常清
摘要:雖然老師在數(shù)學(xué)教學(xué)的過程中一再要求學(xué)生要進(jìn)行預(yù)習(xí),但是多數(shù)都處于流于形式的狀態(tài),因?yàn)楹芏鄬W(xué)生不能夠落實(shí)預(yù)習(xí)中的有關(guān)細(xì)節(jié),因此也就不能夠有好的效果。而在林芝初中數(shù)學(xué)教學(xué)的過程中,如何更加有效地進(jìn)行預(yù)習(xí)學(xué)案的設(shè)計(jì)成了大家都需要研究的問題。總體而言,預(yù)習(xí)學(xué)案設(shè)計(jì)的主要分為“復(fù)習(xí)、教學(xué)、答疑和評(píng)價(jià)”四個(gè)環(huán)節(jié)。本文主要就林芝初中數(shù)學(xué)有效性預(yù)習(xí)學(xué)案的設(shè)計(jì)展開系統(tǒng)的研究。
關(guān)鍵詞:初中數(shù)學(xué);預(yù)習(xí)學(xué)案;學(xué)案設(shè)計(jì);研究策略
引言:
進(jìn)入初中階段,數(shù)學(xué)的學(xué)習(xí)顯得更加有邏輯性,學(xué)生如果單純地聽老師在課堂上進(jìn)行課文的講解,那么勢(shì)必不會(huì)有好的效果。而預(yù)習(xí)也會(huì)在其中起到非常重要的作用。預(yù)習(xí)在數(shù)學(xué)的學(xué)習(xí)中一直都扮演著一個(gè)非常重要的角色,它的存在不僅非常有利于培養(yǎng)學(xué)生自主學(xué)習(xí)和獨(dú)立思考的能力,而且也非常有助于提高學(xué)習(xí)的效率。但傳統(tǒng)的初中數(shù)學(xué)的預(yù)習(xí)方式還存在著諸多的缺陷,因此尤其需要我們進(jìn)行改進(jìn)。
1.預(yù)習(xí)學(xué)案的概述
初中數(shù)學(xué)預(yù)習(xí)學(xué)案的設(shè)計(jì)時(shí)則與“以學(xué)定教”的思路不謀而合。教師在此過程中不僅要關(guān)注如何去“教”,更要關(guān)注學(xué)生如何去“學(xué)”。教師在課堂上不僅要幫助學(xué)生將知識(shí)點(diǎn)講清楚,更加重要的就是要根據(jù)學(xué)生的需要來進(jìn)行針對(duì)性的教學(xué)[1]。因此,關(guān)注數(shù)學(xué)中有關(guān)的教學(xué)內(nèi)容和教學(xué)方法也就顯得尤為重要。很多學(xué)生在上課的過程中聽不懂老師的問題,那么在之后初中數(shù)學(xué)的學(xué)習(xí)過程中也就會(huì)顯得越來越吃力。此時(shí),預(yù)習(xí)學(xué)案的重要性也就顯現(xiàn)出來。
2.初中數(shù)學(xué)預(yù)習(xí)學(xué)案設(shè)計(jì)的過程和案例
2.1適當(dāng)?shù)囊龑?dǎo)
因?yàn)閿?shù)學(xué)是一項(xiàng)邏輯性很強(qiáng)的學(xué)科,所以在設(shè)計(jì)預(yù)習(xí)學(xué)案的過程中尤其要重視之前的引導(dǎo)。老師甚至可以在學(xué)案中設(shè)計(jì)一些引導(dǎo),讓學(xué)生帶著問題去預(yù)習(xí),有了目標(biāo)的指引,學(xué)生預(yù)習(xí)起來也會(huì)更加得心應(yīng)手。例如,在學(xué)習(xí)平行四邊形的相關(guān)知識(shí)的過程中,老師可以通過提問“平行四邊形的邊、角和對(duì)角線有哪些性質(zhì)?”平行四邊形的判定方法有哪些?通過這樣兩個(gè)問題也就可以更好地證明學(xué)生自己的猜想。而在學(xué)習(xí)平行四邊形的過程中,老師也可以通過讓學(xué)生通過對(duì)三角形知識(shí)的回顧來更好地進(jìn)行平行四邊形相關(guān)知識(shí)的學(xué)習(xí)。
例如,在學(xué)習(xí)圖形的旋轉(zhuǎn)與中心對(duì)稱的過程中,老師可以通過這樣幾個(gè)問題來引導(dǎo)學(xué)生。一個(gè)不對(duì)稱的圖形如何通過旋轉(zhuǎn)來更好地實(shí)現(xiàn)中心對(duì)稱?我們?nèi)粘I钪杏心男┙ㄖw現(xiàn)了中心對(duì)稱的美?鏡子里呈現(xiàn)的圖形是中心對(duì)稱的嗎?通過設(shè)置這樣的問題來引導(dǎo)大家進(jìn)行學(xué)習(xí)。
2.2通讀教材
在進(jìn)行初中數(shù)學(xué)預(yù)習(xí)學(xué)案設(shè)計(jì)的過程中,通讀教材是一個(gè)很重要的環(huán)節(jié)。例如,在預(yù)習(xí)“整式”的加減法這一章節(jié)的時(shí)候,學(xué)生首先要明確單項(xiàng)式、多項(xiàng)式和同類項(xiàng)這三種概念。明確地知道關(guān)于單項(xiàng)式、多項(xiàng)式和同類項(xiàng)的相關(guān)概念。又例如,在預(yù)習(xí)一元一次方程的概念時(shí),同學(xué)尤其需要通過教材理解“只含有一個(gè)未知數(shù),并且未知數(shù)的最高次數(shù)是1的整式方程叫做一元一次方程。其中的方程式可以寫作:ax+b=0(x為未知數(shù),a不為0)。同類項(xiàng)指得是所有的字母都相同,并且相同字母的指數(shù)也分別相同的項(xiàng),幾個(gè)常數(shù)的項(xiàng)也可以被稱之為同類項(xiàng)。在通讀教材過程中,學(xué)生正好趁此機(jī)會(huì)來了解知識(shí)結(jié)構(gòu)和內(nèi)在的聯(lián)系,這本身也是預(yù)習(xí)方案中首先要解決的問題。
2.3以預(yù)習(xí)的“核心”來進(jìn)行教學(xué)
例如,在教授平行四邊形知識(shí)的過程中,老師可以根據(jù)例題“在四邊形ABCD中,對(duì)角線AC和BD相交于點(diǎn)O,且OA=OC,OB=OD,求證:四邊形ABCD是平行四邊形。”老師在上課的時(shí)候以這個(gè)題目來進(jìn)行講述,其實(shí)屬于一種對(duì)教材的“精讀”。如果學(xué)生之前兩個(gè)預(yù)習(xí)的環(huán)節(jié)做好,那么自然也就能夠通過自己的深入思考來對(duì)例題進(jìn)行深入地研究,自身對(duì)于例題的掌握也就會(huì)變得更加牢固[2]。在證明平行四邊形的過程中其實(shí)也就屬于一個(gè)熟知平行四邊形性質(zhì)的過程。
這也就是說,老師可以在預(yù)習(xí)的過程中適當(dāng)?shù)匾胍恍├},讓學(xué)生在預(yù)習(xí)的過程中能夠提前知曉老師的思路,另外一方面,學(xué)生也能夠通過預(yù)習(xí)來更好地進(jìn)行自我認(rèn)知,從而提高學(xué)習(xí)的效率。
2.4根據(jù)預(yù)習(xí)的結(jié)果來進(jìn)行評(píng)價(jià)和運(yùn)用
如果老師只重視預(yù)習(xí)教案的設(shè)計(jì)而不重視檢測(cè)結(jié)果的話,那么學(xué)生數(shù)學(xué)學(xué)習(xí)的效果就會(huì)變差。相反一些自制力差的同學(xué)就不會(huì)去預(yù)習(xí)。老師在預(yù)習(xí)數(shù)學(xué)知識(shí)的過程中尤其需要根據(jù)預(yù)習(xí)的情況來進(jìn)行及時(shí)地通報(bào),并在之后做出相關(guān)的評(píng)價(jià)[2]。例如,在初中學(xué)習(xí)的過程中,二次函數(shù)的學(xué)習(xí)一直屬于一個(gè)難點(diǎn)。老師就可以在教案的后面設(shè)置一個(gè)這樣的題目:“某件衣服現(xiàn)在的售價(jià)為每件60元,每個(gè)月可以賣出300件。根據(jù)市場(chǎng)調(diào)查的結(jié)果來看,如果價(jià)格有所調(diào)整,每次漲價(jià)1元,那么每個(gè)月要少賣10件。每次降價(jià)1元,每月可多賣出20件。已知這種衣服的進(jìn)價(jià)本身為每件40元。設(shè)衣服的售價(jià)為x元,每月的銷售量為y件。請(qǐng)寫出y與x的函數(shù)關(guān)系式以及x的取值范圍。
像上面這道題目本身屬于一種非常復(fù)雜的市場(chǎng)營(yíng)銷問題。老師可以在學(xué)生學(xué)習(xí)完二次函數(shù)的問題之后讓學(xué)生學(xué)習(xí)這道題目。學(xué)生尤其可以在這個(gè)過程中體會(huì)到二次函數(shù)模型可以在同一個(gè)問題中的不同情況下進(jìn)行解答。學(xué)生通過回答全面的問題有助于培養(yǎng)良好的解題習(xí)慣,從而也就能夠更好地提升解決問題的能力。而老師在教學(xué)生學(xué)完每個(gè)章節(jié)的問題之后都可以設(shè)置這樣的問題讓學(xué)生進(jìn)行學(xué)習(xí),這樣也就更加有利于掌握相關(guān)的知識(shí)點(diǎn)。
3.結(jié)束語
綜上所述,在數(shù)學(xué)教學(xué)的過程中如果能夠設(shè)計(jì)出科學(xué)而又合適的預(yù)習(xí)書面作業(yè),那么自然可以克服傳統(tǒng)預(yù)習(xí)的過程中存在的預(yù)習(xí)無形化、問題化和任務(wù)化等諸多方面的問題,從而也就能夠讓學(xué)生更好地參與到課堂學(xué)習(xí)的過程中,經(jīng)過一段時(shí)間,學(xué)生也就能夠養(yǎng)成自覺學(xué)習(xí)的習(xí)慣,更加能夠在課堂上更好地理解老師所講述的相關(guān)內(nèi)容。
參考文獻(xiàn):
[1]周林.初中數(shù)學(xué)課堂教學(xué)有效性策略研究[J].數(shù)學(xué)教學(xué)與研究,2012(3):89-94
[2]孫嬌.提高初中數(shù)學(xué)教學(xué)的有效性[J].中學(xué)課程輔導(dǎo),2013(4):103-106