 国产黄片视频在线免费观看| kizo精华| 午夜久久久在线观看| 免费黄网站久久成人精品| 肉色欧美久久久久久久蜜桃| 久久综合国产亚洲精品| 国产一级毛片在线| 蜜桃在线观看..| av.在线天堂| 国产国语露脸激情在线看| 久久精品久久精品一区二区三区| 久久人人爽人人片av| 精品视频人人做人人爽| 男女边摸边吃奶| 亚洲欧洲精品一区二区精品久久久 | 午夜福利,免费看| 国产免费福利视频在线观看| 国产精品女同一区二区软件| 亚洲欧美色中文字幕在线| 久久精品久久久久久噜噜老黄| 高清欧美精品videossex| www.av在线官网国产| 日韩强制内射视频| 亚洲第一av免费看| 女人精品久久久久毛片| 纯流量卡能插随身wifi吗| 蜜臀久久99精品久久宅男| 久久国内精品自在自线图片| 日本黄色日本黄色录像| 色视频在线一区二区三区| 久久这里有精品视频免费| 桃花免费在线播放| 久久久久久人妻| 蜜臀久久99精品久久宅男| 最近手机中文字幕大全| 夫妻性生交免费视频一级片| 卡戴珊不雅视频在线播放| 亚洲精品一二三| 一级片'在线观看视频| 久久精品国产a三级三级三级| 久久久亚洲精品成人影院| 日韩免费高清中文字幕av| 亚洲久久久国产精品| 亚洲欧洲日产国产| 亚洲av成人精品一区久久| 精品久久久久久电影网| 免费看av在线观看网站| 日韩av不卡免费在线播放| 2021少妇久久久久久久久久久| 日韩在线高清观看一区二区三区| 精品久久久久久久久av| 97在线人人人人妻| 久久久久久伊人网av| 欧美xxxx性猛交bbbb| 插逼视频在线观看| av卡一久久| 一个人看视频在线观看www免费| 成人国语在线视频| 精品亚洲成a人片在线观看| 欧美亚洲 丝袜 人妻 在线| 卡戴珊不雅视频在线播放| 中文字幕人妻熟人妻熟丝袜美| 亚洲av二区三区四区| 伊人亚洲综合成人网| 最近最新中文字幕免费大全7| 精品少妇久久久久久888优播| 国产欧美日韩一区二区三区在线 | 精品久久久久久久久av| 狂野欧美激情性bbbbbb| h视频一区二区三区| 蜜臀久久99精品久久宅男| 一二三四中文在线观看免费高清| 涩涩av久久男人的天堂| 国产精品国产三级专区第一集| 久久国内精品自在自线图片| 精品国产露脸久久av麻豆| 一二三四中文在线观看免费高清| 国产精品人妻久久久久久| 欧美日韩精品成人综合77777| 亚洲精品成人av观看孕妇| 成人毛片60女人毛片免费| 午夜老司机福利剧场| 高清视频免费观看一区二区| 97在线视频观看| 成人综合一区亚洲| 亚洲怡红院男人天堂| 精品99又大又爽又粗少妇毛片| 日韩av不卡免费在线播放| 亚洲精品日本国产第一区| 免费观看在线日韩| 精品久久久精品久久久| 狠狠婷婷综合久久久久久88av| 在线观看国产h片| 国产免费又黄又爽又色| 国产男人的电影天堂91| 午夜精品国产一区二区电影| 视频区图区小说| 蜜桃国产av成人99| av免费观看日本| 欧美亚洲日本最大视频资源| 大香蕉久久成人网| 欧美丝袜亚洲另类| 美女主播在线视频| 18禁观看日本| 99热网站在线观看| 三级国产精品欧美在线观看| 高清av免费在线| 飞空精品影院首页| 在线看a的网站| 精品卡一卡二卡四卡免费| 欧美+日韩+精品| 国产男人的电影天堂91| 如何舔出高潮| 成年美女黄网站色视频大全免费 | 午夜视频国产福利| 亚洲精品久久久久久婷婷小说| 黄色毛片三级朝国网站| 欧美变态另类bdsm刘玥| 国产欧美另类精品又又久久亚洲欧美| 精品人妻熟女av久视频| 欧美日本中文国产一区发布| √禁漫天堂资源中文www| 99久久人妻综合| 国产熟女午夜一区二区三区 | 国产熟女欧美一区二区| av又黄又爽大尺度在线免费看| 韩国高清视频一区二区三区| 亚洲欧美一区二区三区黑人 | 亚洲激情五月婷婷啪啪| 亚洲成人手机| 人妻一区二区av| 欧美精品国产亚洲| 特大巨黑吊av在线直播| 亚洲国产精品一区二区三区在线| 亚洲av成人精品一二三区| 国产成人免费无遮挡视频| 新久久久久国产一级毛片| 日韩熟女老妇一区二区性免费视频| 亚洲人与动物交配视频| 久久精品国产亚洲av天美| 91久久精品电影网| xxxhd国产人妻xxx| 亚洲精品久久成人aⅴ小说 | 国产在线一区二区三区精| 国产一区二区三区综合在线观看 | 成人国产av品久久久| 亚洲人成77777在线视频| 丰满乱子伦码专区| 蜜桃国产av成人99| 99国产综合亚洲精品| 午夜久久久在线观看| 狠狠精品人妻久久久久久综合| 99视频精品全部免费 在线| 久久久国产一区二区| 美女视频免费永久观看网站| 寂寞人妻少妇视频99o| 免费观看av网站的网址| 免费大片18禁| 麻豆精品久久久久久蜜桃| 国产又色又爽无遮挡免| 国产极品天堂在线| 卡戴珊不雅视频在线播放| 一级毛片aaaaaa免费看小| 亚洲熟女精品中文字幕| 亚洲高清免费不卡视频| 人妻一区二区av| 国产男女内射视频| 晚上一个人看的免费电影| 国产高清不卡午夜福利| 国产欧美另类精品又又久久亚洲欧美| 国产黄色视频一区二区在线观看| 看免费成人av毛片| 哪个播放器可以免费观看大片| 丰满少妇做爰视频| 高清毛片免费看| 亚洲精品自拍成人| 精品卡一卡二卡四卡免费| 午夜影院在线不卡| 狠狠婷婷综合久久久久久88av| 国产国拍精品亚洲av在线观看| 99热6这里只有精品| 免费av不卡在线播放| 自拍欧美九色日韩亚洲蝌蚪91| 狂野欧美白嫩少妇大欣赏| 久久鲁丝午夜福利片| 日韩强制内射视频| 高清毛片免费看| 久久久午夜欧美精品| 最近中文字幕高清免费大全6| 久久精品国产a三级三级三级| 大话2 男鬼变身卡| 中文字幕av电影在线播放| 日韩在线高清观看一区二区三区| 日韩欧美一区视频在线观看| 男女免费视频国产| 一二三四中文在线观看免费高清| 成人综合一区亚洲| 久久精品国产自在天天线| av女优亚洲男人天堂| 欧美变态另类bdsm刘玥| 欧美bdsm另类| 少妇 在线观看| 夜夜看夜夜爽夜夜摸| 国产av国产精品国产| 日韩在线高清观看一区二区三区| 亚洲伊人久久精品综合| 亚洲人成网站在线播| 亚洲av欧美aⅴ国产| av电影中文网址| 性高湖久久久久久久久免费观看| 九色成人免费人妻av| 免费黄频网站在线观看国产| 最黄视频免费看| 亚洲精品中文字幕在线视频| 男人操女人黄网站| 天堂俺去俺来也www色官网| 国产精品 国内视频| 亚洲四区av| 国产欧美亚洲国产| 人人妻人人添人人爽欧美一区卜| 夜夜爽夜夜爽视频| 亚洲国产av新网站| 99热这里只有精品一区| 一区二区三区精品91| 韩国av在线不卡| 日本黄大片高清| 最近手机中文字幕大全| 熟女电影av网| videossex国产| 久久久欧美国产精品| 国产精品人妻久久久影院| 18禁观看日本| 亚洲天堂av无毛| 97精品久久久久久久久久精品| 五月开心婷婷网| 免费大片18禁| 日本91视频免费播放| 又大又黄又爽视频免费| 美女视频免费永久观看网站| 国产极品天堂在线| 免费日韩欧美在线观看| 狠狠婷婷综合久久久久久88av| 啦啦啦视频在线资源免费观看| 日韩一区二区视频免费看| 久久久久久伊人网av| 亚洲国产欧美日韩在线播放| 午夜日本视频在线| 亚洲欧美中文字幕日韩二区| 国产成人精品久久久久久| 精品卡一卡二卡四卡免费| 亚洲国产日韩一区二区| 精品少妇久久久久久888优播| av在线老鸭窝| 日韩伦理黄色片| 午夜精品国产一区二区电影| 日本色播在线视频| 中文乱码字字幕精品一区二区三区| 精品人妻在线不人妻| 啦啦啦在线观看免费高清www| 亚洲美女搞黄在线观看| 观看av在线不卡| 欧美 日韩 精品 国产| 久久99蜜桃精品久久| 久久久久网色| 插逼视频在线观看| 亚洲精品久久午夜乱码| 新久久久久国产一级毛片| 亚洲av成人精品一二三区| 黑人巨大精品欧美一区二区蜜桃 | 日韩一本色道免费dvd| 日韩欧美精品免费久久| 亚洲久久久国产精品| 99九九线精品视频在线观看视频| 日韩精品免费视频一区二区三区 | 欧美日本中文国产一区发布| 青青草视频在线视频观看| 日韩成人伦理影院| 亚洲精品国产色婷婷电影| 欧美变态另类bdsm刘玥| 狂野欧美激情性xxxx在线观看| 一个人免费看片子| 日韩大片免费观看网站| 新久久久久国产一级毛片| 视频区图区小说| 飞空精品影院首页| 亚洲欧美成人综合另类久久久| 久久久精品区二区三区| av在线观看视频网站免费| 久久久久网色| 永久网站在线| 美女内射精品一级片tv| 成年人免费黄色播放视频| xxxhd国产人妻xxx| 少妇高潮的动态图| 国产黄片视频在线免费观看| 亚洲精品美女久久av网站| 一级二级三级毛片免费看| a级片在线免费高清观看视频| 啦啦啦在线观看免费高清www| 精品亚洲成国产av| 国产精品国产三级国产av玫瑰| 亚洲精品国产av蜜桃| 哪个播放器可以免费观看大片| 国产黄色视频一区二区在线观看| 纵有疾风起免费观看全集完整版| 一本大道久久a久久精品| 一级毛片黄色毛片免费观看视频| 国精品久久久久久国模美| 精品人妻熟女毛片av久久网站| 高清av免费在线| 日韩精品免费视频一区二区三区 | 最近中文字幕高清免费大全6| 大又大粗又爽又黄少妇毛片口| 日本vs欧美在线观看视频| av线在线观看网站| 亚洲欧洲国产日韩| 久久精品国产鲁丝片午夜精品| 午夜av观看不卡| 亚洲国产欧美日韩在线播放| 国产极品粉嫩免费观看在线 | 亚洲精品456在线播放app| 亚洲精品,欧美精品| 日本黄色片子视频| 日韩av在线免费看完整版不卡| 美女国产高潮福利片在线看| av网站免费在线观看视频| 日韩亚洲欧美综合| 国产免费福利视频在线观看| 国产黄色视频一区二区在线观看| 纵有疾风起免费观看全集完整版| 久久久久网色| 91久久精品电影网| 国产片特级美女逼逼视频| 91久久精品电影网| 日韩亚洲欧美综合| 两个人的视频大全免费| 免费观看的影片在线观看| 亚洲经典国产精华液单| 美女xxoo啪啪120秒动态图| 人妻 亚洲 视频| 国产亚洲欧美精品永久| 久久精品国产鲁丝片午夜精品| 欧美日韩精品成人综合77777| a 毛片基地| 国产极品天堂在线| 另类精品久久| 一区二区av电影网| 新久久久久国产一级毛片| 日韩中文字幕视频在线看片| 精品一品国产午夜福利视频| 亚洲欧洲精品一区二区精品久久久 | h视频一区二区三区| av天堂久久9| 欧美人与善性xxx| 亚洲精品国产色婷婷电影| 中国美白少妇内射xxxbb| 一级毛片电影观看| 日韩欧美一区视频在线观看| 久久人人爽av亚洲精品天堂| 久久久国产精品麻豆| 丝袜脚勾引网站| 国产欧美日韩综合在线一区二区| 97在线人人人人妻| 97在线视频观看|