• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Plant salt tolerance and Na+sensing and transport

    2018-06-04 03:33:22HonghongWu
    The Crop Journal 2018年3期

    Honghong Wu*

    School of Land and Food,University of Tasmania,Hobart,Tas 7001,Australia

    State Key Laboratory of Tea Plant Biology and Utilization,Anhui Agricultural University,Hefei 230036,Anhui,China Department of Botany and Plant Sciences,University of California,Riverside,CA 92521,USA

    1.Introduction

    Sodium constitutes the sixth most abundant element on earth[1],and sodium salts dominate in many saline soils of the world[2].The current progressive increase in soil salinization may result in a~30%loss of the arable land within the next 25 years[3].To meet the projected food demand of 9.3 billion people by 2050,global agricultural production must be increased by 60%from its 2005–2007 levels[4].This urgent need requires a large effort to improve agricultural production.One feasible way to cope with this challenge is to breed robustly salt-tolerant crops.Understanding the mechanisms underlying plant salt tolerance would be of benefit for breeding such crops and mitigating future food shortages.

    Na+is generally not essential for plants.The similarity of the hydrated ionic radii of Na+and K+leads to Na+toxicity in plants under salt stress[5].Accumulation of high Na+in the cytosol can not only cause K+deficiency and thus disrupt various enzymatic processes,but also impose an energetic burden on the cell owing to the requirement of organic solute synthesis to compensate for the export of Na+for osmotic adjustment[6].More than 50 enzymes are activated by K+,which cannot be substituted with Na+[7].Also,oxidative stress is always accompanied by salt stress in plants[8].Thus,understanding how Na+is sensed and transported in plants under saline conditions could help researchers or breeders breed crops with robust salt tolerance.

    The present review is focused mainly on how plants sense Na+and control its transport under salt stress.The molecular identity of transporters and channels involved in Na+transport and its molecular regulation in response to salt stress are discussed.

    2.Na+as an issue

    Our earth is a salty planet[9,10].Saline soils cover 3.1%(397 million ha)of the total land area of the world[11].High concentrations of salts in soils account for large decreases in the yields of a wide variety of crops worldwide and result in annual losses in the billions of dollars[7,12].For example,soil salinity developed through shallow water-tables costs the farming economy in Australia about$300 million per year[13].

    The onset of salinity stress on plants can be divided into two phases:osmotic phase(rapid response to osmotic pressure)and then ionic phase(ionic toxicity from accumulated Na+)[6,14].In terms of salinity stress tolerance,plants can be divided into halophytes and glycophytes.Most crop species are glycophytes.Many glycophytes are particularly intolerant to salt,being inhibited by NaCl concentrations around 25–50 mmol L?1[15].Soil solutions with ECe(Electrical Conductivity of a saturated soil Extract)higherthan 4 dS m?1(corresponding to roughly 40 mmol L?1NaCl)are regarded as saline[6].Salinity stress can reduce germination rate[14,16],survival rate[16,17],growth[17],biomass/yield[14,16,18],leaf area[19],and leaf chlorophyll content[20,21].It can impact photosynthesis-associated traits and reduce stomatal conductance and net CO2assimilation rate[20].It can not only cause Na+accumulation in plants but also induce root[22,23]and mesophyll K+loss[24–26].

    3.Na+as a nutrient

    Given that Na+is one of the most soluble minerals and is easily accessible to plants to increase osmotic potential,absorb water,and sustain turgor,uptake of Na+is desirable,although excess Na+may become toxic to plants[27].Na+influx into cells against an electrochemical gradient is mediated mainly by non-selective cation channels and the sodium transporter HKT1[28].Low to moderate Na+concentrations are commonly found to be benign and even beneficial,and can even stimulate growth of many plant species when they are K+-deprived[29].This effect may be due to the replacement by Na+of K+in the vacuole,making more potassium available to the cytosol[30–32].For example,halophyte Salicornia europaea showed stimulated growth under 200 mmol L?1NaCl compared to the non-saline condition[33].Thus,to better improve salt tolerance in glycophytes,researchers have looked to the mechanisms used by halophytes to use Na+as a nutrient or prevent Na+accumulation in the cell cytosol[32,34–36].For example,Shabala et al.[36]suggested that it will be possible in the near future to transform the trichomes of crop species to epidermal bladder cells,which are used in halophytes for storage of excess Na+.The various strategies used by halophytes and glycophytes in response to salt stress are compared in Fig.1.

    4.Na+concentration in plant cell cytosol:some inconsistent results

    Fig.1–Different strategies of halophytes and glycophytes in response to salt stress.The thicknesses of lines represent the proposed contributions.

    To date,the role of the concentration of Na+in the cell cytosol in plant salt tolerance is debated.Some researchers claim ~30 mmol L?1as a threshold of cytosolic Na+concentration[6,7],while others suggest a range between 50 and 200 mmol L?1[37].Carden et al.[38]found that Na+concentration in cytosol ranged between~10 and 30 mmol L?1in salt-stressed barley root cortical cells.Anil et al.[39]found the cytosolic Na+concentration to range from~5to~12 mmol L?1in rice suspension cells under control conditions,whether they were derived from salt-tolerant or-sensitive varieties.Halperin and Lynch[40]measured the Na+concentration in Arabidopsis root hairs at lower than 65 mmol L?1under salt stress.Na+concentration in the cell cytosol in halophytes under saline conditions is proposed to range between 60 and 200 mmol L?1[41].Differences in plant species' ability to tolerate Na+in the cytosol and sensitivities of measurement methods may partially account for these disparate findings.

    5.Na+sensing in plants

    5.1.Possible salt sensors for perception of Na+

    Unlike in animal cells,no specific salt sensors have been identified in plant cells to date.Thus,our knowledge of how plant perceive salt stress and thus encode the corresponding signals remains limited.Cramer et al.[42]found that Ca2+can mitigate the loss of membrane integrity and minimize cytosolic K+leakage and proposed that displacement of Ca2+by Na+from the root cell plasmalemma is a primary response to salt stress.However,Kinraide[43]claimed that the Ca2+-displacement hypothesis is often of minor importance to salt stress response.SOS1 (saltoverly sensitive 1)Na+/H+antiporters[44],histidine kinases[45],and AHK1/ATHK1[46]have also been suggested to be potential salt sensors or osmosensors,though clear evidence is still lacking.Shabala et al.[47]suggested some putative salt stress sensors/proteins involved in early signaling events,including exchangers and transporters have Na+-binding proteins similar to mammalian cell Na+sensors,SOS1 Na+/H+antiporters,NCX Na+/Ca2+exchangers,NSCC/NADPH oxidase tandem,mechanosensory channels and transporters,cyclic nucleotide receptors,purino-receptors,annexins,and H+-ATPase/GORK tandem.Na+-activated K+channels in animal tissues are able to translate changes in Na+levels into K+fluxes[48],triggering signaling cascades.The binding of salt stress-induced increases of cyclic nucleotides to their receptors,e.g.CNGCs,can activate this CNGC Ca2+-permeable channels,and thus the increase of cyclic nucleotides could be translated into a massive cytosolic Ca2+uptake,which can affect Ca2+signaling[47].Similarly,sensing of salt-induced eATP(extracellular ATP)by plasma membrane purinoceptors can be translated into other signaling events,such as ROS(reactive oxygen species)and cytosolic Ca2+signature[49].Annexin is involved in ROS-induced cytosolic Ca2+elevation under salt stress[50]and is suggested to be a key component in root cell adaption to salt stress[51].K+acts as an intrinsic uncoupler of plasma membrane H+-ATPase,and its binding to the cytoplasmic phosphorylation domain site involving Asp617amino acid residue induces dephosphorylation of plasma membrane H+-ATPase[52].Thus,if a GORK channel is located near the H+-ATPase(H+-ATPase/GORK tandem),the depolarization-activated GORK channel-mediated K+efflux(early salt-stress signaling event[53,54])can result in reduced cytosolic K+and thus may prompt activation of H+-ATPase to restore plasma membrane potential,allowing modifying/affecting salt-induced K+efflux signaling events.

    5.2.Root meristem zone:a tissue harboring salt sensors?

    The root meristem is located at the very tip of the root.Root morphological change is always observed in root nutrient foraging[55].This observation suggests that roots can perceive changes in environmental factors,such as nutrient distribution and salinity level.In most cases,the root is the first plant organ that encounters salinity.Thus,Na+enters first into roots and is then transported to shoots.Wu et al.[56]found that salt-tolerant bread wheat varieties had significantly higher cytosolic Na+in the root meristem zone than salt-sensitive varieties,although no difference in vacuolar Na+fluorescence intensity was found in the root meristem zone.This finding suggests that salt-tolerant wheats could have more ability to buffer or tolerate increased Na+in the cell cytosol in root meristem zone than salt-sensitive wheats.Further,by removal of the root meristem zone from salttolerant wheat varieties,Na+distribution in mesophyll cells was altered and a salt-sensitive phenotype resulted[57].Taken together,these findings suggest that the root meristem zone can act as a salt stress sensor,or at least a tissue that harbors salt stress-sensor components.

    6.Regulation of Na+transport in plants under salt stress

    6.1.The importance of Na+exclusion in plant salt tolerance

    The importance of Na+exclusion in protecting plants against salinity stress is widely accepted.Under salt stress,net Na+accumulation in plant cells is determined by the ionexchange activity of Na+influx and efflux.Na+influx occurs mainly through ion channels such as the high-affinity K+transporter HKT and non-selective cation channels(NSCC),and Na+efflux is known to be mediated by SOS1,a Na+/H+antiporter.In the presence of elevated levels of external Na+,under saline conditions,Na+efflux from plant cells is an active process[58].To date,SOS1,expressed mainly in the root apex in Arabidopsis[59],is the only transporter that has been characterized in Na+export from the cytosol to the apoplast.Cuin et al.[60]showed that among eight tested varieties,the most salt-tolerant wheat variety Kharchia 65 had the strongest root Na+exclusion ability.Over expression of SOS1 can also enhance salt tolerance in transgenic plants[61,62].Loss of SOS1 function resulted in a hyper-saltsensitive phenotype in the halophytic Arabidopsis relative Thellungiella salsuginea[63].This finding further confirmed the important role of the SOS1 Na+/H+antiporter in Na+exclusion and overall plant salt tolerance.Moreover,to date,studies showing the important role of Na+exclusion in overall salt tolerance have been based mostly on shoot/leaf or even whole-plant Na+content[64–69].Whether this restricted Na+accumulation in shoot/leaves is achieved mainly by root Na+export or shoot Na+exclusion,or by both of these processes with tight regulation/coordination at different growth stages and time scales,however,has remained unclarified.

    6.2.The importance of vacuolar Na+sequestration in plant salt tolerance

    SOS1-mediated Na+export from cytosol to apoplast(against an Na+gradient)is an energy-consuming process.Given that most of the cell volume is occupied by vacuole and most metabolism occurs in the cytoplasm,one way for plants to alleviate Na+toxicity in the cytosol is to store Na+in the vacuole.Vacuolar Na+sequestration is acommon and important mechanism in plant salt tolerance,and is mediated by Na+/H+antiporters[70–72].Prevention of cytoplasmic Na+elevation,maintenance of the cytosolic K+/Na+ratio,and control of vacuolar osmotic potential in plants under salt stress can be achieved by,or is associated with,vacuolar Na+sequestration[73].To date,the best-known transporter for vacuolar Na+sequestration is the NHX1 Na+,K+/H+exchanger.Overexpression of NHX1,a Na+,K+/H+exchanger,improves salt tolerance in many species including Arabidopsis[70],tomato[74],rice[75],and tobacco[76],showing the importance of vacuolar Na+sequestration in plant overall salt tolerance.Significantly more Na+in excised leaves accumulated in tolerant than in sensitive barley genotypes,suggesting the important role of vacuolar Na+sequestration in overall salt tolerance[77].Also,salt-tolerant wheat varieties showed significantly higher vacuolar Na+fluorescence intensity in mature root cells than did sensitive varieties[56,60].Under overexpression of OsNHX1,transgenic rice cells survived better under saline condition and showed significantly higher growth rate and total Na+content than the wild type(WT)[78].Taken together,these findings show clearly that vacuolar Na+sequestration is an important trait contributing to plant overall salt tolerance.

    After sequestration of Na+in vacuoles,another important concern is to prevent Na+leakage from vacuole to cytosol.Loss of control of this step could result in futile Na+cycling between vacuole and cytosol,imposing a high energy burden on the plant.FV(fast-activating)and SV(slow-activating)channels are tonoplast Na+and K+-permeable channels that control Na+leakage from vacuole to cytosol.Negative control of FV and SV channel activity has been shown in the saltstressed halophyte quinoa to reduce such leakage[79],suggesting that efficient control of Na+leakage from vacuole to cytosol could be an important mechanism in plant overall salt stress tolerance.

    6.3.Control of xylem Na+loading and unloading

    Roots absorb ions and then transfer them to shoots via xylem loading,so that control of xylem Na+loading is important in plant overall salt tolerance.To date,SOS1 Na+/H+antiporter[58,80,81],CCC co-transporter[82],and SKOR channel(if xylem loading of Na+is passive)[83]have been shown to be involved in xylem Na+loading.Shi et al.[59]suggested that SOS1 plays a role in xylem Na+loading in Arabidopsis under mild salt stress.Yadav et al.[84]showed that enhanced xylem Na+loading and higher overall salt tolerance was achieved in tobacco by overexpression of SbSOS1.Recently,a reduction in overall net xylem Na+loading and accumulation in the shoot and thus improved salt tolerance were observed in wheat Nax(locus for Na+exclusion)lines following downregulation of SOS1-like Na+/H+antiporter[85].Besides SOS1,a CCC cotransporter that is preferentially expressed at the xylem/symplast boundary has also been suggested to play a role in xylem Na+loading[82].With respect to Na+transport in xylem,besides Na+loading into xylem,Na+unloading from xylem is another important mechanism.HKT transporters play a main role in this process.Sunarpi et al.[86]showed that the AtHKT1 transporter located on the plasma membrane in xylem parenchyma cells in leaves played a role in Na+unloading from xylem vessels to parenchyma cells.Huang et al.[87]suggested that TmHKT7-A2,which is associated with Nax1 locus,could control xylem Na+unloading in roots and sheaths.Also,Byrt et al.[65]showed that HKT1;5(HKT8)is strongly associated with Nax2 locus in durum wheat and its orthologous locus Kna1 in bread wheat removes Na+from xylem in roots and leads to a high K+/Na+ratio in leaves.Jaime-Perez et al.[88]showed that the SlHKT1;2 Na+-selective transporter plays an important role in Na+unloading from xylem in tomato shoots and thus modulates its Na+homeostasis under salinity.Fig.2 presents a schematic diagram of the control of xylem Na+loading and unloading.

    6.4.Na+recirculation from shoot to root via phloem

    Na+recirculation from shoots to roots has been suggested as an efficient way to protect leaf cells from Na+toxicity[89].Because leaf vacuolar Na+sequestration ability is poor,Na+recirculation from shoots to roots via phloem sap is probably the main mechanism involved in prevention of Na+delivery to leaf cells in most salt-sensitive plants[90].Apart from shoot growth rate,the rate of recirculation of Na+to the roots via phloem has been suggested as an important factor affecting Na+concentrations in shoots[91].In several species,such as lupine,clover,sweet pepper,and maize,recirculation of Na+to roots via phloem played a role in overall salt tolerance[7].Berthomieu et al.[90]showed that expression of the AtHKT1 gene was restricted to phloem tissues in all organs in Arabidopsis,and that the AtHKT1 gene was involved in Na+recirculation from shoots to roots probably by mediating Na+loading into phloem sap in the shoots and unloading it in roots.However,in Arabidopsis,a role of AtHKT1 in control of both Na+accumulation in roots and retrieval of Na+from xylem,without involvement in root influx or recirculation in the phloem,was suggested by Davenport et al.[91].Ren et al.[92]showed that HKT-type transporter encoded by SKC1(shoot K+concentration 1)gene might be involved in the recirculation of Na+by unloading it from the xylem in rice.Kobayashi et al.[93]foundthatan OsHKT1;5Na+selective transporter associated with the SKC1 locus is localized in cells adjacent to the xylem in roots,and is involved in mediating Na+exclusion in phloem to protect young leaf blades of rice under salt stress.

    Fig. 2 – Control of xylem Na+ loading and unloading.

    6.5.Na+secretion

    In halophytic plants,ion secretion by specialized salt glands is a well-known mechanism for regulating mineral content.Under high-salinity conditions,these specialized cells can serve as a peripheral Na+storage organ,mitigate the elevation of cytosolic Na+,and thus improve survival[94].Salt glands secrete both Na+and K+in Rhodes grass,but the ability to secrete Na+is greater than K+[95].Special salt glands in Aeluropus littoralis excreted salts consisting mostly of sodium chloride[96].Chen et al.[97]found that when Avicennia marina plants were transferred to increasingly strong saline solutions,increased numbers of salt glands in leaves were found and rates of salt secretion greatly increased.Agarie et al.[94]showed that epidermal bladder cells in the common ice plant(Mesembryanthemum crystallinum)contribute to salt tolerance by maintaining ion sequestration and homeostasis within photosynthetically active tissues.Bonales-Alatorre et al.[79]found that old leaves in quinoa had significantly higher Na+concentration in leaf sap than young leaves under salt stress,whether or not the leaves were brushed to remove bladder cells.

    7.Transporters and channels involved in Na+transport in plants under salt stress

    7.1.Na+transporters

    In contrast to HKT transporters subfamily 2 members,which show superior K+conductance,all members of HKT transporter subfamily 1 have a serine at the first pore loop(for the motif S-G-G-G)and show preferential Na+conductance.For example,Nax1 and Nax2 QTL(quantitative trait locus)in durum wheat are respectively linked to HKT1;4 and HKT1;5 transporters[66],and Kna1 in bread wheat is linked to an HKT1;5 transporter[65].The role of HKT1:X transporters in Na+unloading and recirculation in salt stressed plants was mentioned in Section 6.3 and 6.4.For example,Kobayashi et al.[93]found that the OsHKT1;5 Na+selective transporter,which is associated with the SKC1 locus,is localized in cells adjacent to the xylem in roots,and is involved in mediating Na+exclusion in phloem to protect young leaf blades of rice under salt stress.

    As mentioned earlier,vacuolar Na+sequestration is an important mechanism in plant salt tolerance.In 1999,Apse et al.[70]showed that transgenic plants overexpressing AtNHX1 had markedly increased salt stress tolerance and biomass.NHX1,a Na+,K+/H+exchanger,plays a crucial role not only in Na+accumulation in vacuoles but in pH regulation and K+homeostasis,regulating processes from vesicle trafficking and cell expansion to plant development[1,98,99].Most of the NHX family members(AtNHX1,AtNHX2,AtNHX3,AtNHX4,ItNHX1,ItNHX2,and OsNHX1)are located on the tonoplast;AtNHX7/SOS1 and AtNHX8,and other NHXs(AtNHX5,AtNHX6,and LeNHX2)are located on the plasma membrane and the endomembrane system,respectively [100].The intracellular NHX transporters compose subclass 1 of the cation/proton antiporter(CPA)family.To date,most members of the CPA family have been identified as Na+/H+antiporters,buta few are K+/H+antiporters,including CHX13,CHX17,CHX20,and CHX23 in the CPA2 family[101].

    Besides vacuolar Na+sequestration,another important pathway for controlling Na+distribution in plant cells is Na+exclusion/export.To date,SOS1 Na+/H+antiporter is the only reported antiporter responsible for Na+export from plant cells[102,103].SOS1 activity is regulated by SOS2,a serine/threonine protein kinase(CIPK24)and SOS3,a myristoylated calcium-binding protein(CBL4)[104–106].SOS3 recruits SOS2 to the plasma membrane,and then this CBL-CIPK complex activates SOS1 by phosphorylation,dramatically increasing Na+/H+exchange activity[58].Moreover,the existence of an ATP-driven Na+transport mediated by a Na+-ATPase at the plasma membrane has been shown in lower plants,such as the marine alga Heterosigma akashiwo[107]and the moss Physcomitrella patens[108].

    7.2.Na+channels

    NSCCs are a large family of channels that lack selectivity for cations.They are typically permeable to a wide range of monovalent cations[109]and are located on both the plasma membrane and the tonoplast.They can be divided into voltage-dependent NSCCs(depolarization-activated,hyperpolarization-activated),voltage-independent NSCCs,ROS-activated NSCCs,amino acid-activated NSCCs,cyclic nucleotidegated NSCCs,etc.Electrophysiological studies suggest that Na+influx across the plasma membrane occurs via NSCC/VIC in root cortical cells[10,58,110].Maathuis and Sanders[111]found that cyclic nucleotide-regulated VIC(voltage-independent cation channels)channels showed no selectivity among monovalent cations in Arabidopsis root cells.Channels and transporters involved in Na+transport in plants under salt stress are summarized in Fig.3.

    7.3.Molecular regulation of Na+transporters/channels in response to salt stress

    To date,SOS1 is the only known anti-transporter responsible for Na+export from cytosol to apoplast.Usually,expression of the SOS1 gene is upregulated in salt stressed plants[63,102,112].The functional activity of SOS1 mediated Na+export could be influenced by SOS2[104],SOS3[106],the assembly of SOS2-SOS3 complex[113],and H+-ATPase,which can increase H+efflux to energize Na+efflux through SOS1 antiporters[114].SOS1 activity could also be influenced by ROS or ROS signaling-associated components.SOS1 mRNA stability is increased in Arabidopsis under H2O2treatment,and NADPH oxidase is also involved in the upregulation of SOS1 mRNA stability[115].Also,SOS1 interacts with RCD1(radical-induced cell death),a regulator of oxidative stress responses,and functions in oxidative stress tolerance in Arabidopsis[116].Reduced ROS production and increased SOS1 expression was found in pao1pao5(polyamine oxidase,PAO)Arabidopsis mutants than in the WT under salt stress[117].

    As with SOS1,overexpression of NHX1 to increase plant salt tolerance has been shown in many plant species[61,62,70].Although the role of AtNHX1 in K+accumulation in the vacuole was discovered in recent years[98,99,118],this finding cannot completely rule out the involvement of NHX1 in vacuolar Na+sequestration,especially under high salinity[81,119].Usually,the NHX1 gene is upregulated in saltstressed plants,including Arabidopsis[120],barley[121],and alfalfa[122].However,a clear decrease in the transcript level of NHX1 in wheat roots was observed under salt stress,while almost no change in the NHX1 transcript level was found in leaves[123].Also,in contrast to the successfully improved salt stress tolerance in Arabidopsis[70],tomato[74],rice[75],and tobacco[76],overall salt tolerance was not enhanced in Arabidopsis[61]and barley[124]by expression of the NHX1 Na+/H+exchanger gene.These conflicting results raise the questions of the importance of tissue specificity in plant saltstress tolerance.

    Fig.3–Na+transport in plants under salinity stress.

    NHX1 is known to be fuelled by an H+gradient across the tonoplast that is maintained by vacuolar H+-ATPase and vacuolar PPase[125].Expressing a halophyte vacuolar H+-ATPase subunit c1(SaVHAc1)in rice plants resulted in higher chlorophyll content and yield than in its WT[126].Overexpression of vacuolar PPase AVP1 improved salt tolerance in transgenic Arabidopsis relative to the WT,showing a healthy growth of transgenic Arabidopsis in the presence of 250 mmol L?1NaCl compared with the WT,which died after 10 days[127].These results suggest that manipulating vacuolar H+-ATPase and PPase could allow regulating NHX1 activity and eventually plant overall salt tolerance.Other known factors in the regulation of NHX1 activity are SOS2[128]and CaM15[129].Also,CBL10 can interact with SOS2 to protect Arabidopsis shoots from salt stress[130].Tang et al.[131]showed that PtCBL10A and PtCBL10B interact with PtSOS2 in the vacuolar membrane to regulate shoot salt tolerance in poplar.Thus,CBL10 is also proposed to regulate NHX1 activity[132].Two recent reviews[81,133]have also focused on molecular regulation of Na+transporters/channels in response to salt stress.

    8.Conclusion

    Although plant salt tolerance at the level of Na+transport is well characterized,the initial plant perception of salt stress and its transduction to subsequent signaling cascades is still obscure.In this review,some suggested putative salt stress sensors have been described.The root meristem zone as a tissue harboring salt stress-sensing components has been proposed.The importance of Na+exclusion and vacuolar Na+sequestration in plant salt tolerance has been highlighted.The molecular regulation of Na+transporters/channels in response to salt stress has been discussed.Although over-accumulation of Na+is toxic to plants,low levels of Na+can stimulate plant growth especially under K+deprivation.Inconsistent cytosolic Na+concentrations reported in the literature may be attributed to the diversity of plant species or the sensitivities of measurement methods.

    Acknowledgments

    I thank Prof.Sergey Shabala,Associate Prof.Meixue Zhou,and Dr.Lana Shabala from University of Tasmania,Australia for their help in the preparation of the manuscript.I thank Prof.James C.Nelson from Kansas State University for his proofreading of the manuscript.This work was supported by a Ph.D.scholarship provided by University of Tasmania(185466S9A),Australia and the Open Fund of State Key Laboratory of Tea Plant Biology and Utilization at Anhui Agricultural University(SKLTOF20170112).

    [1]M.P.Rodríguez-Rosales,F.J.Gálvez,R.Huertas,M.N.Aranda,M.Baghour,O.Cagnac,K.Venema,Plant NHX cation/proton antiporters,Plant Signal.Behav.4(2009)265–276.

    [2]E.Tavakkoli,P.Rengasamy,G.K.McDonald,High concentrations of Na+and Cl?ions in soil solution have simultaneous detrimental effects on growth of faba bean under salinity stress,J.Exp.Bot.61(2010)4449–4459.

    [3]W.Wang,B.Vinocur,A.Altman,Plant responses to drought,salinity and extreme temperatures:towards genetic engineering for stress tolerance,Planta 218(2003)1–14.

    [4]M.K.van Ittersum,L.G.J.van Bussel,J.Wolf,P.Grassini,J.van Wart,N.Guilpart,L.Claessens,H.de Groot,K.Wiebe,D.Mason-D'Croz,H.Yang,H.Boogaard,P.A.J.van Oort,M.P.van Loon,K.Saito,O.Adimo,S.Adjei-Nsiah,A.Agali,A.Bala,R.Chikowo,K.Kaizzi,M.Kouressy,J.H.J.R.Makoi,K.Ouattara,K.Tesfaye,K.G.Cassman,Can sub-Saharan Africa feed itself?Proc.Natl.Acad.Sci.U.S.A.113(2016)14964–14969.

    [5]E.Blumwald,Sodium transport and salt tolerance in plants,Curr.Opin.Plant Biol.12(2000)431–434.

    [6]R.Munns,M.Tester,Mechanisms of salinity tolerance,Annu.Rev.Plant Biol.59(2008)651–681.

    [7]M.Tester,R.Davenport,Na+tolerance and Na+transport in higher plants,Ann.Bot.91(2003)503–527.

    [8]G.Miller,N.Suzuki,S.Ciftci-Yilmaz,R.Mittler,Reactive oxygen species homeostasis and signalling during drought and salinity stresses,Plant Cell Environ.33(2010)453–467.

    [9]T.J.Flowers,Improving crop salt tolerance,J.Exp.Bot.55(2004)307–319.

    [10]J.L.Zhang,T.J.Flowers,S.M.Wang,Mechanisms of sodium uptake by roots of higher plants,Plant Soil 326(2010)45–60.

    [11]R.Setia,P.Gottschalk,P.Smith,P.Marschner,J.Baldock,D.Setia,J.Smith,Soil salinity decreases global soil organic carbon stocks,Sci.Total Environ.465(2013)267–272.

    [12]M.Qadir,E.Quillérou,V.Nangia,G.Murtaza,M.Singh,R.J.Thomas,P.Drechsel,A.D.Noble,Economics of salt-induced land degradation and restoration,Nat.Resour.Forum 38(2014)282–295.

    [13]P.Rengasamy,Transient salinity and subsoil constraints to dryland farming in Australian sodic soils:an overview,Aust.J.Exp.Agric.42(2002)351–361.

    [14]R.Munns,R.A.James,A.L?uchli,Approaches to increasing the salt tolerance of wheat and other cereals,J.Exp.Bot.57(2006)1025–1043.

    [15]R.Haro,M.A.Ba?uelos,F.J.Quintero,F.Rubio,A.Rodríguez-Navarro,Genetic basis of sodium exclusion and sodium tolerance in yeast.A model for plants,Physiol.Plant.89(1993)868–874.

    [16]R.Munns,R.A.James,Screening methods for salinity tolerance:a case study with tetraploid wheat,Plant Soil 253(2003)201–218.

    [17]A.R.Yeo,T.J.Flowers,Salinity resistance in rice(Oryza sativa L.)and a pyramiding approach to breeding varieties for saline soils,Funct.Plant Biol.13(1986)161–173.

    [18]T.A.Cuin,Y.Tian,S.A.Betts,?.Chalmandrier,S.Shabala,Ionic relations and osmotic adjustment in durum and bread wheat under saline conditions,Funct.Plant Biol.36(2009)1110–1119.

    [19]T.D.Colmer,R.Munns,T.J.Flowers,Improving salt tolerance of wheat and barley:future prospects,Aust.J.Exp.Agric.45(2005)1425–1443.

    [20]R.A.James,A.R.Rivelli,R.Munns,S.Von Caemmerer,Factors affecting CO2assimilation,leaf injury and growth in salt-stressed durum wheat,Funct.Plant Biol.29(2002)1393–1403.

    [21]T.A.Cuin,M.Zhou,D.Parsons,S.Shabala,Genetic behaviour of physiological traits conferring cytosolic K+/Na+homeostasis in wheat,Plant Biol.14(2012)438–446.

    [22]Z.Chen,I.Newman,M.Zhou,N.Mendham,G.Zhang,S.Shabala,Screening plants for salt tolerance by measuring K+flux:a case study for barley,Plant Cell Environ.28(2005)1230–1246.

    [23]T.A.Cuin,S.A.Betts,R.Chalmandrier,S.Shabala,A root's ability to retain K+correlates with salt tolerance in wheat,J.Exp.Bot.59(2008)2697–2706.

    [24]H.Wu,L.Shabala,K.Barry,M.Zhou,S.Shabala,Ability of leaf mesophyll to retain potassium correlates with salinity tolerance in wheat and barley,Physiol.Plant.149(2013)515–527.

    [25]H.Wu,L.Shabala,M.Zhou,S.Shabala,Durum and bread wheat differ in their ability to retain potassium in leaf mesophyll:implications for salinity stress tolerance,Plant Cell Physiol.55(2014)1749–1762.

    [26]H.Wu,M.Zhu,L.Shabala,M.Zhou,S.Shabala,K+retention in leaf mesophyll,an overlooked component of salinity tolerance mechanism:a case study for barley,J.Integr.Plant Biol.57(2015)171–185.

    [27]J.M.Pardo,F.J.Quintero,Plants and sodium ions:keeping company with the enemy,Genome Biol.3(2002)(Reviews1017.1–1017.4).

    [28]J.M.Ward,K.D.Hirschi,H.Sze,Plants pass the salt,Trends Plant Sci.8(2003)200–201.

    [29]L.M.Schulze,D.T.Britto,M.Li,H.J.Kronzucker,A pharmacological analysis of high-affinity sodium transport in barley(Hordeum vulgare L.):a24Na+/42K+study,J.Exp.Bot.63(2012)2479–2489.

    [30]P.M?ser,B.Eckelman,R.Vaidyanathan,T.Horie,D.J.Fairbairn,M.Kubo,M.Yamagami,K.Yamaguchi,M.Nishimura,N.Uozumi,Altered shoot/root Na+distribution and bifurcating salt sensitivity in Arabidopsis by genetic disruption of the Na+transporter AtHKT1,FEBS Lett.531(2002)157–161.

    [31]A.Rodríguez-Navarro,F.Rubio,High-affinity potassium and sodium transport systems in plants,J.Exp.Bot.57(2006)1149–1160.

    [32]T.J.Flowers,T.D.Colmer,Salinity tolerance in halophytes,New Phytol.179(2008)945–963.

    [33]S.Lv,L.Nie,P.Fan,X.Wang,D.Jiang,X.Chen,Y.Li,Sodium plays a more important role than potassium and chloride in growth of Salicornia europaea,Acta Physiol.Plant.34(2012)503–513.

    [34]T.J.Flowers,H.K.Galal,L.Bromham,Evolution of halophytes:multiple origins of salt tolerance in land plants,Funct.Plant Biol.37(2010)604–612.

    [35]C.J.Ruan,J.A.T.da Silva,S.Mopper,Q.Pei,S.Lutts,Halophyte improvement for a salinized world,Crit.Rev.Plant Sci.29(2010)329–359.

    [36]S.Shabala,J.Bose,R.Hedrich,Salt bladders:do they matter?Trends Plant Sci.19(2014)687–691.

    [37]H.J.Kronzucker,D.T.Britto,Sodium transport in plants:a critical review,New Phytol.189(2011)54–81.

    [38]D.E.Carden,D.J.Walker,T.J.Flowers,A.J.Miller,Single-cell measurements of the contributions of cytosolic Na+and K+to salt tolerance,Plant Physiol.131(2003)676–683.

    [39]V.S.Anil,H.Krishnamurthy,M.K.Mathew,Limiting cytosolic Na+confers salt tolerance to rice cells in culture:a two photon microscopy study of SBFI-loaded cells,Physiol.Plant.129(2007)607–621.

    [40]S.J.Halperin,J.P.Lynch,Effects of salinity on cytosolic Na+and K+in root hairs of Arabidopsis thaliana:in vivo measurements using the fluorescent dyes SBFI and PBFI,J.Exp.Bot.54(2003)2035–2043.

    [41]T.J.Flowers,R.Munns,T.D.Colmer,Sodium chloride toxicity and the cellular basis of salt tolerance in halophytes,Ann.Bot.115(2015)419–431.

    [42]G.R.Cramer,A.L?uchli,V.S.Polito,Displacement of Ca2+by Na+from the plasmalemma of root cells:a primary response to salt stress?Plant Physiol.79(1985)207–211.

    [43]T.B.Kinraide,Interactions among Ca2+,Na+and K+in salinity toxicity:quantitative resolution of multiple toxic and ameliorative effects,J.Exp.Bot.50(1999)1495–1505.

    [44]J.K.Zhu,Regulation of ion homeostasis under salt stress,Curr.Opin.Plant Biol.6(2003)441–445.

    [45]K.Marin,I.Suzuki,K.Yamaguchi,K.Ribbeck,H.Yamamoto,Y.Kanesaki,M.Hagemann,N.Murata,Identification of histidine kinases that act as sensors in the perception of salt stress in Synechocystis sp.PCC 6803,Proc.Natl.Acad.Sci.U.S.A.100(2003)9061–9066.

    [46]L.S.P.Tran,T.Urao,F.Qin,K.Maruyama,T.Kakimoto,K.Shinozaki,K.Yamaguchi-Shinozaki,Functional analysis of AHK1/ATHK1 and cytokinin receptor histidine kinases in response to abscisic acid,drought,and salt stress in Arabidopsis,Proc.Natl.Acad.Sci.U.S.A.104(2007)20623–20628.

    [47]S.Shabala,H.Wu,J.Bose,Salt stress sensing and early signalling events in plant roots:current knowledge and hypothesis,Plant Sci.(2015)109–119.

    [48]S.J.Thomson,A.Hansen,M.C.Sanguinetti,Identification of the intracellular Na+sensor in Slo2.1 potassium channels,J.Biol.Chem.290(2015)14528–14535.

    [49]J.Sun,X.Zhang,S.Deng,C.Zhang,M.Wang,M.Ding,R.Zhao,X.Shen,X.Zhou,C.Lu,S.Chen,Extracellular ATP signaling is mediated by H2O2and cytosolic Ca2+in the salt response of Populus euphratica cells,PLoS One 7(2012),e53136..

    [50]J.Davies,Annexin–mediated calcium signalling in plants,Plants 3(2014)128–140.

    [51]A.Laohavisit,S.L.Richards,L.Shabala,C.Chen,R.D.D.R.Colaco,S.M.Swarbreck,E.Shaw,A.Dark,S.Shabala,Z.Shang,J.M.Davies,Salinity-induced calcium signaling and root adaptation in Arabidopsis require the calcium regulatory protein annexin1,Plant Physiol.163(2013)253–262.

    [52]M.J.Buch-Pedersen,E.L.Rudashevskaya,T.S.Berner,K.Venema,M.G.Palmgren,Potassium as an intrinsic uncoupler of the plasma membrane H+-ATPase,J.Biol.Chem.281(2006)38285–38292.

    [53]V.Demidchik,D.Straltsova,S.S.Medvedev,G.A.Pozhvanov,A.Sokolik,V.Yurin,Stress-induced electrolyte leakage:the role of K+-permeable channels and involvement in programmed cell death and metabolic adjustment,J.Exp.Bot.65(2014)1259–1270.

    [54]S.Shabala,Signalling by potassium:another second messenger to add to the list?J.Exp.Bot.68(2017)4003–4007.

    [55]R.F.H.Giehl,N.von Wiren,Root nutrient foraging,Plant Physiol.166(2014)509–517.

    [56]H.Wu,L.Shabala,X.Liu,E.Azzarello,M.Zhou,C.Pandolfi,Z.H.Chen,J.Bose,S.Mancuso,S.Shabala,Linking salinity stress tolerance with tissue-specific Na+sequestration in wheat roots,Front.Plant Sci.6(2015)71.

    [57]H.Wu,Tissue Specificity of Cytosolic K+Retention,Na+Extrusion,and Vacuolar Na+Sequestration Traits in the Context of Differential Salinity Stress Tolerance in Barley and Wheat(Ph.D.Dissertation)University of Tasmania,Australia,2015https://eprints.utas.edu.au/23053/.

    [58]M.P.Apse,E.Blumwald,Na+transport in plants,FEBS Lett.581(2007)2247–2254.

    [59]H.Shi,F.J.Quintero,J.M.Pardo,J.K.Zhu,The putative plasma membrane Na+/H+antiporter SOS1 controls longdistance Na+transport in plants,Plant Cell 14(2002)465–477.

    [60]T.A.Cuin,J.BOSE,G.Stefano,D.JHA,M.Tester,S.Mancuso,S.Shabala,Assessing the role of root plasma membrane and tonoplast Na+/H+exchangers in salinity tolerance in wheat:in planta quantification methods,Plant Cell Environ.34(2011)947–961.

    [61]Q.Yang,Z.Z.Chen,X.F.Zhou,H.B.Yin,X.Li,X.F.Xin,X.H.Hong,J.K.Zhu,Z.Gong,Overexpression of SOS(salt overly sensitive)genes increases salt tolerance in transgenic Arabidopsis,Mol.Plant 2(2009)22–31.

    [62]Y.Yue,M.Zhang,J.Zhang,L.Duan,Z.Li,SOS1 gene overexpression increased salt tolerance in transgenic tobacco by maintaining a higher K+/Na+ratio,J.Plant Physiol.169(2012)255–261.

    [63]D.H.Oh,E.Leidi,Q.Zhang,S.-M.Hwang,Y.Li,F.J.Quintero,X.Jiang,M.P.D'Urzo,S.Y.Lee,Y.Zhao,J.D.Bahk,R.A.Bressan,D.J.Yun,J.M.Pardo,H.J.Bohnert,Loss of halophytism by interference with SOS1 expression,Plant Physiol.151(2009)210–222.

    [64]G.N.Al-Karaki,Growth,water use efficiency,and sodium and potassium acquisition by tomato cultivars grown under salt stress,J.Plant Nutr.23(2000)1–8.

    [65]C.S.Byrt,J.D.Platten,W.Spielmeyer,R.A.James,E.S.Lagudah,E.S.Dennis,M.Tester,R.Munns,HKT1;5-like cation transporters linked to Na+exclusion loci in wheat,Nax2 and Kna1,Plant Physiol.143(2007)1918–1928.

    [66]R.A.James,C.Blake,C.S.Byrt,R.Munns,Major genes for Na+exclusion,Nax1 and Nax2(wheat HKT1;4 and HKT1;5),decrease Na+accumulation in bread wheat leaves under saline and waterlogged conditions,J.Exp.Bot.62(2011)2939–2947.

    [67]I.S.M?ller,M.Tester,Salinity tolerance of Arabidopsis:a good model for cereals?Trends Plant Sci.12(2007)534–540.

    [68]R.Munns,R.A.James,B.Xu,A.Athman,S.J.Conn,C.Jordans,C.S.Byrt,R.A.Hare,S.D.Tyerman,M.Tester,D.Plett,M.Gilliham,Wheat grain yield on saline soils is improved by an ancestral Na+transporter gene,Nat.Biotechnol.30(2012)360–364.

    [69]S.J.Roy,W.Huang,X.J.Wang,A.Evrard,S.M.Schm?ckel,Z.U.Zafar,M.Tester,A novel protein kinase involved in Na+exclusion revealed from positional cloning,Plant Cell Environ.36(2013)553–568.

    [70]M.P.Apse,G.S.Aharon,W.A.Snedden,E.Blumwald,Salt tolerance conferred by overexpression of a vacuolar Na+/H+antiport in Arabidopsis,Science 285(1999)1256–1258.

    [71]M.M.F.Mansour,K.H.A.Salama,M.M.Al-Mutawa,Transport proteins and salt tolerance in plants,Plant Sci.164(2003)891–900.

    [72]A.Rahnama,K.Poustini,R.Tavakkol-Afshari,A.Ahmadi,H.Alizadeh,Growth properties and ion distribution in different tissues of bread wheat genotypes(Triticum aestivum L.)differing in salt tolerance,J.Agron.Crop Sci.197(2011)21–30.

    [73]F.J.M.Maathuis,A.Amtmann,K+nutrition and Na+toxicity:the basis of cellular K+/Na+ratios,Ann.Bot.84(1999)123–133.

    [74]H.X.Zhang,E.Blumwald,Transgenic salt-tolerant tomato plants accumulate salt in foliage but not in fruit,Nat.Biotechnol.19(2001)765–768.

    [75]H.Chen,R.An,J.H.Tang,X.H.Cui,F.S.Hao,J.Chen,X.C.Wang,Over-expression of a vacuolar Na+/H+antiporter gene improves salt tolerance in an upland rice,Mol.Breed.19(2007)215–225.

    [76]S.Gouiaa,H.Khoudi,E.O.Leidi,J.M.Pardo,K.Masmoudi,Expression of wheat Na+/H+antiporter TNHXS1 and H+-pyrophosphatase TVP1 genes in tobacco from a bicistronic transcriptional unit improves salt tolerance,Plant Mol.Biol.79(2012)137–155.

    [77]S.Shabala,S.Shabala,T.A.Cuin,J.Pang,W.Percey,Z.Chen,S.Conn,C.Eing,L.H.Wegner,Xylem ionic relations and salinity tolerance in barley,Plant J.61(2010)839–853.

    [78]A.Fukuda,A.Nakamura,A.Tagiri,H.Tanaka,A.Miyao,H.Hirochika,Y.Tanaka,Function,intracellular localization and the importance in salt tolerance of a vacuolar Na+/H+antiporter from rice,Plant Cell Physiol.45(2004)146–159.

    [79]E.Bonales-Alatorre,S.Shabala,Z.H.Chen,I.Pottosin,Reduced tonoplast fast-activating and slow-activating channel activity is essential for conferring salinity tolerance in a facultative halophyte,quinoa,Plant Physiol.162(2013)940–952.

    [80]S.Shabala,Learning from halophytes:physiological basis and strategies to improve abiotic stress tolerance in crops,Ann.Bot.112(2013)1209–1221.

    [81]F.J.M.Maathuis,Sodium in plants:perception,signalling,and regulation of sodium fluxes,J.Exp.Bot.65(2014)849–858.

    [82]J.M.Colmenero-Flores,G.Martínez,G.Gamba,N.Vázquez,D.J.Iglesias,J.Brumós,M.Talón,Identification and functional characterization of cation-chloride cotransporters in plants,Plant J.50(2007)278–292.

    [83]L.H.Wegner,A.H.De Boer,Two inward K+channels in the xylem parenchyma cells of barley roots are regulated by G-protein modulators through a membrane-delimited pathway,Planta 203(1997)506–516.

    [84]N.Yadav,P.Shukla,A.Jha,P.K.Agarwal,B.Jha,The SbSOS1 gene from the extreme halophyte Salicornia brachiata enhances Na+loading in xylem and confers salt tolerance in transgenic tobacco,BMC Plant Biol.12(2012)188.

    [85]M.Zhu,L.Shabala,T.A.Cuin,X.Huang,M.Zhou,R.Munns,S.Shabala,Nax loci affect SOS1-like Na+/H+exchanger expression and activity in wheat,J.Exp.Bot.67(2016)835–844.

    [86]T.Horie Sunarpi,J.Motoda,M.Kubo,H.Yang,K.Yoda,R.Horie,W.Y.Chan,H.Y.Leung,K.Hattori,M.Konomi,M.Osumi,M.Yamagami,J.I.Schroeder,N.Uozumi,Enhanced salt tolerance mediated by AtHKT1 transporter-induced Na+unloading from xylem vessels to xylem parenchyma cells,Plant J.44(2005)928–938.

    [87]S.Huang,W.Spielmeyer,E.S.Lagudah,R.A.James,J.D.Platten,E.S.Dennis,R.Munns,A sodium transporter(HKT7)is a candidate for Nax1,a gene for salt tolerance in durum wheat,Plant Physiol.142(2006)1718–1727.

    [88]N.Jaime-Pérez,B.Pineda,B.García-Sogo,A.Atares,A.Athman,C.S.Byrt,R.Olías,M.J.Asins,M.Gilliham,V.Moreno,A.Belver,The sodium transporter encoded by the HKT1;2 gene modulates sodium/potassium homeostasis in tomato shoots under salinity,Plant Cell Environ.40(2017)658–671.

    [89]X.Kong,Z.Luo,H.Dong,A.E.Eneji,W.Li,Effects of nonuniform root zone salinity on water use,Na+recirculation,and Na+and H+flux in cotton,J.Exp.Bot.63(2012)2105–2116.

    [90]P.Berthomieu,G.Conéjéro,A.Nublat,W.J.Brackenbury,C.Lambert,C.Savio,N.Uozumi,S.Oiki,K.Yamada,F.Cellier,F.Gosti,T.Simonneau,P.A.Essah,M.Tester,A.A.Véry,H.Sentenac,F.Casse,Functional analysis of AtHKT1 in Arabidopsis shows that Na+recirculation by the phloem is crucial for salt tolerance,EMBO J.22(2003)2004–2014.

    [91]R.J.Davenport,A.Mu?oz-Mayor,D.Jha,P.A.Essah,A.Rus,M.Tester,The Na+transporter AtHKT1;1 controls retrieval of Na+from the xylem in Arabidopsis,Plant Cell Environ.30(2007)497–507.

    [92]Z.H.Ren,J.P.Gao,L.G.Li,X.L.Cai,W.Huang,D.Y.Chao,M.Z.Zhu,Z.Y.Wang,S.Luan,H.X,A rice quantitative trait locus for salt tolerance encodes a sodium transporter,Nat.Genet.37(2005)1141–1146.

    [93]N.I.Kobayashi,N.Yamaji,H.Yamamoto,K.Okubo,H.Ueno,A.Costa,K.Tanoi,H.Matsumura,M.Fujii-Kashino,T.Horiuchi,M.Al Nayef,S.Shabala,G.An,J.F.Ma,T.Horie,OsHKT1;5 mediates Na+exclusion in the vasculature to protect leaf blades and reproductive tissues from salt toxicity in rice,Plant J.91(2017)657–670.

    [94]S.Agarie,T.Shimoda,Y.Shimizu,K.Baumann,H.Sunagawa,A.Kondo,O.Ueno,T.Nakahara,A.Nose,J.C.Cushman,Salt tolerance,salt accumulation,and ionic homeostasis in an epidermal bladder-cell-less mutant of the common ice plant Mesembryanthemum crystallinum,J.Exp.Bot.58(2007)1957–1967.

    [95]H.Kobayashi,Y.Masaoka,Y.Takahashi,Y.Ide,S.Sato,Ability of salt glands in Rhodes grass(Chloris gayana Kunth)to secrete Na+and K+,Soil Sci.Plant Nutr.53(2007)764–771.

    [96]Z.Barhoumi,W.Djebali,A.Smaoui,W.Cha?bi,C.Abdelly,Contribution of NaCl excretion to salt resistance of Aeluropus littoralis(Willd)Parl,J.Plant Physiol.164(2007)842–850.

    [97]W.Chen,Z.L.He,X.E.Yang,S.Mishra,P.J.Stoffella,Chlorine nutrition of higher plants:progress and perspectives,J.Plant Nutr.33(2010)943–952.

    [98]E.O.Leidi,V.Barragán,L.Rubio,A.El-Hamdaoui,M.T.Ruiz,B.Cubero,J.A.Fernández,R.A.Bressan,P.M.Hasegawa,F.J.Quintero,J.M.Pardo,The AtNHX1 exchanger mediates potassium compartmentation in vacuoles of transgenic tomato,Plant J.61(2010)495–506.

    [99]E.Bassil,H.Tajima,Y.C.Liang,M.A.Ohto,K.Ushijima,R.Nakano,T.Esumi,A.Coku,M.Belmonte,E.Blumwald,The Arabidopsis Na+/H+antiporters NHX1 and NHX2 control vacuolar pH and K+homeostasis to regulate growth,flower development,and reproduction,Plant Cell 23(2011)3482–3497.

    [100]M.Gierth,P.M?ser,Potassium transporters in plantsinvolvement in K+acquisition,redistribution and homeostasis,FEBS Lett.581(2007)2348–2356.

    [101]Y.Wang,W.H.Wu,Potassium transport and signaling in higher plants,Annu.Rev.Plant Biol.64(2013)451–476.

    [102]H.Shi,M.Ishitani,C.Kim,J.K.Zhu,The Arabidopsis thaliana salt tolerance gene SOS1 encodes a putative Na+/H+antiporter,Proc.Natl.Acad.Sci.U.S.A.97(2000)6896–6901.

    [103]S.Shabala,L.Shabala,E.Van Volkenburgh,I.Newman,Effect of divalent cations on ion fluxes and leaf photochemistry in salinized barley leaves,J.Exp.Bot.56(2005)1369–1378.

    [104]J.Liu,M.Ishitani,U.Halfter,C.S.Kim,J.K.Zhu,The Arabidopsis thaliana SOS2 gene encodes a protein kinase that is required for salt tolerance,Proc.Natl.Acad.Sci.U.S.A.97(2000)3730–3734.

    [105]S.Luan,W.Lan,S.C.Lee,Potassium nutrition,sodium toxicity,and calcium signaling:connections through the CBL-CIPK network,Curr.Opin.Plant Biol.12(2009)339–346.

    [106]U.Halfter,M.Ishitani,J.K.Zhu,The Arabidopsis SOS2 protein kinase physically interacts with and is activated by the calcium-binding protein SOS3,Proc.Natl.Acad.Sci.U.S.A.97(2000)3735–3740.

    [107]M.Shono,M.Wada,Y.Hara,T.Fujii,Molecular cloning of Na+-ATPase cDNA from a marine alga,Heterosigma akashiwo,Biochim.Biophys.Acta Biomembr.1511(2001)193–199.

    [108]C.Lunde,D.P.Drew,A.K.Jacobs,M.Tester,Exclusion of Na+via sodium ATPase(PpENA1)ensures normal growth of Physcomitrella patens under moderate salt stress,Plant Physiol.144(2007)1786–1796.

    [109]V.Demidchik,F.J.M.Maathuis,Physiological roles of nonselective cation channels in plants:from salt stress to signalling and development,New Phytol.175(2007)387–404.

    [110]V.Demidchik,M.Tester,Sodium fluxes through nonselective cation channels in the plasma membrane of protoplasts from Arabidopsis roots,Plant Physiol.128(2002)379–387.

    [111]F.J.Maathuis,D.Sanders,Sodium uptake in Arabidopsis roots is regulated by cyclic nucleotides,Plant Physiol.127(2001)1617–1625.

    [112]R.Quan,J.Wang,D.Yang,H.Zhang,Z.Zhang,R.Huang,EIN3 and SOS2 synergistically modulate plant salt tolerance,Sci.Rep.7(2017),44637..

    [113]D.Gong,Y.Guo,K.S.Schumaker,J.K.Zhu,The SOS3 family of calcium sensors and SOS2 family of protein kinases in Arabidopsis,Plant Physiol.134(2004)919–926.

    [114]J.Bose,A.Rodrigo-Moreno,D.Lai,Y.Xie,W.Shen,S.Shabala,Rapid regulation of the plasma membrane H+-ATPase activity is essential to salinity tolerance in two halophyte species,Atriplex lentiformis and Chenopodium quinoa,Ann.Bot.115(2015)481–494.

    [115]J.S.Chung,J.K.Zhu,R.A.Bressan,P.M.Hasegawa,H.Shi,Reactive oxygen species mediate Na+-induced SOS1 mRNA stability in Arabidopsis,Plant J.53(2008)554–565.

    [116]S.Katiyar-Agarwal,J.J.Zhu,K.Kim,M.Agarwal,X.Fu,A.Huang,J.J.Zhu,The plasma membrane Na+/H+antiporter SOS1 interacts with RCD1 and functions in oxidative stress tolerance in Arabidopsis,Proc.Natl.Acad.Sci.U.S.A.103(2006)18816–18821.

    [117]G.H.M.Sagor,S.Zhang,S.Kojima,S.Simm,T.Berberich,T.Kusano,Reducing cytoplasmic polyamine oxidase activity in Arabidopsis increases salt and drought tolerance by reducing reactive oxygen species production and increasing defense gene expression,Front.Plant Sci.7(2016)214.

    [118]V.Barragan,E.O.Leidi,Z.Andres,L.Rubio,A.De Luca,J.A.Fernandez,B.Cubero,J.M.Pardo,Ion exchangers NHX1 and NHX2 mediate active potassium uptake into vacuoles to regulate cell turgor and stomatal function in Arabidopsis,Plant Cell 24(2012)1127–1142.

    [119]X.Liu,S.Cai,G.Wang,F.Wang,F.Dong,M.Mak,P.Holford,J.Ji,A.Salih,M.Zhou,S.Shabala,Z.H.Chen,Halophytic NHXs confer salt tolerance by altering cytosolic and vacuolar K+and Na+in Arabidopsis root cell,Plant Growth Regul.82(2017)333–351.

    [120]R.A.Gaxiola,R.Rao,A.Sherman,P.Grisafi,S.L.Alper,G.R.Fink,The Arabidopsis thaliana proton transporters,AtNhx1 and Avp1,can function in cation detoxification in yeast,Proc.Natl.Acad.Sci.U.S.A.96(1999)1480–1485.

    [121]G.Adem,S.J.Roy,M.Zhou,J.P.Bowman,S.Shabala,Evaluating contribution of ionic,osmotic and oxidative stress components towards salinity tolerance in barley,BMC Plant Biol.14(2014)113.

    [122]D.Sandhu,M.V.Cornacchione,J.F.S.Ferreira,D.L.Suarez,Variable salinity responses of 12 alfalfa genotypes and comparative expression analyses of salt-response genes,Sci.Rep.7(2017),42958..

    [123]D.J.Mullan,T.D.Colmer,M.G.Francki,Arabidopsis-ricewheat gene orthologues for Na+transport and transcript analysis in wheat-L.elongatum aneuploids under salt stress,Mol.Gen.Genomics.277(2007)199–212.

    [124]G.D.Adem,S.J.Roy,D.C.Plett,M.Zhou,J.P.Bowman,S.Shabala,Expressing AtNHX1 in barley(Hordium vulgare L.)does not improve plant performance under saline conditions,Plant Growth Regul.77(2015)289–297.

    [125]P.Silva,H.Gerós,Regulation by salt of vacuolar H+-ATPase and H+-pyrophosphatase activities and Na+/H+exchange,Plant Signal.Behav.4(2009)718–726.

    [126]N.Baisakh,M.V.Ramanarao,K.Rajasekaran,P.Subudhi,J.Janda,D.Galbraith,C.Vanier,A.Pereira,Enhanced salt stress tolerance of rice plants expressing a vacuolar H+-ATPase subunit c1(SaVHAc1)gene from the halophyte grass Spartina alterniflora L?isel,Plant Biotechnol.J.10(2012)453–464.

    [127]R.A.Gaxiola,J.Li,S.Undurraga,L.M.Dang,G.J.Allen,S.L.Alper,G.R.Fink,Drought-and salt-tolerant plants result from overexpression of the AVP1 H+-pump,Proc.Natl.Acad.Sci.U.S.A.98(2001)11444–11449.

    [128]Q.S.Qiu,Y.Guo,F.J.Quintero,J.M.Pardo,K.S.Schumaker,J.K.Zhu,Regulation of vacuolar Na+/H+exchange in Arabidopsis thaliana by the Salt-Overly-Sensitive(SOS)pathway,J.Biol.Chem.279(2004)207–215.

    [129]T.Yamaguchi,G.S.Aharon,J.B.Sottosanto,E.Blumwald,Vacuolar Na+/H+antiporter cation selectivity is regulated by calmodulin from within the vacuole in a Ca2+-and pH-dependent manner,Proc.Natl.Acad.Sci.U.S.A.102(2005)16107–16112.

    [130]R.Quan,H.Lin,I.Mendoza,Y.Zhang,W.Cao,Y.Yang,M.Shang,S.Chen,J.M.Pardo,Y.Guo,SCABP8/CBL10,a putative calcium sensor,interacts with the protein kinase SOS2 to protect Arabidopsis shoots from salt stress,Plant Cell 19(2007)1415–1431.

    [131]R.J.Tang,Y.Yang,L.Yang,H.Liu,C.T.Wang,M.M.Yu,X.S.Gao,H.X.Zhang,Poplar calcineurin B-like proteins PtCBL10A and PtCBL10B regulate shoot salt tolerance through interaction with PtSOS2 in the vacuolar membrane,Plant Cell Environ.37(2014)573–588.

    [132]B.G.Kim,R.Waadt,Y.H.Cheong,G.K.Pandey,J.R.Dominguez-Solis,S.Schültke,S.C.Lee,J.Kudla,S.Luan,The calcium sensor CBL10 mediates salt tolerance by regulating ion homeostasis in Arabidopsis,Plant J.52(2007)473–484.

    [133]D.V.M.Assaha,A.Ueda,H.Saneoka,R.Al-Yahyai,M.W.Yaish,The role of Na+and K+transporters in salt stress adaptation in glycophytes,Front.Physiol.8(2017)509.

    美女高潮喷水抽搐中文字幕| 9191精品国产免费久久| 国产高清视频在线播放一区| 日韩欧美一区二区三区在线观看| cao死你这个sao货| 国产亚洲欧美98| 一级毛片精品| 亚洲专区中文字幕在线| 国产一区二区在线av高清观看| 十八禁人妻一区二区| 99热这里只有精品一区 | 伊人久久大香线蕉亚洲五| 久久中文看片网| 一个人免费在线观看电影 | 一级a爱片免费观看的视频| 九九热线精品视视频播放| 一本一本综合久久| 高潮久久久久久久久久久不卡| 一二三四在线观看免费中文在| 搡老岳熟女国产| 中文字幕熟女人妻在线| 亚洲人与动物交配视频| 国产成人av激情在线播放| av天堂中文字幕网| 亚洲,欧美精品.| 亚洲五月天丁香| 校园春色视频在线观看| 老司机深夜福利视频在线观看| 男人舔奶头视频| 麻豆国产97在线/欧美| 两性夫妻黄色片| 中文字幕最新亚洲高清| 色哟哟哟哟哟哟| 美女黄网站色视频| 99在线视频只有这里精品首页| 91老司机精品| 国产爱豆传媒在线观看| 一个人免费在线观看的高清视频| 日本黄色片子视频| 亚洲欧美日韩东京热| 此物有八面人人有两片| 亚洲九九香蕉| 国产97色在线日韩免费| 91麻豆av在线| 麻豆国产av国片精品| 1024香蕉在线观看| 特级一级黄色大片| 热99re8久久精品国产| 精品国产乱码久久久久久男人| 人妻夜夜爽99麻豆av| 国产在线精品亚洲第一网站| 久久久久九九精品影院| 亚洲熟妇熟女久久| 一个人看的www免费观看视频| 熟女电影av网| 国产三级在线视频| 欧美黄色片欧美黄色片| 国产黄色小视频在线观看| 69av精品久久久久久| 亚洲精华国产精华精| 最近最新免费中文字幕在线| 亚洲精华国产精华精| 丁香欧美五月| 亚洲无线观看免费| 夜夜夜夜夜久久久久| 这个男人来自地球电影免费观看| 18禁裸乳无遮挡免费网站照片| 美女高潮喷水抽搐中文字幕| 精品乱码久久久久久99久播| 国产乱人伦免费视频| 大型黄色视频在线免费观看| 动漫黄色视频在线观看| 亚洲专区中文字幕在线| 在线观看一区二区三区| 岛国视频午夜一区免费看| 天天添夜夜摸| 中亚洲国语对白在线视频| 精品无人区乱码1区二区| 国产精品 欧美亚洲| 国产精品电影一区二区三区| 国内精品一区二区在线观看| 久久久久久九九精品二区国产| 久久亚洲精品不卡| 欧美激情在线99| 亚洲精品乱码久久久v下载方式 | 欧美av亚洲av综合av国产av| 亚洲五月天丁香| 国产 一区 欧美 日韩| 亚洲国产高清在线一区二区三| 精品乱码久久久久久99久播| 给我免费播放毛片高清在线观看| 精品国产乱子伦一区二区三区| 黄色 视频免费看| 亚洲精品粉嫩美女一区| 又爽又黄无遮挡网站| 在线十欧美十亚洲十日本专区| 国产真人三级小视频在线观看| 亚洲aⅴ乱码一区二区在线播放| 欧洲精品卡2卡3卡4卡5卡区| 不卡一级毛片| 麻豆国产97在线/欧美| 亚洲人成伊人成综合网2020| 白带黄色成豆腐渣| 岛国视频午夜一区免费看| 一级作爱视频免费观看| 又黄又粗又硬又大视频| 香蕉av资源在线| 禁无遮挡网站| 久久久久免费精品人妻一区二区| 免费av毛片视频| 国产精华一区二区三区| netflix在线观看网站| 久久人人精品亚洲av| 午夜亚洲福利在线播放| 欧美大码av| 身体一侧抽搐| 欧美日韩乱码在线| 国产aⅴ精品一区二区三区波| 中文亚洲av片在线观看爽| 长腿黑丝高跟| 久久久久国产一级毛片高清牌| 成年版毛片免费区| 黄片小视频在线播放| 国产淫片久久久久久久久 | 亚洲成a人片在线一区二区| 国内精品一区二区在线观看| 欧美黑人欧美精品刺激| 亚洲一区高清亚洲精品| 国产激情欧美一区二区| 中文字幕高清在线视频| 亚洲天堂国产精品一区在线| 日本撒尿小便嘘嘘汇集6| av视频在线观看入口| 久久精品影院6| 亚洲av成人不卡在线观看播放网| 色老头精品视频在线观看| 99精品在免费线老司机午夜| 性欧美人与动物交配| 美女高潮的动态| 美女被艹到高潮喷水动态| 九九在线视频观看精品| 男女下面进入的视频免费午夜| 国内毛片毛片毛片毛片毛片| 免费观看的影片在线观看| 18禁裸乳无遮挡免费网站照片| 国产亚洲av嫩草精品影院| 一进一出抽搐动态| 天堂动漫精品| 国产一区在线观看成人免费| 国产亚洲精品久久久久久毛片| 一二三四在线观看免费中文在| 身体一侧抽搐| av中文乱码字幕在线| 亚洲,欧美精品.| 99热只有精品国产| 中文字幕人成人乱码亚洲影| 好男人电影高清在线观看| 欧美乱色亚洲激情| 香蕉久久夜色| 一级毛片女人18水好多| 久久伊人香网站| 老司机午夜福利在线观看视频| 亚洲色图 男人天堂 中文字幕| 久久亚洲真实| 国模一区二区三区四区视频 | 亚洲精品一卡2卡三卡4卡5卡| av中文乱码字幕在线| 成在线人永久免费视频| 国产亚洲av嫩草精品影院| e午夜精品久久久久久久| 天堂影院成人在线观看| 中文字幕久久专区| 国产69精品久久久久777片 | 国产精品99久久99久久久不卡| 搡老熟女国产l中国老女人| 免费在线观看日本一区| 亚洲欧美精品综合一区二区三区| 男女午夜视频在线观看| 最新中文字幕久久久久 | 床上黄色一级片| 51午夜福利影视在线观看| 国产视频内射| 免费观看精品视频网站| 久久精品91蜜桃| 视频区欧美日本亚洲| 成人亚洲精品av一区二区| 欧美日韩黄片免| 国产精品女同一区二区软件 | 亚洲中文av在线| 人妻久久中文字幕网| 亚洲中文字幕一区二区三区有码在线看 | 成人av在线播放网站| 两性午夜刺激爽爽歪歪视频在线观看| 一二三四社区在线视频社区8| 桃色一区二区三区在线观看| 熟女电影av网| 91在线精品国自产拍蜜月 | 一进一出抽搐gif免费好疼| 少妇裸体淫交视频免费看高清| 中文在线观看免费www的网站| 亚洲av成人不卡在线观看播放网| 毛片女人毛片| 亚洲欧美日韩东京热| 亚洲熟妇中文字幕五十中出| 色尼玛亚洲综合影院| www.自偷自拍.com| 午夜福利视频1000在线观看| 成年版毛片免费区| 在线观看美女被高潮喷水网站 | 亚洲成av人片免费观看| 亚洲av五月六月丁香网| 99国产综合亚洲精品| 久久热在线av| 男女做爰动态图高潮gif福利片| 精品一区二区三区视频在线 | 日韩 欧美 亚洲 中文字幕| 亚洲欧美日韩高清专用| av天堂中文字幕网| 日本a在线网址| 中文字幕久久专区| 国产精品一及| 色av中文字幕| 欧美日本亚洲视频在线播放| 精品熟女少妇八av免费久了| 免费av不卡在线播放| 淫秽高清视频在线观看| 脱女人内裤的视频| 99久久精品热视频| www国产在线视频色| 两个人的视频大全免费| 久久久久国内视频| 色老头精品视频在线观看| 久久久久久国产a免费观看| 欧美国产日韩亚洲一区| 日本与韩国留学比较| 久久午夜亚洲精品久久| 亚洲专区国产一区二区| 欧美日韩乱码在线| 欧美高清成人免费视频www| 丰满的人妻完整版| 美女扒开内裤让男人捅视频| 亚洲精品在线观看二区| 亚洲成人久久爱视频| 又紧又爽又黄一区二区| 日本免费a在线| 两个人看的免费小视频| 国产主播在线观看一区二区| 色视频www国产| 色哟哟哟哟哟哟| 男女视频在线观看网站免费| 国产免费男女视频| 淫秽高清视频在线观看| 日本一本二区三区精品| 香蕉av资源在线| 成年女人毛片免费观看观看9| 99久久久亚洲精品蜜臀av| 99久久无色码亚洲精品果冻| 免费在线观看视频国产中文字幕亚洲| 十八禁网站免费在线| 亚洲av电影不卡..在线观看| 欧美av亚洲av综合av国产av| av片东京热男人的天堂| 999精品在线视频| 亚洲aⅴ乱码一区二区在线播放| 在线国产一区二区在线| 一二三四社区在线视频社区8| 日韩欧美在线二视频| 国产野战对白在线观看| 午夜激情福利司机影院| 免费在线观看影片大全网站| 毛片女人毛片| 夜夜看夜夜爽夜夜摸| 69av精品久久久久久| 亚洲国产日韩欧美精品在线观看 | 在线观看日韩欧美| 日本黄大片高清| 国产高清有码在线观看视频| 国内久久婷婷六月综合欲色啪| 亚洲国产精品合色在线| 男女下面进入的视频免费午夜| 巨乳人妻的诱惑在线观看| 成人三级黄色视频| 久久精品国产亚洲av香蕉五月| www.999成人在线观看| 亚洲中文av在线| 国产成人精品久久二区二区91| 日本 欧美在线| 毛片女人毛片| 欧美丝袜亚洲另类 | 亚洲色图av天堂| 99热只有精品国产| 国内精品久久久久久久电影| 波多野结衣巨乳人妻| 午夜福利高清视频| 久久精品影院6| 操出白浆在线播放| 亚洲av中文字字幕乱码综合| 国语自产精品视频在线第100页| 亚洲美女视频黄频| 一本综合久久免费| 91字幕亚洲| 国产午夜精品久久久久久| 叶爱在线成人免费视频播放| 久久中文字幕人妻熟女| 中国美女看黄片| 一级作爱视频免费观看| 黄色丝袜av网址大全| 国产精品国产高清国产av| 国内精品美女久久久久久| 麻豆国产97在线/欧美| 少妇的丰满在线观看| 国产精品久久久久久久电影 | 精品免费久久久久久久清纯| 欧美丝袜亚洲另类 | 欧美日韩黄片免| 宅男免费午夜| bbb黄色大片| 欧美不卡视频在线免费观看| 两个人视频免费观看高清| 国产午夜精品论理片| 欧美性猛交黑人性爽| 国产探花在线观看一区二区| 床上黄色一级片| 天堂网av新在线| 香蕉av资源在线| 国内久久婷婷六月综合欲色啪| 中文字幕人成人乱码亚洲影| 欧美另类亚洲清纯唯美| 热99在线观看视频| 老司机福利观看| ponron亚洲| 日本a在线网址| 99精品在免费线老司机午夜| 色噜噜av男人的天堂激情| 日韩有码中文字幕| 黄色日韩在线| 久久中文字幕一级| 国产成人av激情在线播放| www日本黄色视频网| 三级毛片av免费| 亚洲成人免费电影在线观看| 搡老妇女老女人老熟妇| 成人一区二区视频在线观看| 久久精品国产亚洲av香蕉五月| 夜夜夜夜夜久久久久| 黄色 视频免费看| 欧美激情在线99| 在线国产一区二区在线| 1024香蕉在线观看| 色视频www国产| 在线观看免费视频日本深夜| 亚洲18禁久久av| 精品一区二区三区视频在线 | 看免费av毛片| 最新中文字幕久久久久 | 国产成人精品久久二区二区免费| 日韩成人在线观看一区二区三区| 欧美成人一区二区免费高清观看 | 欧美日韩中文字幕国产精品一区二区三区| 精品久久久久久成人av| 又粗又爽又猛毛片免费看| 中国美女看黄片| 又黄又粗又硬又大视频| 九色成人免费人妻av| 在线播放国产精品三级| 欧美av亚洲av综合av国产av| 操出白浆在线播放| 黄色日韩在线| 淫秽高清视频在线观看| 一本精品99久久精品77| 村上凉子中文字幕在线| 色播亚洲综合网| 99久久精品一区二区三区| av欧美777| 国产麻豆成人av免费视频| 国产精品1区2区在线观看.| 色综合站精品国产| 性欧美人与动物交配| 日韩中文字幕欧美一区二区| 午夜福利免费观看在线| 国产高清三级在线| 国产精品久久久av美女十八| 久久九九热精品免费| 国产精品国产高清国产av| 国产三级黄色录像| 高清在线国产一区| 神马国产精品三级电影在线观看| 香蕉丝袜av| 亚洲在线自拍视频| 亚洲国产精品sss在线观看| 久久久久九九精品影院| 亚洲一区二区三区不卡视频| 久久精品国产清高在天天线| 亚洲人与动物交配视频| 日韩精品中文字幕看吧| 19禁男女啪啪无遮挡网站| 老司机福利观看| 亚洲专区中文字幕在线| 国产成人影院久久av| 国产熟女xx| 国产精品一区二区三区四区久久| 校园春色视频在线观看| 久久精品人妻少妇| 一边摸一边抽搐一进一小说| 熟妇人妻久久中文字幕3abv| 亚洲精品国产精品久久久不卡| 伦理电影免费视频| 国产野战对白在线观看| 99在线视频只有这里精品首页| 婷婷精品国产亚洲av| 91av网站免费观看| 丁香六月欧美| 在线免费观看的www视频| 成熟少妇高潮喷水视频| 午夜福利在线在线| 一级作爱视频免费观看| 国产亚洲av高清不卡| 久久久久久久精品吃奶| 国产精品亚洲美女久久久| 国产精品日韩av在线免费观看| 色综合婷婷激情| 亚洲九九香蕉| 网址你懂的国产日韩在线| 国模一区二区三区四区视频 | 欧美色视频一区免费| 午夜两性在线视频| 亚洲欧美一区二区三区黑人| 99热这里只有是精品50| 国产一区二区在线观看日韩 | 国产精品女同一区二区软件 | 亚洲av五月六月丁香网| 久久中文字幕一级| 一区二区三区国产精品乱码| 亚洲熟妇中文字幕五十中出| 日韩欧美国产在线观看| 少妇人妻一区二区三区视频| 在线观看日韩欧美| 在线观看66精品国产| 精品国产乱码久久久久久男人| 国产激情欧美一区二区| 最新中文字幕久久久久 | 真实男女啪啪啪动态图| 亚洲国产看品久久| 两人在一起打扑克的视频| 全区人妻精品视频| 中亚洲国语对白在线视频| 亚洲国产精品合色在线| 制服丝袜大香蕉在线| 黑人操中国人逼视频| 亚洲人成伊人成综合网2020| 国产99白浆流出| 99riav亚洲国产免费| 岛国在线观看网站| 免费观看人在逋| 黑人操中国人逼视频| 欧美一区二区国产精品久久精品| 欧美最黄视频在线播放免费| 国产精品香港三级国产av潘金莲| 中出人妻视频一区二区| 亚洲精品在线观看二区| 99久久国产精品久久久| 九色成人免费人妻av| 99久久国产精品久久久| 小说图片视频综合网站| 日日干狠狠操夜夜爽| 亚洲专区字幕在线| 精品免费久久久久久久清纯| 熟妇人妻久久中文字幕3abv| 免费看美女性在线毛片视频| 亚洲午夜理论影院| 国产一区二区激情短视频| 老司机福利观看| 丁香欧美五月| 欧美丝袜亚洲另类 | 97人妻精品一区二区三区麻豆| 亚洲人与动物交配视频| 国产亚洲av高清不卡| av视频在线观看入口| 国产精品一区二区三区四区免费观看 | 欧美乱码精品一区二区三区| 国产精品爽爽va在线观看网站| 国产伦精品一区二区三区四那| 国产av不卡久久| 91老司机精品| 五月玫瑰六月丁香| 免费观看精品视频网站| 亚洲熟妇熟女久久| 中文字幕久久专区| 亚洲av成人av| 国内久久婷婷六月综合欲色啪| 日韩 欧美 亚洲 中文字幕| 欧美色欧美亚洲另类二区| 12—13女人毛片做爰片一| 这个男人来自地球电影免费观看| 又黄又爽又免费观看的视频| 日日干狠狠操夜夜爽| 欧美日韩国产亚洲二区| 国产一区二区三区在线臀色熟女| 国产欧美日韩精品一区二区| 国产精品一区二区三区四区久久| 国产在线精品亚洲第一网站| av欧美777| 午夜福利成人在线免费观看| 国产精品久久久av美女十八| aaaaa片日本免费| www.自偷自拍.com| 国产视频内射| 色在线成人网| www国产在线视频色| 精华霜和精华液先用哪个| 又爽又黄无遮挡网站| 精品人妻1区二区| 欧美色欧美亚洲另类二区| 亚洲真实伦在线观看| 亚洲一区高清亚洲精品| 精品久久久久久,| 亚洲第一欧美日韩一区二区三区| 美女大奶头视频| 老司机福利观看| av欧美777| 国内久久婷婷六月综合欲色啪| 久久婷婷人人爽人人干人人爱| 国内久久婷婷六月综合欲色啪| 精品国产美女av久久久久小说| 国产人伦9x9x在线观看| 97超视频在线观看视频| 黑人欧美特级aaaaaa片| 国产成年人精品一区二区| 99热这里只有是精品50| 久久久水蜜桃国产精品网| 精品久久久久久久人妻蜜臀av| 成人特级av手机在线观看| 国产亚洲精品综合一区在线观看| 国产精品女同一区二区软件 | 日韩精品青青久久久久久| 日本撒尿小便嘘嘘汇集6| 亚洲国产精品sss在线观看| 日本在线视频免费播放| 国产欧美日韩精品亚洲av| 精品久久久久久久人妻蜜臀av| 欧美性猛交╳xxx乱大交人| 黑人操中国人逼视频| 成人特级av手机在线观看| 麻豆一二三区av精品| 99在线人妻在线中文字幕| 可以在线观看毛片的网站| 亚洲精品粉嫩美女一区| 精品久久久久久久人妻蜜臀av| 久久中文字幕人妻熟女| 亚洲自偷自拍图片 自拍| 精品免费久久久久久久清纯| 激情在线观看视频在线高清| 亚洲国产欧美一区二区综合| 三级男女做爰猛烈吃奶摸视频| 俺也久久电影网| 一区二区三区激情视频| 亚洲成av人片免费观看| 人妻夜夜爽99麻豆av| 女警被强在线播放| 日韩免费av在线播放| 嫁个100分男人电影在线观看| 午夜福利在线观看免费完整高清在 | 亚洲人成电影免费在线| 国产av在哪里看| 午夜福利成人在线免费观看| 99久久精品热视频| 99热这里只有是精品50| 欧美日韩中文字幕国产精品一区二区三区| 在线观看舔阴道视频| 亚洲欧美日韩卡通动漫| 日韩中文字幕欧美一区二区| 成人性生交大片免费视频hd| 免费看a级黄色片| 一卡2卡三卡四卡精品乱码亚洲| 巨乳人妻的诱惑在线观看| 高清在线国产一区| 亚洲精品美女久久久久99蜜臀| 亚洲在线自拍视频| 一个人免费在线观看的高清视频| 亚洲最大成人中文| 麻豆av在线久日| 麻豆久久精品国产亚洲av| 狂野欧美白嫩少妇大欣赏| 精品久久久久久,| 丰满人妻熟妇乱又伦精品不卡| 中文字幕人妻丝袜一区二区| 日韩大尺度精品在线看网址| 久久中文字幕一级| 亚洲欧美精品综合一区二区三区| 99在线视频只有这里精品首页| 精品人妻1区二区| 日韩欧美在线二视频| 老汉色av国产亚洲站长工具| 国产亚洲精品一区二区www| 欧美在线一区亚洲| 欧美三级亚洲精品| 在线看三级毛片| av欧美777| 中文字幕最新亚洲高清| 国产精品免费一区二区三区在线| 看免费av毛片| 国产精品爽爽va在线观看网站| 亚洲最大成人中文| 色精品久久人妻99蜜桃| 国内精品美女久久久久久| 热99re8久久精品国产| av国产免费在线观看| 国产又黄又爽又无遮挡在线| 成年女人永久免费观看视频| 超碰成人久久| 久久久久九九精品影院| 好男人电影高清在线观看| www国产在线视频色| 国产私拍福利视频在线观看| 看片在线看免费视频|