• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Design aspect of a novel L-shaped pulsed column for liquid–liquid extraction applications:Energy consumption and the characteristics velocity concept

    2018-05-25 11:26:14PouriaAmaniElhamMohammadiSaharAkhgar

    Pouria Amani*,Elham Mohammadi,Sahar Akhgar

    1 School of Chemical Engineering,College of Engineering,University of Tehran,P.O.Box:11155-4563,Tehran,Iran

    2 Chemical Engineering Department,Tarbiat Modares University,P.O.Box:14115-143,Tehran,Iran

    1.Introduction

    Solvent extraction is one of the methods applied in separation industry.There are numerous types of extractors including mixersettlers,columns and centrifugal extractors[1].Pulsed columns are a class of solvent extractors which offer various advantages such as high throughput,simple design,low space requirement and no internal moving parts[2].

    Various internals have been used so far in pulsed columns such as packing,perforated plates and disc&doughnuts.However,generally pulsed columns can be classi fied in two structural groups:1—vertical pulsed columns;2—horizontal pulsed columns.In most studies,vertical pulsed columns have been employed and investigated[3–5].However,in various applications,especially when height limitation is a concern or in nuclear industries it is highly required to use the horizontal pulsed columns[6–10].It should be noted that the mass transfer rate in verticaland horizontalstructure ofthe columns is approximately comparable[11]and the horizontal columns provide higher performance based on the identical required space,while the throughput of the horizontal columns is much less than the vertical ones.Therefore,there is a need to propose a new type of extraction columns which offers higher performance compared to previous conventionaltypes.In this regard,the novel L-shaped(horizontal–vertical)pulsed sieve-plate column has been proposed in order to potentially achieve higher advantages compared to the other types.In our previous studies,we have investigated the hydrodynamic of such columns and the results revealed that an L-shaped extraction column has a great potential to extract rare earth elements[12,13].However,the knowledge concerning the design and performance of such columns is still far from ful filling expectations due to the complex behaviors of the hydrodynamics as well as mass transfer performance.

    One ofthe key factors in design and scale-up ofextraction columns is the total energy consumed during the steady-state operation of the apparatus.Among the various types of extraction columns,the L-shaped pulsed sieve-plate column is one type of extractors whose energy consumption is much less than that of the conventional vertical pulsed extraction columns with identical length,while their application for extraction,separation and puri fication of rare earth elements has not extensively been referred to the literature.Thus,the primary objective of this research is to study the feasibility of the L-shaped pulsed sieveplate columns for solventextraction applications by evaluating the consumption of energy at different conditions.

    On the other hand,the characteristic velocity is another key factor in steady state operation of extraction columns since it demonstrates the maximum throughput of the column.The characteristic velocity can be obtained by flooding measurements,reported in our previous research for an L-shaped extraction column[13].Thus,this article also concerns the characteristic velocity approaches in order to evaluate the applicability of such models for an L-shaped extraction column.

    2.Experimental

    2.1.Description of equipment

    Schematic diagram ofthe L-shaped pulsed sieve-plate column used in this work is illustrated in Fig.1.The setup consists ofverticaland horizontal parts,upper and lower settler,four tanks,two dosing pumps,two rotameters and air pulsating system.The active part of the column is a pipe housing an internal plate cartridge consisting of 24 pairs of sieve plate in the horizontal section as well as 29 individual sieve plates in the vertical section.The main characteristics of the column are listed in Table 1.

    2.2.Liquid–liquid system

    Liquid–liquid systems used in this work are toluene/water,butanol/water,butyl acetate/water in order to cover a wide range of interfacial tension.These systems have been recommended by the EuropeanFederation of Chemical Engineering as of ficial test systems for extraction investigations[14].The physical properties of these systems are listed in Table 2.All experiments are carried out at the(20 ± 1)°C.The density and viscosity of each phase are determined using a balance in the order of 0.0001 g and with a LAUDA viscometer.

    Table 1 Plate properties

    Fig.1.A schematic of the apparatus.

    Table 2 Physical properties of the chemical systems at(20 ± 1)°C

    2.3.Theoretical framework

    2.3.1.Energy consumption concept

    The pressure drop can be calculated by following classical Eq.(15):

    where U represents the velocity,Dcis the column diameter,Z represents the distance between measuring points,ρmis the density ofthe mixture[Eq.(2)],and Δl represents the differential manometer height.In addition,C corresponds to the pressure drop coefficient in the case of permanent flow.

    The velocity ofthe pulsed flow provided by an airpulsing system can be expressed in every moment as follows:

    where A and f represent pulsation amplitude and frequency,and t represents time.The period of pulsation is T=1/f.So,the expression for U(t)(Eq.(3))can be rewritten as,

    The energy is consumed by the flow with both positive and negative velocity.If integrated directly over the interval 0 to T,the mean velocity will be zero,because for the half of the interval the velocity is equal to the other half,but with opposite sign.For this reason,the absolute value of the velocity is integrated.To obtain the value of mean velocity,the period of pulsation can be divided in three zones:

    (1)Time interval 0 to T/4—the velocity is positive.

    (2)Time interval T/4 to 3/4 T-velocity is negative and its absolute value is taken.

    (3)Time interval 3/4 T to T—the velocity is positive.It is analogous to the first zone and the result is the same.

    Thus,the mean pulsation velocity(Um)can be expressed as follows:

    Assuming that the pressure drop in a pulsed flow is proportional to the square of its velocity,one can replace the velocity term in Eq.(1)by the expression for mean pulsation velocity[Eq.(8)].This assumption is explicitly supported by the experimentalobservation ofother authors[16,17],stating that in both permanent and pulsed flows the energy(which is proportional to the product of pressure drop and velocity)is proportional to the cube of velocity.

    Integration over a pulsation period T results in:

    where C is a proportionality coefficientin case ofpermanent flow,Cpis for the case of a pulsed flow(2Af)is mean velocity of the pulsed flow.It is seen that the pressure drop coefficient for the pulsed flow Cpis about 25%greater than that of an equivalent permanent flow C.The pressure drop characterizes the column resistance.Energy is consumed to overcome this resistance so as to make the flow passing through the column.Arelation for determination ofenergy consumption due to pressure drop in an L-shaped extraction column with pulsed flow is developed below.In the case of a permanent flow,the force exerted perpendicular to the cross section of the column(FN)can be calculated by Eq.(11):

    Therefore,the energy(E)consumed can be expressed as,

    Replacing Δp in Eq.(12)by Eq.(1)results in:

    Considering SX=V and Vρ=m,the energy consumption can be expressed by:

    Consequently,since t=X/U,energy per unity of mass and time can be expressed as below:

    Determining Δl from Eq.(1)can be resulted in Eq.(16).

    For a pulsed flow,the consumption of energy and velocity vary regarding the time and depend on its moment during the pulsation.Thus,integrating overa period of pulsation can be resulted in the determination of the mean energy consumption,as follows:

    The comparison of Eqs.(16)and(18)demonstrates that the mean energy consumed for a pulsed flow is one and a half times more than that of a permanent flow at identical velocity.

    The mean energy consumption for a permanent flow can therefore be determined as below:

    2.3.2.Characteristic velocity concept

    With respect to the variation of pressure drop through the column length[13], flooding velocities can be determined.Consequently,the characteristic velocity can be obtained by flooding measurements.Many correlations are proposed for prediction of characteristic velocity in order to relate the slip velocity and the dispersed phase holdup.Thornton and Pratt[18]proposed a model for determination of U0at the flooding point as follows:

    Thornton and Pratt[18]suggested that flooding will occur when the phases velocity reaches its highest value due to the variation of holdup.Therefore,for determination of flooding capacity in terms of dispersed and continuous phase velocities,Eq.(21)is differentiated based on φ,treating Udand Ucas dependent variables as follows:

    Highest super ficial velocity of each phase can be determined by only one of Eq.(22)or(23)and by the other characteristic velocity approaches.With the substitution of Eq.(21)in Eqs.(22)and(23),the super ficial velocities at flooding point can be calculated as follows:

    Another equation developed by Richardson and Zaki[19]which was originally presented for sedimenting and fluidized processes of homogenous solid particles.However,Godfrey and Slater[20]revealed that it has a wide applicability for determination of U0and also can be employed for liquid–liquid systems as follows:

    where n is the parameter which has to be obtained based on the experimental data.It should be noted that the idea of differentiating the relationship between slip velocity and holdup to obtain limiting values of super ficial velocities(Udfand Ucf)was firstly presented by Dell and Pratt[21].In this approach,it is assumed that near the highest feasible flow rate,slight variation of one flow when the other is considered to be fixed,will significantly increase the holdup.Accordingly,Eq.(22)is differentiated based on φ,treating Udand Ucas dependent variables in order to determine flooding conditions,and the substitution of Eq.(26)in Eqs.(22)and(23)leads to:

    3.Results and Discussion

    3.1.Pressure drop

    The primary objective of this research is to find how the pressure drop will change when varying the geometry parameters of the stage and pulsation parameters.In this regard,two dimensionless parameters characterize the stage geometry:plate free area(F)and dimensionless interplate distance(h)which is the ratio of the plate spacing to the column dimeter.The two-phase pressure drop through the column length is measured by using a manometer as can be seen in Fig.1.Each experiment is repeated three times to guarantee the statistical significance of the determined pressure drop.

    To illustrate the in fluence of column geometry on pressure drop,the pulsed flow pressure drop coefficient(Cp)is studied at different plate distances and several constant values of plate free cross area.The Cpcan be generally obtained from experimentalΔp,Dc,ρ,X,and Af by plotting DcΔp/ρX versus(2Af)2.A linear plot through the origin between DcΔp/ρX versus(2Af)2can be observed which is in agreement with the general Eqs.(9)and(10).The slope of the lines corresponds to the pulsed flow pressure drop coefficient Cp.It is found that it does not depend on flow velocity and takes specific values for each particular stage configuration and extraction system.So,Cpcharacterizes the in fluence ofstage geometry.In this regard,Fig.2 exhibits the variation of Cpatdifferent h and F.

    Accordingly,a numerically obtained relation for determination of pressure drop in the L-shaped pulsed sieve-plate extraction column is derived as below:

    where K1=4.507,3.759,and 2.820 for toluene-water,butyl acetate–water and butanol–water,respectively.The Average Absolute Relative Error(AARE)is adopted to make comparison between the experimental data and the predicted results:

    The AARE values between the experimentaldata and those obtained from Eq.(29)are about 9.48%,8.47%and 10.16%for toluene–water,butyl acetate–water and butanol–water,respectively.Also,an easy access to Emat different stage configurations is possible through Eq.(29)for determination of Cpor by an expression for CpEderived by combining Eqs.(29)and(19),as follows:

    Fig.2.In fluence of interplate distance and plate free area on pressure drop coefficient.

    where K2=6.009,5.012,and 3.760 for toluene-water,butyl acetate–water and butanol–water,respectively.As it is seen,the pulsed flow pressure drop coefficient Cpde fined by Eq.(29),does not depend on Re number.From one pointof view,Cpshould depend on Re number,since itintegrates the in fluence oftwo types ofhydraulic losses:Re dependent friction losses( flow in pipe)and Re independent local resistance losses( flow through ori fices).However,a possible explanation can be found by considering separately the in fluence of hydraulic losses.Calculations of local resistance and friction losses have revealed that the pressure drop due to friction is below 2%oftotalpressure drop,i.e.the localresistance losses in the studied column strongly dominate[13].In such a case,in view of the correlation precision of about 10%,negligible impact of Re number on Cpmight be expected.Additionally,in previous studies concerning one-phase flow in perforated plate columns with immobile or oscillating plates,no in fluence of Re on pressure drop have been observed[15,22,23].

    3.2.Energy consumption in a pulsed flow

    The secondary objective of this study was to investigate the energy input consumed for a steady state operating of a horizontal pulsed perforated-plate extraction column.Regarding to de fine the dynamic conditions ofthe column,the mean pulsed velocity has been considered using the Reynolds number:

    where is the mixture kinematic viscosity.The mean energy consumption ofa pulsed two-phase flow versus various Reynolds numberis illustrated in Fig.3 forfour differentchemicalsystems.The calculated results are obtained through Eqs.(18)and(31)for the same conditions.The experimental observations reveal that when the Reynolds number is increased(higher pulsation intensity),the energy consumption is increased.It is because of the fact that when the pulsation intensity increments,the pressure drop along the column slightly increases which results in an increase in consumption of energy.Moreover,it is observed that,except for the kerosene-water system,the energy consumption decreases with an increase in the interfacialtension in different chemical systems.However,because of the significant difference between the other physical properties including density and viscosity of kerosene with other chemical liquids,different trend is observed in similar conditions for the kerosene-water system.

    Fig.3.Mean energy consumption at various Reynolds numbers.

    In order to provide a better evaluation of the energy consumption of an extraction column,the in fluence of geometrical parameters including the plate spacing and the plate free area is also investigated.In this regard,for evaluation of the plate spacing,the dimensionless interplate distance(H),which can be characterized as the ratio of the plate spacing to the column dimeter,is considered and the results for four different interplate distances(geometry ratio=H/Dc)are illustrated in Fig.4.It is observed that increasing the plate spacing leads to the reduction of energy consumption.Moreover,one can see that its influence becomes smaller at larger interplate distances and for greater values of h,the in fluence of plate spacing is not pronounced.According to the experimental results,with further increase in the geometry ratio,more than 1.5,the in fluence of increasing its value becomes insigni ficant.Thus,a value of h around 1.5 can be considered as the optimum values from the energy point of view.However,it should be noted that the geometry ratio also significantly affects the turbulence of the flow and consequently highly affects the mass transfer performance and a multi-objective optimization is required to evaluate the optimal condition of the column.

    Fig.4.In fluence ofgeometry ratio h on energy consumption fordifferentchemicalsystems at Re=1.5 and F=0.11.

    Furthermore,another affecting geometrical parameter called plate free area is also concerned.In this regard,three different internals(half-perforated plates)with 0.11,0.22,and 0.31 fractional free area are used,while the plate spacing is considered to be constant(0.06 m).The results for four different chemical systems are illustrated in Fig.5 for Re=1.5.It is observed that the plate free area(F)has a significant impact on the consumption of energy.Emdecreases with an increase in the plate free area.Moreover,the in fluence of F on energy consumption is found to be more profound at smaller values.It is because of the fact that at smaller plate free area,the resistances against the flow significantly increases which results in a remarkable increase in the pressure drop along the column.

    Fig.5.In fluence of plate free area F on energy consumption for differentchemicalsystems at Re=1.5 and h=0.83.

    3.3.The characteristic velocity concept

    The applicability of Gayler and Pratt's model[24]for an L-shaped extraction column depends on the linearity of U0plot.Fig.6 shows the flooding point data based on Eq.(13)for the chemical systems studied in this work.According to Fig.6,the slope of lines is twice the value of characteristic velocity.Moreover,the concept of U0can be de fined for the L-shaped extraction column due to the linear plots,although there is a slight deviation in some experiments.Also,it has been found that the characteristic velocity declines with increasing Af and also U0has higher value in the chemical systems with higher interfacial tension.The resulting characteristic velocity values are given in Table 3.

    In this work,Eq.(18)is also correlated to the experimental Udfobtained from the variation of pressure drop through the column length and the exponent n as well as U0are presented in Table 4 for three liquid–liquid systems.Fig.7 shows the flooding point data based on Eq.(18).It was apparent that the characteristic velocity method based on Richardson and Zaki's Eq.(19]is applicable for an L-shaped extraction column due to the linear plots through the origin point for different chemical systems.According to literature,the parameter of Richardson and Zaki model is different in various columns.Godfrey and Slater[20]revealed that n varies between 0 and 4 for rotating disc contactors,0.3 to 1.5 for packed columns.Moreover,this range is noted for perforated-plate columns from-3 to 1[25],for Graesser raining bucket contactors from-0.9 to 3.6[26]for Hanson mixer–settler extraction columns from-6 to 6[27]and for multiimpeller columns from 1 to 9[28].The values found in this research are in satisfactory agreement with Godfrey and Slater's[20]values for perforated-plate columns.

    Fig.6.Characteristic velocity plots of flood point data under different pulsation intensities based on Gayler and Pratt's model[24]for(a)toluene–water(b)butyl acetate–water and(c)butanol–water.

    Table 3 Characteristic velocities under different pulsation intensities

    Table 4 Characteristic velocities under different pulsation intensities

    Fig.7.Characteristic velocity plots of flood point data under different pulsation intensities based on Richardson and Zaki model for(a)toluene-water(b)butyl acetate-water and(c)butanol-water.

    4.Conclusions

    In this research,the feasibility of a novel L-shaped pulsed sieveplate column for solvent extraction applications is investigated.In this regard,an evaluation on the energy consumption of the column is conducted due the variation of two-phase pressure drop which is previously reported[13].The in fluences of pulsation intensity and the geometrical parameters including the plate spacing and plate free area on the energy consumed are determined.A correlation for determination of mean energy consumption in column apparatuses with perforated plates in case of pulsed flow is proposed.It is useful for design purposes,namely for determination of energy losses due to pressure drop at different geometry parameters of the column–plate free area and interpolate distance and at different pulsation parameters.The results are helpful for optimization of column geometry targeted to lower energy consumption.

    Furthermore,the concept of the characteristic velocity,which is an important parameter in design of an extractor,is investigated as well.The applicability of characteristic velocity approaches including the Gayler and Pratt's model[24]and Richardson and Zaki model[19]is evaluated and it is apparent that both methods can be used for designing the L-shaped extraction columns;however,the Richardson and Zaki model provides much more accurate results.

    Nomenclature

    A amplitude of pulsation,m

    Af pulsation intensity,m·s-1

    a specific interfacial area,m2·m-3

    C pressure drop coefficient for a permanents flow(in Eq.(1))

    Cppressure drop coefficient for a pulsed flow(in Eq.(9))

    CpEpressure drop coefficient in Eq.(18)

    Dccolumn diameter,m

    Emmean energy per unity of mass and time,pulsed flow,J·s-1·kg-1

    E(t) instantaneous energy,pulsed flow,J·s-1·kg-1

    Etenergy per unity of mass and time,permanent flow,J·s-1·kg-1

    F plate free area

    FNforce exerted Perpendicular to the cross section,N·m-2

    f frequency of pulsation,Hz

    g gravity,m·s-2

    H interplate distance,m

    h geometry ratio,=H/Dc

    Δl differential manometer height,m

    Δp pressure drop,Pa

    Re Reynolds number

    S column cross section,m2

    t time,s

    U velocity,m·s-1

    Ucsuper ficial velocity of continuous phase,m·s-1

    Udsuper ficial velocity of dispersed phase,m·s-1

    Ummean velocity,pulsed flow,m·s-1

    Uslipslip velocity,m·s-1

    U(t) instantaneous flow velocity,pulsed flow,m·s-1

    U0characteristic velocity,m·s-1

    X distance between measuring points,m

    μ viscosity,N·s·m-2

    ρ density,kg·m-3

    σ interfacial tension between two phases,N·m-1

    ? kinematic viscosity,m2·s-1

    φ holdup

    Subscripts

    c continuous phase

    d dispersed phase

    f flooding

    m mixture

    Acknowledgments

    The authors thank the reviewers for constructive and helpful comments that led to de finite improvement in the paper.The authors also thank SchoolofChemicalEngineering,College ofEngineering,University of Tehran,for the financial support.

    References

    [1]M.Asadollahzadeh,A.Ghaemi,M.Torab-Mostaedi,S.Shahhosseini,Experimental mass transfer coefficients in a pilot plant multistage column extractor,Chin.J.Chem.Eng.24(2016)989–999.

    [2]Y.Wang,K.H.Smith,K.Mumford,T.F.Grabin,Z.Li,G.W.Stevens,Prediction of dispersed phase holdup in pulsed disc and doughnut solvent extraction columns under different mass transfer conditions,Chin.J.Chem.Eng.24(2016)226–231.

    [3]R.L.Yadav,A.W.Patwardhan,Design aspects of pulsed sieve plate columns,Chem.Eng.J.138(2008)389–415.

    [4]P.Amani,M.Amani,M.Mehrali,K.Vajravelu,In fluence of quadrupole magnetic field on mass transfer in an extraction column in the presence of MnFe2O4nanoparticles,J.Mol.Liq.238(2017)145–154.

    [5]P.Amani,M.Amani,R.Hasanvandian,Investigation of hydrodynamic and mass transfer of mercaptan extraction in pulsed and non-pulsed packed columns,Korean J.Chem.Eng.34(2017)1456–1465.

    [6]P.Amani,J.Safdari,A.Gharib,H.Badakhshan,M.H.Mallah,Mass transfer studies in a horizontal pulsed sieve-plate column for uranium extraction by tri-n-octylamine using axial dispersion model,Prog.Nucl.Energy 98(2017)71–84.

    [7]F.Panahinia,J.Safdari,M.Ghannadi-Maragheh,P.Amani,M.H.Mallah,Modeling and simulation ofa horizontalpulsed sieve-plate extraction column using axialdispersion model,Sep.Sci.Technol.52(9)(2017)1537–1552.

    [8]F.Panahinia,M.Ghannadi-Maragheh,J.Safdari,P.Amani,M.-H.Mallah,Experimental investigation concerning the effect of mass transfer direction on mean drop size and holdup in a horizontalpulsed plate extraction column,RSC Adv.7(2017)8908–8921.

    [9]P.Amani,M.Amani,R.Saidur,W.-M.Yan,Hydrodynamic performance of a pulsed extraction column containing ZnO nanoparticles:Drop size and size distribution,Chem.Eng.Res.Des.121(2017)275–286.

    [10]P.Amani,M.Esmaieli,Drop behavior characteristics in different operating regimes in an L-shaped pulsed sieve-plate column,Can.J.Chem.Eng.(2017)https://doi.org/10.1002/cjce.22911,http://onlinelibrary.wiley.com/adranced/search/results.

    [11]C.Hanson,Recent Advances in Liquid–Liquid Extraction,Elsevier,1971.

    [12]S.Akhgar,J.Safdari,J.Tow fighi,P.Amani,M.H.Mallah,Experimental investigation on regime transition and characteristic velocity in a horizontal–vertical pulsed sieve-plate column,RSC Adv.7(2017)2288–2300.

    [13]P.Amani,J.Safdari,H.Abolghasemi,M.H.Mallah,A.Davari,Two-phase pressure drop and flooding characteristics in a horizontal–vertical pulsed sieve-plate column,Int.J.Heat Fluid Flow 65(2017)266–276.

    [14]T.Mí?ek,R.Berger,J.Schr?ter,Standard test systems for liquid extraction studies,EFCE Publ.Ser.46(1985)1.

    [15]J.D.Thornton,Liquid-liquid extraction.Part XIII:The effect of pulse wave-form and plate geometry on the performance and throughput of a pulsed column,Trans.Inst.Chem.Eng.36(1957)316–330.

    [16]M.S.Aoun,Numerical simulation of hydrodynamics and axial mixing in pulsed extraction columns with discs and doughnuts,PhD Thesis.INP-Toulouse,France,1995.

    [17]J.F.Milot,J.Duhamet,C.Gourdon,G.Casamatta,Simulation of a pneumatically pulsed liquid–liquid extraction column,Chem.Eng.J.45(1990)111–122.

    [18]J.Thornton,H.Pratt,Liquid–liquid extraction:Part VII, flooding rates and mass transfer data rotary annular columns,Trans.Inst.Chem.Eng.31(1953)4.

    [19]J.Richardson,W.Zaki,Fluidization and sedimentation—Part I,Trans.Inst.Chem.Eng.32(1954)38–58.

    [20]J.Godfrey,M.Slater,Slip velocity relationships for liquid–liquid extraction columns,Chem.Eng.Res.Des.69(1991)130–141.

    [21]F.R.Dell,H.R.C.Pratt,A note on the correlation of flooding rates for packed gasliquid columns,J.Appl.Chem.2(2007)429–435.

    [22]T.Miyauchi,H.Oya,Longitudinal dispersion in pulsed perforated-plate columns,AIChE J.11(1965)395–402.

    [23]M.M.Hafez,J.Procházka,The dynamic effects in vibrating-plate and pulsed extractors-I.Theory and experimental technique,Chem.Eng.Sci.29(1974)1745–1753.

    [24]R.Gayler,H.Pratt,Holdup and pressure drop in packed columns,Trans.Inst.Chem.Eng.29(1951)110–125.

    [25]A.Hamidi,M.Van Berlo,K.C.A.M.Luyben,L.A.M.Van Der Wielen,Flooding characteristics of aqueous two-phase systems in a countercurrent sieve-plate column,J.Chem.Technol.Biotechnol.74(1999)244–249.

    [26]A.D.Giraldo-Zuniga,J.S.R.Coimbra,L.A.Minim,E.E.G.Rojas,Dispersed phase holdup in a Graesser raining bucket contactor using aqueous two-phase systems,J.Food Eng.72(2006)302–309.

    [27]M.Napeida,A.H.Asl,Chemical engineering research and design holdup and characteristic velocity in a Hanson mixer–settler extraction column,Chem.Eng.Res.Des.8(2010)703–711.

    [28]M.Asadollahzadeh,M.Torab-Mostaedi,S.Shahhosseini,A.Ghaemi,Holdup,characteristic velocity and slip velocity between two phases in a multi-impeller column for high/medium/low interfacial tension systems,Chem.Eng.Process.Process Intensif.100(2016)65–78.

    国产精品国产三级国产专区5o| 亚洲成av片中文字幕在线观看| 午夜福利乱码中文字幕| 丝袜喷水一区| 日韩 欧美 亚洲 中文字幕| 午夜免费男女啪啪视频观看| 亚洲精品国产av蜜桃| 亚洲五月色婷婷综合| 最近2019中文字幕mv第一页| 久热爱精品视频在线9| 性色av一级| 黄色 视频免费看| 伊人久久大香线蕉亚洲五| 欧美av亚洲av综合av国产av | 少妇精品久久久久久久| 一级a爱视频在线免费观看| 建设人人有责人人尽责人人享有的| 亚洲欧美日韩另类电影网站| 99热全是精品| 女的被弄到高潮叫床怎么办| 欧美97在线视频| 久久鲁丝午夜福利片| 午夜福利网站1000一区二区三区| 日韩 亚洲 欧美在线| 美女福利国产在线| 亚洲国产欧美网| 黄色怎么调成土黄色| 一本大道久久a久久精品| 亚洲一区中文字幕在线| 老汉色∧v一级毛片| 久久99一区二区三区| 欧美精品亚洲一区二区| 晚上一个人看的免费电影| 欧美黑人精品巨大| 国产免费又黄又爽又色| 久久久久久人妻| 成人午夜精彩视频在线观看| 国产有黄有色有爽视频| 男女下面插进去视频免费观看| 亚洲色图 男人天堂 中文字幕| 国产精品久久久久久人妻精品电影 | 天天躁夜夜躁狠狠久久av| 亚洲精品成人av观看孕妇| 美女国产高潮福利片在线看| 无限看片的www在线观看| 日韩av免费高清视频| 国产极品粉嫩免费观看在线| 国产97色在线日韩免费| 9色porny在线观看| 又黄又粗又硬又大视频| 狂野欧美激情性bbbbbb| 老汉色∧v一级毛片| 国产野战对白在线观看| 亚洲五月色婷婷综合| 在线观看免费午夜福利视频| 亚洲av日韩精品久久久久久密 | 三上悠亚av全集在线观看| 国产日韩欧美亚洲二区| 亚洲成av片中文字幕在线观看| 最近最新中文字幕大全免费视频 | 欧美日韩综合久久久久久| 一区二区日韩欧美中文字幕| 在线天堂最新版资源| 51午夜福利影视在线观看| 亚洲av日韩在线播放| 欧美日韩综合久久久久久| 免费高清在线观看视频在线观看| av片东京热男人的天堂| svipshipincom国产片| 黄色怎么调成土黄色| 亚洲综合精品二区| 侵犯人妻中文字幕一二三四区| 老司机靠b影院| av线在线观看网站| 丝袜喷水一区| 亚洲精华国产精华液的使用体验| 啦啦啦 在线观看视频| 成年美女黄网站色视频大全免费| 1024视频免费在线观看| 国产极品粉嫩免费观看在线| 成人漫画全彩无遮挡| 欧美乱码精品一区二区三区| 亚洲欧美日韩另类电影网站| 国产xxxxx性猛交| 国产在线视频一区二区| 亚洲伊人久久精品综合| 免费在线观看视频国产中文字幕亚洲 | 中国国产av一级| 侵犯人妻中文字幕一二三四区| 熟女av电影| 久久性视频一级片| 少妇猛男粗大的猛烈进出视频| 亚洲伊人色综图| 在线天堂最新版资源| 国产一区亚洲一区在线观看| 最近的中文字幕免费完整| 亚洲欧美成人精品一区二区| 亚洲天堂av无毛| 啦啦啦视频在线资源免费观看| 欧美成人精品欧美一级黄| videosex国产| 日韩视频在线欧美| 51午夜福利影视在线观看| 国产亚洲欧美精品永久| 免费看av在线观看网站| 波野结衣二区三区在线| 国产成人欧美在线观看 | h视频一区二区三区| 老鸭窝网址在线观看| 激情五月婷婷亚洲| 久久久久久久国产电影| 狠狠婷婷综合久久久久久88av| 成人三级做爰电影| 啦啦啦啦在线视频资源| 久久精品人人爽人人爽视色| 十分钟在线观看高清视频www| 一本大道久久a久久精品| 亚洲精品久久成人aⅴ小说| 亚洲激情五月婷婷啪啪| 国产1区2区3区精品| 午夜精品国产一区二区电影| 香蕉丝袜av| 国产男女内射视频| 国产成人欧美| 国产伦人伦偷精品视频| 久久影院123| 在线观看www视频免费| 黄色一级大片看看| 可以免费在线观看a视频的电影网站 | 国产av码专区亚洲av| 十分钟在线观看高清视频www| 国产片特级美女逼逼视频| 80岁老熟妇乱子伦牲交| 精品一区二区三区四区五区乱码 | 激情视频va一区二区三区| 亚洲国产日韩一区二区| 亚洲一级一片aⅴ在线观看| 欧美日韩av久久| 午夜福利一区二区在线看| 两性夫妻黄色片| av在线播放精品| 国产亚洲精品第一综合不卡| 日韩人妻精品一区2区三区| 亚洲情色 制服丝袜| 亚洲国产欧美日韩在线播放| 纵有疾风起免费观看全集完整版| 精品少妇黑人巨大在线播放| 18在线观看网站| 亚洲精品av麻豆狂野| 丝袜喷水一区| 色精品久久人妻99蜜桃| 久久 成人 亚洲| 极品少妇高潮喷水抽搐| 1024视频免费在线观看| 9191精品国产免费久久| 日韩视频在线欧美| 99香蕉大伊视频| 午夜福利影视在线免费观看| 国产亚洲av片在线观看秒播厂| 大话2 男鬼变身卡| 国产一区二区 视频在线| 九九爱精品视频在线观看| 欧美xxⅹ黑人| 中文字幕最新亚洲高清| 丁香六月天网| 亚洲精品自拍成人| 午夜91福利影院| 精品一品国产午夜福利视频| 如日韩欧美国产精品一区二区三区| 久久热在线av| 精品亚洲成a人片在线观看| 男女下面插进去视频免费观看| 久久久久久久久免费视频了| 午夜影院在线不卡| 亚洲天堂av无毛| 高清欧美精品videossex| 午夜免费观看性视频| 日本av免费视频播放| 99久久99久久久精品蜜桃| 成年动漫av网址| 亚洲一区二区三区欧美精品| 丰满少妇做爰视频| 午夜免费男女啪啪视频观看| 最近最新中文字幕免费大全7| 韩国av在线不卡| 美女高潮到喷水免费观看| 国产精品人妻久久久影院| 久久久精品区二区三区| 男女之事视频高清在线观看 | 中文字幕色久视频| 精品国产超薄肉色丝袜足j| 高清视频免费观看一区二区| 免费高清在线观看日韩| 操出白浆在线播放| 晚上一个人看的免费电影| 男人添女人高潮全过程视频| 亚洲中文av在线| 免费在线观看黄色视频的| 免费观看性生交大片5| 婷婷色av中文字幕| 美女高潮到喷水免费观看| 日本午夜av视频| 国产日韩一区二区三区精品不卡| 国产精品嫩草影院av在线观看| 国产日韩欧美亚洲二区| 国产一区二区激情短视频 | 亚洲国产欧美日韩在线播放| 国产在线视频一区二区| 街头女战士在线观看网站| 国产人伦9x9x在线观看| 亚洲精品第二区| 热99久久久久精品小说推荐| 天天躁夜夜躁狠狠久久av| av网站在线播放免费| 不卡av一区二区三区| av在线老鸭窝| 成人毛片60女人毛片免费| 国产精品人妻久久久影院| 欧美乱码精品一区二区三区| 男女午夜视频在线观看| 精品免费久久久久久久清纯 | 91国产中文字幕| 黄色怎么调成土黄色| 日韩制服丝袜自拍偷拍| 久久鲁丝午夜福利片| 一本一本久久a久久精品综合妖精| 亚洲精品久久久久久婷婷小说| 在线亚洲精品国产二区图片欧美| 在线观看www视频免费| 老汉色av国产亚洲站长工具| 91aial.com中文字幕在线观看| 国产人伦9x9x在线观看| 18禁观看日本| 啦啦啦 在线观看视频| 菩萨蛮人人尽说江南好唐韦庄| 丰满少妇做爰视频| 亚洲第一av免费看| 国产熟女欧美一区二区| 成人国语在线视频| 好男人视频免费观看在线| 国产乱来视频区| 性高湖久久久久久久久免费观看| 人人妻人人澡人人看| 欧美人与性动交α欧美软件| 宅男免费午夜| 婷婷色综合大香蕉| 中文字幕精品免费在线观看视频| 搡老岳熟女国产| 亚洲一区二区三区欧美精品| 久久99热这里只频精品6学生| 自线自在国产av| 国产免费现黄频在线看| 亚洲av成人精品一二三区| 91精品国产国语对白视频| 欧美亚洲日本最大视频资源| 在线天堂中文资源库| 日本一区二区免费在线视频| 免费观看性生交大片5| 丝袜在线中文字幕| 在线天堂中文资源库| 日本wwww免费看| 最近手机中文字幕大全| 久久久国产欧美日韩av| 国产熟女欧美一区二区| 777米奇影视久久| 免费在线观看视频国产中文字幕亚洲 | 女性生殖器流出的白浆| av免费观看日本| 嫩草影院入口| 一个人免费看片子| 国产福利在线免费观看视频| 国产激情久久老熟女| 国产精品久久久久久精品电影小说| 日韩精品免费视频一区二区三区| 这个男人来自地球电影免费观看 | 国产不卡av网站在线观看| 亚洲七黄色美女视频| 激情五月婷婷亚洲| 女人被躁到高潮嗷嗷叫费观| 十八禁网站网址无遮挡| 久久久精品94久久精品| 欧美av亚洲av综合av国产av | 无遮挡黄片免费观看| 操出白浆在线播放| 亚洲国产欧美日韩在线播放| 制服诱惑二区| 国产亚洲av高清不卡| 大话2 男鬼变身卡| 亚洲自偷自拍图片 自拍| 国产探花极品一区二区| 男女国产视频网站| 人妻 亚洲 视频| 日韩中文字幕视频在线看片| videos熟女内射| 美女主播在线视频| 丝袜在线中文字幕| 亚洲色图 男人天堂 中文字幕| 久热爱精品视频在线9| 久久精品国产亚洲av高清一级| 精品国产国语对白av| 欧美人与善性xxx| www.精华液| 国产精品久久久av美女十八| 日韩大片免费观看网站| 97在线人人人人妻| 国产麻豆69| 亚洲国产成人一精品久久久| 十八禁人妻一区二区| 美女国产高潮福利片在线看| 最近最新中文字幕大全免费视频 | 最近手机中文字幕大全| 一级毛片黄色毛片免费观看视频| 街头女战士在线观看网站| av国产精品久久久久影院| 亚洲国产成人一精品久久久| 性高湖久久久久久久久免费观看| 亚洲欧洲精品一区二区精品久久久 | 男男h啪啪无遮挡| www.自偷自拍.com| 在线看a的网站| 日韩大片免费观看网站| 国产片特级美女逼逼视频| 欧美老熟妇乱子伦牲交| 一本—道久久a久久精品蜜桃钙片| 777久久人妻少妇嫩草av网站| 精品少妇黑人巨大在线播放| 中文字幕最新亚洲高清| 另类精品久久| 1024视频免费在线观看| 色吧在线观看| 老司机深夜福利视频在线观看 | 最近最新中文字幕大全免费视频 | 香蕉丝袜av| 亚洲一级一片aⅴ在线观看| 最近手机中文字幕大全| 中文字幕制服av| 国产伦理片在线播放av一区| 男女免费视频国产| 国产精品成人在线| 99久久精品国产亚洲精品| 亚洲av电影在线观看一区二区三区| 国产在视频线精品| 天天影视国产精品| 国产有黄有色有爽视频| 国产精品亚洲av一区麻豆 | 少妇精品久久久久久久| 亚洲美女搞黄在线观看| 亚洲精品一区蜜桃| 国产一区有黄有色的免费视频| 日韩视频在线欧美| 久久女婷五月综合色啪小说| 中文字幕另类日韩欧美亚洲嫩草| 日本vs欧美在线观看视频| 美国免费a级毛片| 日日啪夜夜爽| 精品国产一区二区三区久久久樱花| av免费观看日本| 最近中文字幕高清免费大全6| 精品亚洲成国产av| 久久天躁狠狠躁夜夜2o2o | 亚洲精品,欧美精品| 自拍欧美九色日韩亚洲蝌蚪91| 一级a爱视频在线免费观看| 性高湖久久久久久久久免费观看| 美女主播在线视频| 日日爽夜夜爽网站| 亚洲自偷自拍图片 自拍| 中文字幕制服av| 久久av网站| 日韩精品有码人妻一区| 中国国产av一级| 欧美 日韩 精品 国产| 交换朋友夫妻互换小说| 最新在线观看一区二区三区 | 国产激情久久老熟女| 一本久久精品| 亚洲第一青青草原| 男女边摸边吃奶| 熟女少妇亚洲综合色aaa.| 国产精品99久久99久久久不卡 | 成人漫画全彩无遮挡| 黄色 视频免费看| 久久毛片免费看一区二区三区| 视频在线观看一区二区三区| av电影中文网址| 女人高潮潮喷娇喘18禁视频| 满18在线观看网站| 狂野欧美激情性xxxx| 老司机深夜福利视频在线观看 | 国产成人av激情在线播放| 亚洲熟女毛片儿| 精品人妻在线不人妻| 伊人亚洲综合成人网| 欧美中文综合在线视频| 最近手机中文字幕大全| 久久精品国产a三级三级三级| 久久久久久久国产电影| 午夜福利视频精品| 婷婷色av中文字幕| 成年动漫av网址| 黑丝袜美女国产一区| 中文欧美无线码| av片东京热男人的天堂| 久久人人爽av亚洲精品天堂| av不卡在线播放| 亚洲精品一区蜜桃| 免费观看人在逋| av电影中文网址| 精品免费久久久久久久清纯 | 青春草国产在线视频| 黄片无遮挡物在线观看| 亚洲av综合色区一区| 波多野结衣一区麻豆| 亚洲国产成人一精品久久久| 精品久久久久久电影网| 欧美精品高潮呻吟av久久| 精品午夜福利在线看| 巨乳人妻的诱惑在线观看| 一级片'在线观看视频| 亚洲精品久久成人aⅴ小说| 男女边吃奶边做爰视频| 国产伦理片在线播放av一区| 久久 成人 亚洲| 久久精品人人爽人人爽视色| 国产在视频线精品| 欧美精品人与动牲交sv欧美| 亚洲熟女毛片儿| 哪个播放器可以免费观看大片| 中文字幕亚洲精品专区| 国产成人91sexporn| 国产精品麻豆人妻色哟哟久久| 国产一区亚洲一区在线观看| 在线观看免费视频网站a站| 国产精品欧美亚洲77777| 蜜桃在线观看..| 日本av手机在线免费观看| 性高湖久久久久久久久免费观看| 亚洲色图综合在线观看| 国产在线免费精品| 一本色道久久久久久精品综合| 黑丝袜美女国产一区| svipshipincom国产片| 亚洲熟女毛片儿| 人体艺术视频欧美日本| 大码成人一级视频| 另类精品久久| 国产成人精品久久二区二区91 | 2021少妇久久久久久久久久久| 嫩草影视91久久| 男女边摸边吃奶| 一区二区三区四区激情视频| 乱人伦中国视频| 国产免费现黄频在线看| 香蕉国产在线看| 天天躁日日躁夜夜躁夜夜| 欧美av亚洲av综合av国产av | 韩国高清视频一区二区三区| 亚洲精品aⅴ在线观看| av电影中文网址| 国产伦人伦偷精品视频| 少妇 在线观看| 大香蕉久久成人网| 久久久久久久大尺度免费视频| 亚洲欧洲国产日韩| 无遮挡黄片免费观看| 久久久精品94久久精品| 19禁男女啪啪无遮挡网站| 亚洲欧美清纯卡通| 满18在线观看网站| 免费看av在线观看网站| 一级毛片 在线播放| 秋霞伦理黄片| 制服人妻中文乱码| 亚洲精华国产精华液的使用体验| 一二三四中文在线观看免费高清| 精品国产乱码久久久久久男人| 97人妻天天添夜夜摸| 制服诱惑二区| 亚洲少妇的诱惑av| 国产精品三级大全| www.av在线官网国产| 夜夜骑夜夜射夜夜干| 一级片免费观看大全| 超碰97精品在线观看| 日韩一卡2卡3卡4卡2021年| 美女午夜性视频免费| 青春草亚洲视频在线观看| 久久久久久久久久久免费av| 美女国产高潮福利片在线看| 亚洲色图 男人天堂 中文字幕| 乱人伦中国视频| 欧美中文综合在线视频| 国产在线免费精品| 成年人午夜在线观看视频| 青草久久国产| 亚洲成人免费av在线播放| 国产亚洲最大av| 国产一区二区激情短视频 | 午夜91福利影院| 伊人亚洲综合成人网| 女人被躁到高潮嗷嗷叫费观| 亚洲伊人久久精品综合| 久热这里只有精品99| 精品午夜福利在线看| 人人妻人人爽人人添夜夜欢视频| 日韩免费高清中文字幕av| 欧美日韩综合久久久久久| 老司机在亚洲福利影院| 少妇被粗大猛烈的视频| 日本欧美视频一区| 国产成人av激情在线播放| 精品国产乱码久久久久久男人| 一边摸一边做爽爽视频免费| 日韩不卡一区二区三区视频在线| 少妇精品久久久久久久| 一级片免费观看大全| 三上悠亚av全集在线观看| 国产精品人妻久久久影院| 久久亚洲国产成人精品v| 久久国产亚洲av麻豆专区| 成人亚洲欧美一区二区av| 欧美人与性动交α欧美软件| 欧美精品人与动牲交sv欧美| 免费黄网站久久成人精品| 国产亚洲欧美精品永久| 成年人免费黄色播放视频| 超碰成人久久| 日本午夜av视频| 久久国产精品男人的天堂亚洲| 欧美日韩视频高清一区二区三区二| 啦啦啦 在线观看视频| 国产成人免费无遮挡视频| 免费高清在线观看日韩| 如日韩欧美国产精品一区二区三区| 亚洲欧洲精品一区二区精品久久久 | 国产97色在线日韩免费| 晚上一个人看的免费电影| 亚洲精品自拍成人| 久热爱精品视频在线9| 丝袜人妻中文字幕| 国产精品99久久99久久久不卡 | 午夜激情av网站| 这个男人来自地球电影免费观看 | 两性夫妻黄色片| 女的被弄到高潮叫床怎么办| 成人国产麻豆网| 黑人巨大精品欧美一区二区蜜桃| 性少妇av在线| 国产野战对白在线观看| 最新在线观看一区二区三区 | 免费在线观看黄色视频的| 亚洲精品国产av成人精品| 国产有黄有色有爽视频| 亚洲精品日本国产第一区| 男女边摸边吃奶| 亚洲五月色婷婷综合| 国产黄频视频在线观看| 精品少妇一区二区三区视频日本电影 | 免费在线观看完整版高清| 色视频在线一区二区三区| 亚洲,欧美,日韩| 欧美精品av麻豆av| 亚洲视频免费观看视频| 精品一区二区三区av网在线观看 | av有码第一页| 中文字幕高清在线视频| 久久天堂一区二区三区四区| 欧美激情 高清一区二区三区| 欧美另类一区| 亚洲精品一区蜜桃| 亚洲av成人精品一二三区| 亚洲三区欧美一区| 亚洲熟女精品中文字幕| 亚洲av综合色区一区| 亚洲色图 男人天堂 中文字幕| 美女视频免费永久观看网站| 国产精品成人在线| 纯流量卡能插随身wifi吗| 亚洲欧洲国产日韩| 无遮挡黄片免费观看| √禁漫天堂资源中文www| 黄片小视频在线播放| 精品少妇久久久久久888优播| 捣出白浆h1v1| 欧美日韩国产mv在线观看视频| 成年人免费黄色播放视频| 九色亚洲精品在线播放| 99热网站在线观看| 精品人妻熟女毛片av久久网站| 午夜激情av网站| 七月丁香在线播放| 老汉色av国产亚洲站长工具| 亚洲欧美精品综合一区二区三区| 国产97色在线日韩免费| 看免费成人av毛片| 亚洲欧美精品综合一区二区三区| 成人国产av品久久久| 街头女战士在线观看网站| 国产精品久久久av美女十八| 中文字幕av电影在线播放| 男女下面插进去视频免费观看| 乱人伦中国视频| 我的亚洲天堂| 人成视频在线观看免费观看| 女人高潮潮喷娇喘18禁视频| 久久99热这里只频精品6学生| 天天躁夜夜躁狠狠久久av| 精品亚洲成a人片在线观看| 精品一区二区三区av网在线观看 | 高清欧美精品videossex| 国产精品国产三级专区第一集| 久久国产精品男人的天堂亚洲| 午夜日韩欧美国产| 国产精品一国产av| 国产午夜精品一二区理论片|