• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A New Quantum Gray-Scale Image Encoding Scheme?

    2018-05-23 06:04:01MosayebNaseriMonaAbdolmalekyFariborzParandinNeginFatahiAhmedFaroukandRezaNazari
    Communications in Theoretical Physics 2018年2期

    Mosayeb Naseri,Mona Abdolmaleky,Fariborz Parandin,Negin Fatahi,Ahmed Farouk,and Reza Nazari

    1Department of Physics,Kermanshah Branch,Islamic Azad University,Kermanshah,Iran

    2Department of Electrical Engineering,College of Engineering,Kermanshah Branch,Islamic Azad University,Kermanshah,Iran

    3Computer Sciences Department,Faculty of Computers and Information,Mansoura University,Egypt

    4Department of IT Engineering,College of Engineering,Kermanshah Branch,Islamic Azad University,Kermanshah,Iran

    1 Introduction

    The pioneering work of Bennett and Brassard has been developed for the purpose of understanding quantum cryptography,which is one of the most signi fi cant aspects of the laws of the quantum mechanics.[1]Afterwards,the improvement and growth of real applications in different fields of quantum computation and quantum information has been proposed in Refs.[2–20].One of the most growing fields is quantum information data hiding,which includes quantum watermarking and quantum steganography.different quantum information data hiding techniques to protect information were proposed in Refs.[21–30].

    In Ref.[21]a novel quantum steganography protocol was based on quantum secure direct communication to build up hidden channel within the improved ping-pong protocol to transmit secret messages.Quantum steganography with noisy quantum channels for hiding quantum information by disguising it as noise in a code word of a quantum error-correcting code was presented in Ref.[22].In Ref.[23]a secure quantum watermarking used entanglement swapping to build up a hidden layer of secure message under the conventional first layer of secure information sequence.A robust watermark strategy for quantum images based on quantum fourier transform as the watermark image is embedded into the fourier coefficients of the quantum carrier image,which will not affect the carrier image’s visual effect was discussed in Ref.[24].A novel dynamic watermarking scheme for quantum images based on Hadamard transform was proposed in Ref.[25].A novel multi-party quantum steganography protocol based on quantum secret sharing as Hidden channels are built in HBB and improved HBB quantum secret sharing protocols for secret messages transmitting,via the entanglement swapping of GHZ states and Bell measurement was presented in Ref.[26].In Ref.[27]two blind LSB steganography algorithms in the form of quantum circuits based on the novel enhanced quantum representation(NEQR)for quantum images were proposed.In Ref.[28]a new quantum gray-scale image watermarking scheme by using simple and small-scale quantum circuits where NEQR representation for quantum images was used.Hilbert image scrambling algorithm,which is commonly used in classical image processing,is carried out in quantum computer by giving the scrambling quantum circuits was proposed in Ref.[29].High-efficiency quantum steganography based on the tensor product of Bell states as a hidden channel is established to transfer a secret message within any quantum secure direct communication(QSDC)scheme that is based on 2-level quantum states and unitary transformations was presented in Ref.[30]. In Ref.[31],a new scheme for quantum watermarking based on quantum wavelet transform is proposed which includes scrambling,embedding and extracting procedures.In this paper,a new scheme for encoding the quantum images is proposed.The proposed scheme can be applied by four different encoding algorithms.The proposed scheme is working as follow; firstly,for each pixel of an initial image,a binary key is generated randomly.Secondly,according to the corresponding qubit pair of the generated randomized binary key,an appropriate encoding algorithm is selected.The security of the proposed protocol is assured by both the randomization of binary image key and the alteration of the gray-scale value of the original image’s pixels using the randomized binary key.This article is organized as:in Sec.2,the required preliminaries to implement the protocol are introduced.In Sec.3,the proposed protocol is presented.In Sec.4 the applicability and the efficiency of the proposed scheme are evaluated by software simulation.Finally,Sec.5 concludes the paper.

    2 Preliminaries

    2.1 Quantum Gate

    In quantum computation schemes,quantum gates can be considered as basic quantum circuits operating on a small number of qubits,i.e.,they are the building blocks of quantum circuits.

    To implement the proposed scheme,three quantum gates are mainly employed:

    (i)Quantum NOT Gate:A quantum NOT operator,which is also named as PauliXmatrix,acts on a single qubit.It is the quantum equivalent of the NOT Gate in classical logic.It maps|0>to|1>and|1>to|0>.

    (ii)Quantum Controlled Not Gate(Quantum CNOT gate):A simple quantum CNOT operator(or a quantum controlled NOT)acts on two qubits,and performs the NOT operation on the second qubit only when the first qubit is|1>.Otherwise nothing happens.This gate is the quantum equivalent of the XOR gate in classical logic.

    (iii)Quantum SWAP Gate:A quantum SWAP gate acts on two qubits and swaps them.

    The circuit diagram and matrix form representation of these gates are shown in Fig.1.

    Fig.1 The circuit diagram and matrix form representation of quantum NOT,CNOT and SWAP gates.

    2.2 Quantum Image Representation

    A number of quantum representation models for digital images have been presented in the recent years.A common used quantum representation of digital images named as flexible representation of quantum images(FRQI)was presented in Ref.[20].As mentioned in the introduction,a very famous quantum representation for digital images named as a novel enhanced quantum representation(NEQR)for quantum images was proposed in 2013.[21]In the(NEQR)model,two entangled qubit sequences are used to store the gray-scale value and position information of the all pixels of an image.

    A representation of a 2N×2Nimage with a gray-scale range of 2qby using NEQR model is defined as follows:

    A simple example of a 2×2 quantum image using NEQR model and its quantum representation is shown in Fig.2.

    Fig.2 A simple example of image representation using NEQR model.[18]

    Using an improved version of NEQR model,a representation of a 2M×2Nimage with the gray-scale range of 2qis as follows:

    3 Previous Works

    3.1 Quantum Image Gray-Code and Bit-Plane Scrambling

    A quantum image gray-code and bit-plane scrambling algorithm was proposed by Zhouet al.in 2015.[32]The proposed algorithm for quantum image gray-code and bitplane scrambling is based on encoding the gray-scale value of the pixels,where for the aim of scrambling,8 binary bit-planes are built from the original image.Thek-th bitplane(1≤k≤8)is formed by thek-th bits of gray-scale value of all pixels of the image.Then,according to the Gray-code scheme,XOR operators are applied on all of these bit-planes.At last,using a reverse procedure,a new scrambled image is generated by the encoded bit-planes.

    Needless to say,by using this method,the gray-scale values of original image’s pixels are changed seriously.

    This scheme is formulated as follows:

    wheret=(M+N)/2,Scr denotes the scrambling,g(y,x)is the gray-scale value of the output pixels of the scrambling process and?denotes the tensor product.

    3.2 Quantum Hilbert Image Scrambling Algorithm

    The Hilbert Image Scrambling Algorithm is commonly used in the classical image processing.A quantum version of the Hilbert Image Scrambling Algorithm was proposed by Jianget al.,in 2014.[27]In this algorithm,as the first step,a modified recursive generation algorithm of Hilbert scanning matrix is given.Then based on the flexible representation of quantum images(FRQI),the Hilbert scrambling quantum circuits,which are recursive and progressively layered,are proposed.

    This scrambling method encodes a 2N×2Noriginal image,which can be considered as a matrix,called the Start matrix(or the Original matrix)Snand use 1 to 22nto code all the pixels.By using the start matrix a Hilbert scanning matrix(Hn)is generated,which is formed by Hilbert curve and is defined as a permutation of the start matrix.Using the Hilbert matrix,the Hilbert curve and the scrambled image can be obtained.

    Considering the Hilbert curve and the geometric transportation(Fig.3),the original image will be encoded.In this method no change appears in the gray-scale value of the pixels,concluding,the histogram diagrams of the original and encoded images are the same.

    There are two main weaknesses in this scheme:First,since the Hilbert curve and Hilbert scanning matrixHnare only determined byn,the same geometric transportation is used for any 2N×2Nimage.Therefore,by capturing the Hilbert scanning matrix,an attacker can simply decrypt the encoded image and retrieve the original one.Second,since the Hilbert scanning matrix is a square matrix,the algorithm can only be used to encode a square image.

    Fig.3 Hilbert curves and a scrambling example.

    4 Proposed Algorithm

    In this section,our new algorithm for quantum image encoding is presented.In this algorithm a random binary image is used to increase the security of the protocol.In order to encoding image,according to the corresponding qubits of the key,one of the four different encoding schemes is employed to change the gray-scale value of the pixels.It is worth to pointing out that the employed key image is not only used in selecting the suitable scheme,but also it is used directly in the scrambling scheme,which enhances the security of the proposed method,and by having this binary key image the encoded image can be simply decoded.

    By using the improved NEQR representation of quantum images,the proposed algorithm can be summarized in the following simple formula:

    wheret=(M+N)/2,Scr denotes the encoding task,f′(y,x)is the gray-scale value of theyxpixel of the encoded image and?denotes the tensor product.A simple schematic diagram of the proposed scheme is represented in Fig.4.

    In which,for the aim of encoding a 2N×2Msized quantum image,a random binary key image is generated,i.e.,a 2N×2Msized quantum binary image with random values for each pixel is generated by the encoder(say Alice).

    By using the improved NEQR representation of quantum images,the random binary key image is formulated as follows:

    wheret=(M+N)/2,RBK denotes the Random Binary Key and,1 is the binary value of the(y,x)pixel.Then she stores the random binary key image that is used in the encoding and decoding processes,which are as follows:

    Fig.4 Schematic of proposed algorithm.

    4.1 Encoding Process

    Step 1Selecting the encoding algorithm based on the random binary key:

    At first,based on the random binary key image qubits,Alice selects the encoding algorithm for every pixel.Suppose that,she wants to encode thePijpixel.According to the value ofin whichusing the rule described in Table 1,one of the four encoding algorithms is selected.

    For more clarity,a simple example is given in Fig.5.As seen in Fig.5,since the binary values of the(1,1)andpixels of the key image are,Alice will apply the encoding algorithm B on(1,1)pixel of the original image.

    The quantum circuit of the key qubits and selected encoding algorithm is shown in Fig.6.

    Fig.5 Corresponding qubits of the binary key imageand the selected encoding algorithm.

    Fig.6 Quantum circuit of key qubits and selected encoding algorithm.

    Table 1 Qubits of the key and corresponding encoding algorithm.

    Step 2Applying the corresponding encoding algorithm on pixels:

    After selecting the encoding algorithm based on corresponding qubits of the key image,one of the A,B,C or D encoding algorithms is applied on the corresponding pixel of the original image.These four encoding algorithms can be described as follows:

    Algorithm AThis algorithm swaps theandqubits of the gray-scale value of an input pixel withqubits of its gray-scale value respectively.Then it applies NOT gates on the

    Algorithm BThis algorithm swaps thequbits of gray-scale value of an input pixel withqubits of its gray-scale value respectively.Then it applies NOT gates on

    Algorithm CAlgorithm C swaps thequbits of the gray-scale value of an input pixel withqubits of its gray-scale value respectively.Then to encode the value of qubit

    (i)Ifcis an odd number,an NOT gate is applied on the qubit

    ii Ifcis an even number,an XOR gate is applied on the qubitand the qubitof the key image,and the resulted value is copied to

    Algorithm DThis algorithm swaps thequbits of the gray-scale value of an input pixel withqubits of its gray-scale value respectively.Then to encode the value of qubit

    (i)Ifcis an odd number,an XOR gate is applied on the qubitand the qubitof the key image and resulted value is copied to

    (ii)Ifcis an even number,an NOT gate is applied on the qubit

    The proposed algorithms are schematically represented in Fig.7.

    Fig.7 Quantum circuits of(a)Encoding algorithm A,(b)Encoding algorithm B,(c)Encoding algorithm C and(d)Encoding algorithm D.

    4.2 Decoding Process

    The decoding process of the proposed scheme can be done in the following steps:

    Step 1Selecting the decoding algorithm based on the random binary key:

    To decode the encoded image,according to the corresponding qubits of the key image,one of thealgorithms is employed to decode the pixels.This procedure is similar to the encoding procedure.

    Table 2 shows the qubits of the key image and their corresponding decoding algorithm,and the quantum circuit of the selection procedure is shown in Fig.8.

    Fig.8 Quantum circuit of corresponding qubits of the key image and selected decoding algorithm.

    Table 2 Qubits of the key and corresponding encoding algorithm.

    Step 2Applying the corresponding decoding algorithm on pixel:

    In this step,according to the corresponding qubits of the key image,the decoder applies the corresponding decoding algorithms on the pixel.The four decoding algorithms are described as follows:

    Algorithm A′This algorithm first applies NOT gates onqubits of the gray-scale value of a pixel.Then it swaps thequbits withandqubits respectively.

    Algorithm B′This algorithm applies Not gates onqubits of the gray-scale value of the pixel.Then it swaps thequbits withqubits respectively.

    Algorithm C′Using this algorithm,to decode the original value of qubitof the gray-scale value of a pixel;

    (i)Ifcis an odd number,an NOT gate is applied on the qubit

    (ii)Ifcis an even number,an XOR gate is applied on the qubitand the qubitof the key image and the resulted value is copied to

    Then this algorithm swaps thequbits withqubits respectively.

    Algorithm D′Using this algorithm,to decode the original value of qubitof the gray-scale value of a pixel;

    (i)Ifcis an odd number,an XOR gate is applied on the qubitand the qubitof the the key image and the resulted value is copied to

    (ii)Ifcis an even number,an NOT gate is applied on the qubit

    Then this algorithm swaps thequbits of gray-scale value of the pixel withqubits respectively.Figure 9 shows the quantum circuits of these four decoding algorithms.

    To more clarity,let us present a simple example.

    Consider a simple 4×8 original image and a random binary key image as shown in Figs.10(a)and 10(b).By using the proposed algorithm,the original image can be simply encoded as shown in Fig.10(c),in which one can not obtain useful information.The detail of the encoding procedure is presented in Table 3.

    Fig.9 Quantum circuits of(a)Decoding algorithm A′,(b)Decoding algorithm B′,(c)Decoding algorithm C′and(d)Decoding algorithm D′.

    Fig.10 (a)The original image.(b)The binary random key image.(c)Encoded image.

    Table 3 Pixels of original image,corresponding qubits of the key,selected algorithm and output of the algorithm.

    5 Simulations

    Since the present state-of-the-art quantum hardware currently cannot go beyond proof-of principle examples,using a computer with Intel(R)Core(TM)i7-4500u CPU 2.40 GHz,8.00 GB RAM equipped with theMATLABR2015a environment,the proposed algorithm is evaluated by simulation.

    In our simulation,we evaluate the results of applying our proposed encoding algorithm on some real images(Figs.11 and 12)by analyzing three essential properties,the histogram diagrams,the Peak Signal-to-Noise Ratio(PSNR),and the Shannon’s entropy.

    Since the histogram diagram shows the affluence of pixels with every gray-scale value in image therefore,the histogram diagram of the encoded image has to be flatter than the original one’s,which can be quanti fi ed using Shannon’s entropy.

    The original images,the encoded images and their corresponding histogram diagrams are represented in Figs.11 and 12.As seen in Figs.11 and 12,the histogram of the final encoded image is obviously flatter than the histograms of the original ones.

    As seen in Figs.11 and 12,for an image with a smooth background such as the arrows case,which contains a few couple of gray-scale values where a discrete histogram diagram is achieved,the histogram of the encoded image is more flatter than the original image’s histogram,i.e.,the appearance of the gray-scale values of the final encoded image is changed seriously.The Shannon’s entropy is one of the useful properties to express the uncertainty of a series of random variables,which is used in information theory to quantify the minimum descriptive complexity of a random variable.For the case of an image,the amount of information that can be achieved from the image is indicated by entropy.

    Fig.11 (a)Original image.(b)Histogram of the original image.(c)Encoded image,(d)Histogram of encoded image.

    For a random variableX,withnoutcomes{x1,x2,...,xn},the Shannon entropyH(X)is defined as:

    Obviously,if all pixels in an image have the same gray-scale value,the minimum entropy is achieved.On the other hand,when each pixel of an image presents a speci fi c gray-scale value,the image will exhibit maximum entropy,i.e.,the higher the value of entropy gets,the less information can be revealed.

    The calculated Shannon entropy for the simulated sample images is presented in Table 4.As it is illustrated in Table 4,the encoding algorithm makes a considerable increase in the image’s entropies,therefore the proposed encoding method imposed a signi fi cant diversity or uncertainty to the original image.

    Fig.12 (a)Original image.(b)Histogram of the original image.(c)Encoded image.(d)Histogram of encoded image.

    Finally,The peak-signal-to-noise ratio(PSNR),can be considered as an efficient tool for comparing the fi delity of the encoded image with its original version.When evaluating an image encoding scheme,the original image can be assumed as a signal,and the encoded image can be assumed as a noisy signal.On the other hands,the more noisy signal(image)the better encoding procedure.The more noisy signal(image),the lower PSNR.

    The PSNR is easily defined via the concept of the mean squared error(MSE).For twom×nmonochrome images(the original cover imageIand its stego versionK)the MSE is defined as

    where,frepresents the matrix data of the original image,grepresents the matrix data of the decoded image,mrep-resents the numbers of rows of pixels of the images andirepresents the index of the row,nrepresents the number of columns of pixels of the image andjrepresents the index of the column,and the MAXfis the maximum of the signal value exists in the original image.

    Needless to say,in using NEQR representation method,we are dealing with a standard 2D matrix of data.The dimensions of the original image matrix and the dimensions of the encoded image matrix are identical.The calculated PSNR for the simulated sample images is presented in Table 4.As it is illustrated in Table 4,using the proposed encoding method,for all of the considered original images,the calculated PSNR of the encoded images is less than 10,which means that the encoding algorithm strongly a ff ects the original image and makes it very difficult for an eavesdropper to obtain useful information from the encoded image.

    Table 4 Calculated Shannon entropy for the simulated sample images.

    6 Conclusion

    A new secure efficient quantum images encoding algorithm is proposed.Here,four different encoding algorithms are introduced.In this method,for the aim of completing the encoding task,a randomized binary image key is generated during the procedure.Based on the both original images pixel and its corresponding qubits of the generated binary key,one of the four encoding algorithms is employed.

    In the encoding step,the randomized key image not only is used to select the applying encoding algorithm for each pixel,but also some qubits of the key is used directly to change the gray-scale value of the pixel.This means that,if one does not have the randomized key images,it is impossible for him to decode the original image correctly.

    From the experimental results,it can be seen that the proposed algorithm can effectively encode different kinds of images and the encoded images can not be decoded by an eavesdropper.The security and the applicability of the proposed algorithm are evaluated by computer simulation,where,analyzing the histogram diagrams,the Peak Signal-to-Noise Ratio(PSNR),and the Shannon’s entropy suggest the proposed method as an efficient scheme in quantum image encoding procedures.

    [1]C.H.Bennett and G.Brassard,inProceedings of the IEEE International Conference on Computers,Systems and Signal Processing,Bangalore,India IEEE,New York(1984)p.175.

    [2]Y.S.Zhang,C.F.Li,and G.C.Guo,Phys.Rev.A 64(2001)024302.

    [3]N.Zhou,G.Zeng,W.Zeng,and F.Zhu,Opt.Commun.254(2005)380.

    [4]M.Abdolmaleky,M.Naseri,J.Batle,et al.,Optik.128(2017)121.

    [5]M.Naseri,Opt.Commun.282(2009)278.

    [6]M.Naseri,Quantum Inf.Process.9(2009)693.

    [7]N.R.Zhou,L.J.Wang,J.Ding,and L.H.Gong,Physica Scripta 81(2010)045009.

    [8]M.Naseri,Int.J.Phys.Sci.6(2011)5051.

    [9]X.B.Chen,Q.Y.Wen,F.Z.Gou,et al.,Int.J.Theor.Phys.6(2008)899.

    [10]N.Fatahi and M.Naseri,Int.J.Theor.Phys.51(2012)2094.

    [11]N.R.Zhou,L.J.Wang,J.Ding,et al.,Int.J.Theor.Phys.49(2010)2035.

    [12]X.B.Chen,N.Zhang,S.Lin,et al.,Opt.Commun.281(2008)2331.

    [13]S.Heidari and M.Naseri,Int.J.Theor.Phys.55(2016)4205.

    [14]M.Naseri,M.Ahmadzadeh Raji,M.R.Hantehzadeh,et al.,Quantum Inf.Process.14(2015)4279.

    [15]Xiu-Bo Chen,Zhao Dou,Gang Xu,et al.,Quantum Inf.Process.13(2014)85.

    [16]Xiu-Bo Chen,Int.J.Quantum Inf.11(2013)13500101.

    [17]N.Zhou,J.Li,Z.Yu,et al.,Quantum Inf.Process.16(2017)1.

    [18]S.E.Venegas-Andraca and S.Bose,Storing,Processing and Retrieving an Image Using Quantum Mechanics,Proceeding of the SPIE Conference Quantum Information and Computation,Orlando,FL,United States,International Society for Optics Photonics,Vol.5105(2003)pp.137-147.

    [19]J.I.Latorre,Image Compression and Entanglement.arXiv:preprint/quant-ph/0510031(2005).

    [20]P.Q.Le,F.Dong,and K.Hirota,Quantum Inf.Process.10(2011)63.

    [21]Y.Zhang,K.Lu,Y.H.Gao,and M.Wang,Inf.Process.12(2013)2833.

    [22]P.Q.Le,A.M.Iliyasu,F.Dong,and K.Hirota,A Flexible Representation and Invertible Transformations for Images on Quantum Computers,In New Advances in Intelligent Signal Processing,Springer,Berlin,Heidelberg(2011)179-202.

    [23]W.W.Zhang,F.Gao,B.Liu,et al.,Quantum Inf.Process.12(2013)793.

    [24]X.H.Song,S.Wang,S.Liu,et al.,Multimedia Systems 20(2014)379.

    [25]N.Jiang,N.Zhao,and L.Wang,Int.J.Theor.Phys.55(2016)107123.

    [26]S.Miyake and K.Nakamae,Quantum Inf.Process.15(2016)1849.

    [27]N.Jiang,L.Wang,and W.Y.Wu,Int.J.Theor.Phys.53(2014)2463.

    [28]L.H.Gong,H.Song,C.He,et al.,Physica Scripta 89(2014)035101.

    [29]N.Zhou,T.Hua,L.H.Gong,et al.,Quantum Inf.Process.14(2015)1193.

    [30]M.Naseri,S.Heidari,R.Gheibi,et al.,Optik.131(2016)678.

    [31]S.Heidari,M.Naseri,R.Gheibi,et al.,Commun.Theor.Phys.67(2017)732.

    [32]R.G.Zhou,et al.,Quantum Inf.Process.14(2015)1717.

    精品国产乱码久久久久久男人| 欧美乱码精品一区二区三区| 一进一出好大好爽视频| 熟女少妇亚洲综合色aaa.| 亚洲美女黄片视频| 午夜激情福利司机影院| 成人av一区二区三区在线看| 高清毛片免费观看视频网站| 老司机深夜福利视频在线观看| 日韩欧美免费精品| 成人永久免费在线观看视频| 国产午夜精品久久久久久| 亚洲人成网站高清观看| 国产成年人精品一区二区| 精品一区二区三区av网在线观看| 男女床上黄色一级片免费看| 久久久精品大字幕| 五月玫瑰六月丁香| 亚洲 欧美 日韩 在线 免费| 18禁观看日本| av天堂中文字幕网| 精品午夜福利视频在线观看一区| 国产成人影院久久av| 亚洲精品美女久久av网站| 午夜福利在线在线| 99热这里只有精品一区 | 搡老熟女国产l中国老女人| 亚洲av第一区精品v没综合| 国产精品一区二区精品视频观看| 久久久久国内视频| 成年女人看的毛片在线观看| tocl精华| 免费看a级黄色片| 精华霜和精华液先用哪个| 日本五十路高清| 欧美日韩精品网址| 免费在线观看日本一区| 免费看日本二区| 男插女下体视频免费在线播放| 久久99热这里只有精品18| 国产高清三级在线| 一个人免费在线观看的高清视频| 亚洲欧美日韩东京热| 男女做爰动态图高潮gif福利片| 中文在线观看免费www的网站| 中文字幕人妻丝袜一区二区| 国产亚洲精品综合一区在线观看| 亚洲欧美一区二区三区黑人| 国产视频一区二区在线看| 精品熟女少妇八av免费久了| 日韩成人在线观看一区二区三区| 国产成人啪精品午夜网站| 男女床上黄色一级片免费看| 日韩欧美在线乱码| 最近最新中文字幕大全免费视频| 白带黄色成豆腐渣| 亚洲色图 男人天堂 中文字幕| 伊人久久大香线蕉亚洲五| 精品午夜福利视频在线观看一区| 丰满人妻一区二区三区视频av | 精品久久久久久久毛片微露脸| 成人永久免费在线观看视频| 国模一区二区三区四区视频 | 国产黄色小视频在线观看| 又紧又爽又黄一区二区| 国产成人av教育| avwww免费| 精品一区二区三区av网在线观看| 天天添夜夜摸| 全区人妻精品视频| 99热6这里只有精品| 国产精品av视频在线免费观看| 啦啦啦观看免费观看视频高清| 精品国产乱码久久久久久男人| 一区二区三区激情视频| 国产日本99.免费观看| 国产乱人伦免费视频| 久久久精品欧美日韩精品| 日本熟妇午夜| 精品一区二区三区视频在线 | 亚洲成人免费电影在线观看| 熟女人妻精品中文字幕| 亚洲国产看品久久| 成人一区二区视频在线观看| 欧美3d第一页| 人妻丰满熟妇av一区二区三区| 激情在线观看视频在线高清| 国产午夜精品论理片| 变态另类成人亚洲欧美熟女| 身体一侧抽搐| 少妇的丰满在线观看| 亚洲熟妇中文字幕五十中出| 国产毛片a区久久久久| 99视频精品全部免费 在线 | 久久这里只有精品19| 成人鲁丝片一二三区免费| 亚洲天堂国产精品一区在线| 亚洲精品美女久久av网站| 岛国在线观看网站| 久99久视频精品免费| 久久99热这里只有精品18| 搡老熟女国产l中国老女人| 午夜精品在线福利| 男女下面进入的视频免费午夜| 美女被艹到高潮喷水动态| 亚洲精华国产精华精| 亚洲自拍偷在线| 亚洲 欧美一区二区三区| 欧美在线一区亚洲| 亚洲精品在线观看二区| 国产精品一区二区免费欧美| 国产成人精品无人区| 欧美+亚洲+日韩+国产| 国产精品一区二区免费欧美| 色播亚洲综合网| 久久国产乱子伦精品免费另类| 五月玫瑰六月丁香| 最近最新中文字幕大全免费视频| 成人午夜高清在线视频| 亚洲av成人不卡在线观看播放网| 欧美大码av| 啪啪无遮挡十八禁网站| 国产野战对白在线观看| 日日夜夜操网爽| 久久精品91无色码中文字幕| 国产美女午夜福利| 国产激情久久老熟女| 日本黄色片子视频| 操出白浆在线播放| 久久九九热精品免费| 又大又爽又粗| 女生性感内裤真人,穿戴方法视频| 国产一区二区三区视频了| 观看免费一级毛片| 久久久久九九精品影院| 亚洲激情在线av| 黄色成人免费大全| 国产成人啪精品午夜网站| 成人午夜高清在线视频| 美女大奶头视频| 国产精品99久久久久久久久| 久久这里只有精品19| 午夜成年电影在线免费观看| 观看免费一级毛片| 国产又黄又爽又无遮挡在线| 国产精品永久免费网站| 成熟少妇高潮喷水视频| 亚洲第一欧美日韩一区二区三区| 亚洲avbb在线观看| 麻豆av在线久日| 免费av毛片视频| 国产亚洲av高清不卡| 久久国产精品人妻蜜桃| 丝袜人妻中文字幕| 久久中文看片网| 日本黄色视频三级网站网址| 观看免费一级毛片| 两性夫妻黄色片| 国产高清视频在线观看网站| 国产99白浆流出| 一级毛片女人18水好多| 成人av在线播放网站| 久久久久久久午夜电影| 成人国产一区最新在线观看| 人人妻人人看人人澡| 在线看三级毛片| 日韩欧美免费精品| 美女大奶头视频| 曰老女人黄片| av黄色大香蕉| 男人的好看免费观看在线视频| 深夜精品福利| 99久久久亚洲精品蜜臀av| 国产av麻豆久久久久久久| 国产美女午夜福利| 久久中文字幕人妻熟女| 搡老岳熟女国产| 亚洲欧美精品综合一区二区三区| 久久伊人香网站| 国产av麻豆久久久久久久| 色精品久久人妻99蜜桃| 日本 av在线| 熟女电影av网| 老司机午夜十八禁免费视频| 欧美性猛交╳xxx乱大交人| 日韩成人在线观看一区二区三区| 日本熟妇午夜| 黄色丝袜av网址大全| 禁无遮挡网站| 久久香蕉国产精品| 免费看a级黄色片| 亚洲av五月六月丁香网| 中文在线观看免费www的网站| 久久九九热精品免费| 亚洲熟妇熟女久久| 日本五十路高清| 曰老女人黄片| 国产精品免费一区二区三区在线| 麻豆成人av在线观看| 国内精品久久久久精免费| 99久久国产精品久久久| 男女之事视频高清在线观看| 九九久久精品国产亚洲av麻豆 | 亚洲专区中文字幕在线| 99国产精品99久久久久| 99久国产av精品| 高清毛片免费观看视频网站| 亚洲精品粉嫩美女一区| 女人高潮潮喷娇喘18禁视频| 欧美日韩精品网址| 午夜精品一区二区三区免费看| 国产精品美女特级片免费视频播放器 | 日本五十路高清| 黄色日韩在线| 日日摸夜夜添夜夜添小说| 国产97色在线日韩免费| 岛国在线免费视频观看| 亚洲激情在线av| 男人舔奶头视频| 99国产精品一区二区三区| 制服人妻中文乱码| 无人区码免费观看不卡| av视频在线观看入口| 国产精品免费一区二区三区在线| 大型黄色视频在线免费观看| 国内精品一区二区在线观看| 国产成人av激情在线播放| 日本撒尿小便嘘嘘汇集6| 99久久无色码亚洲精品果冻| 日韩三级视频一区二区三区| 91av网一区二区| 成年女人看的毛片在线观看| 国产亚洲精品综合一区在线观看| 亚洲精品乱码久久久v下载方式 | 国产成人精品久久二区二区免费| 一个人看视频在线观看www免费 | 老司机在亚洲福利影院| 亚洲中文字幕一区二区三区有码在线看 | 午夜福利在线观看免费完整高清在 | 十八禁网站免费在线| www日本黄色视频网| 午夜视频精品福利| 国语自产精品视频在线第100页| 啦啦啦韩国在线观看视频| 老司机午夜福利在线观看视频| 精品欧美国产一区二区三| 亚洲精华国产精华精| 特大巨黑吊av在线直播| 啦啦啦韩国在线观看视频| 在线十欧美十亚洲十日本专区| 夜夜看夜夜爽夜夜摸| 神马国产精品三级电影在线观看| 精品国产三级普通话版| 成年女人永久免费观看视频| 岛国在线免费视频观看| 黄色视频,在线免费观看| 亚洲国产看品久久| 亚洲中文字幕一区二区三区有码在线看 | 婷婷亚洲欧美| 亚洲国产日韩欧美精品在线观看 | 老司机午夜十八禁免费视频| 禁无遮挡网站| 日韩av在线大香蕉| 久久中文字幕一级| 成人午夜高清在线视频| www.熟女人妻精品国产| 日本黄大片高清| 国产精品爽爽va在线观看网站| av片东京热男人的天堂| 中文字幕最新亚洲高清| 91麻豆av在线| 97超级碰碰碰精品色视频在线观看| tocl精华| www.www免费av| 91久久精品国产一区二区成人 | 国产黄片美女视频| 欧美乱色亚洲激情| 少妇的逼水好多| 精品国产乱子伦一区二区三区| 婷婷丁香在线五月| 亚洲人成伊人成综合网2020| 99在线视频只有这里精品首页| 亚洲国产欧美一区二区综合| 午夜亚洲福利在线播放| 90打野战视频偷拍视频| 深夜精品福利| 国产精品,欧美在线| 国产又色又爽无遮挡免费看| 女人高潮潮喷娇喘18禁视频| 久久久久久九九精品二区国产| 夜夜看夜夜爽夜夜摸| 亚洲精品一卡2卡三卡4卡5卡| 日韩国内少妇激情av| 亚洲国产日韩欧美精品在线观看 | 日本黄色片子视频| 黄色片一级片一级黄色片| 成年人黄色毛片网站| www.www免费av| 午夜福利在线观看吧| 啪啪无遮挡十八禁网站| 欧美激情在线99| 午夜亚洲福利在线播放| 久久中文字幕一级| 极品教师在线免费播放| 中文字幕熟女人妻在线| 日韩高清综合在线| 日韩大尺度精品在线看网址| av中文乱码字幕在线| а√天堂www在线а√下载| 日韩av在线大香蕉| 久久久久久久精品吃奶| 亚洲欧美一区二区三区黑人| 一个人免费在线观看电影 | 精品久久久久久久久久久久久| 亚洲国产中文字幕在线视频| 欧美日韩亚洲国产一区二区在线观看| 国产v大片淫在线免费观看| 又爽又黄无遮挡网站| 成人鲁丝片一二三区免费| 最新在线观看一区二区三区| 在线免费观看不下载黄p国产 | 99久国产av精品| 一二三四在线观看免费中文在| 欧美性猛交黑人性爽| 久久久国产成人精品二区| 九色国产91popny在线| 亚洲精品在线观看二区| 亚洲欧美日韩东京热| 日韩国内少妇激情av| 色老头精品视频在线观看| 久久久久国产精品人妻aⅴ院| 亚洲一区二区三区不卡视频| 欧美日本视频| 亚洲av成人一区二区三| 色综合婷婷激情| 亚洲一区二区三区不卡视频| 99国产精品一区二区三区| 亚洲va日本ⅴa欧美va伊人久久| 亚洲国产精品合色在线| 白带黄色成豆腐渣| 国产亚洲av高清不卡| av在线蜜桃| 波多野结衣高清无吗| 神马国产精品三级电影在线观看| 国产三级在线视频| 91av网一区二区| 九九久久精品国产亚洲av麻豆 | 亚洲国产欧美人成| 欧美性猛交╳xxx乱大交人| 日本a在线网址| 亚洲av片天天在线观看| 欧美乱码精品一区二区三区| 一个人看视频在线观看www免费 | 91老司机精品| 亚洲 欧美一区二区三区| 9191精品国产免费久久| 亚洲欧美日韩东京热| 免费av不卡在线播放| 免费在线观看影片大全网站| 午夜福利在线在线| 国产真人三级小视频在线观看| avwww免费| 亚洲国产欧洲综合997久久,| 精品国产乱码久久久久久男人| 免费观看精品视频网站| 国产精品香港三级国产av潘金莲| 成在线人永久免费视频| 亚洲黑人精品在线| 亚洲成av人片免费观看| 亚洲人成伊人成综合网2020| 天堂影院成人在线观看| 久久久久亚洲av毛片大全| 欧美激情在线99| 91在线观看av| 一本综合久久免费| 熟妇人妻久久中文字幕3abv| 久久草成人影院| 久久人妻av系列| 欧美乱码精品一区二区三区| 2021天堂中文幕一二区在线观| 一边摸一边抽搐一进一小说| 精品国产乱子伦一区二区三区| 成人av一区二区三区在线看| 国产精品九九99| 99久久国产精品久久久| 啦啦啦韩国在线观看视频| 女警被强在线播放| 在线观看日韩欧美| 亚洲国产色片| 校园春色视频在线观看| 亚洲 欧美一区二区三区| 亚洲欧美日韩东京热| 1000部很黄的大片| 欧美在线黄色| 日韩三级视频一区二区三区| 国产高清有码在线观看视频| 精品欧美国产一区二区三| 精品久久蜜臀av无| 国产成人av激情在线播放| 国产免费男女视频| 人妻夜夜爽99麻豆av| 国产又色又爽无遮挡免费看| 变态另类丝袜制服| 久久久久久久精品吃奶| 国产精品美女特级片免费视频播放器 | 亚洲国产色片| 午夜成年电影在线免费观看| 看黄色毛片网站| 小说图片视频综合网站| 午夜免费成人在线视频| 88av欧美| 免费搜索国产男女视频| 热99re8久久精品国产| 亚洲欧洲精品一区二区精品久久久| 久久精品国产综合久久久| 亚洲电影在线观看av| 丁香欧美五月| 九九热线精品视视频播放| 俺也久久电影网| 欧美黑人欧美精品刺激| 18禁美女被吸乳视频| 精品熟女少妇八av免费久了| 精品99又大又爽又粗少妇毛片 | 狂野欧美白嫩少妇大欣赏| 中文在线观看免费www的网站| 亚洲自偷自拍图片 自拍| 一区二区三区高清视频在线| 久久99热这里只有精品18| 观看美女的网站| 国产精品美女特级片免费视频播放器 | 久久久久久久久免费视频了| 久久精品亚洲精品国产色婷小说| 三级国产精品欧美在线观看 | 国产成人一区二区三区免费视频网站| 天堂影院成人在线观看| 又黄又爽又免费观看的视频| 国产av在哪里看| 亚洲精品国产精品久久久不卡| 99riav亚洲国产免费| 亚洲av熟女| av片东京热男人的天堂| 成人一区二区视频在线观看| 在线观看66精品国产| av国产免费在线观看| 亚洲av日韩精品久久久久久密| 男插女下体视频免费在线播放| 亚洲男人的天堂狠狠| 亚洲专区字幕在线| 国产三级中文精品| 亚洲18禁久久av| a在线观看视频网站| 美女扒开内裤让男人捅视频| 久久精品亚洲精品国产色婷小说| www.自偷自拍.com| 男女床上黄色一级片免费看| 99riav亚洲国产免费| 蜜桃久久精品国产亚洲av| 国产精品99久久久久久久久| 日韩欧美国产一区二区入口| 国产精品九九99| av女优亚洲男人天堂 | 亚洲乱码一区二区免费版| 亚洲狠狠婷婷综合久久图片| 成人性生交大片免费视频hd| 天堂网av新在线| 亚洲一区二区三区色噜噜| 男女视频在线观看网站免费| 熟妇人妻久久中文字幕3abv| 一个人免费在线观看电影 | 男人舔女人下体高潮全视频| 免费观看的影片在线观看| netflix在线观看网站| 一区福利在线观看| 欧美日韩一级在线毛片| 亚洲欧美日韩东京热| 国产精品久久久久久精品电影| 18美女黄网站色大片免费观看| 天堂影院成人在线观看| 久久香蕉精品热| 亚洲av免费在线观看| 日韩高清综合在线| 国产精品一区二区免费欧美| 欧美日韩黄片免| 天堂√8在线中文| 国产成人aa在线观看| 一级毛片高清免费大全| 亚洲精品在线观看二区| 国内毛片毛片毛片毛片毛片| 女人被狂操c到高潮| 成人国产综合亚洲| 国产精品av视频在线免费观看| 成人无遮挡网站| 亚洲在线观看片| 国产乱人视频| 国产美女午夜福利| 又粗又爽又猛毛片免费看| 久99久视频精品免费| 日韩人妻高清精品专区| 免费在线观看亚洲国产| 欧美日本亚洲视频在线播放| 国产单亲对白刺激| 男人舔女人下体高潮全视频| 亚洲国产精品久久男人天堂| 十八禁人妻一区二区| 久久香蕉精品热| 成年人黄色毛片网站| 色哟哟哟哟哟哟| av女优亚洲男人天堂 | 欧美成狂野欧美在线观看| 三级国产精品欧美在线观看 | 亚洲人成网站高清观看| 99热只有精品国产| 久久久久久久久免费视频了| 丰满人妻一区二区三区视频av | 91麻豆av在线| avwww免费| 熟女少妇亚洲综合色aaa.| 一区福利在线观看| 在线免费观看不下载黄p国产 | 午夜福利18| 无人区码免费观看不卡| 三级男女做爰猛烈吃奶摸视频| 国产精品av久久久久免费| 9191精品国产免费久久| 香蕉av资源在线| 婷婷丁香在线五月| 色噜噜av男人的天堂激情| 国内久久婷婷六月综合欲色啪| 1024香蕉在线观看| 国产综合懂色| 一二三四社区在线视频社区8| 精品久久久久久久人妻蜜臀av| 久久香蕉精品热| 亚洲国产精品成人综合色| 国产精品1区2区在线观看.| 俺也久久电影网| 我的老师免费观看完整版| 国产成人aa在线观看| 久久人人精品亚洲av| 蜜桃久久精品国产亚洲av| 丰满人妻一区二区三区视频av | 久久午夜综合久久蜜桃| www.999成人在线观看| 国产欧美日韩精品一区二区| 亚洲av电影在线进入| www日本在线高清视频| 欧美xxxx黑人xx丫x性爽| 国产视频一区二区在线看| 欧美色视频一区免费| 国产99白浆流出| 最近在线观看免费完整版| 人人妻,人人澡人人爽秒播| 精品日产1卡2卡| 久久99热这里只有精品18| 啦啦啦观看免费观看视频高清| 久久精品综合一区二区三区| 搞女人的毛片| 啪啪无遮挡十八禁网站| 网址你懂的国产日韩在线| 国产亚洲精品久久久com| 男人舔女人的私密视频| xxxwww97欧美| 18禁黄网站禁片免费观看直播| 亚洲精品乱码久久久v下载方式 | 亚洲av日韩精品久久久久久密| 亚洲成av人片在线播放无| 免费大片18禁| 国产精品亚洲美女久久久| 91av网站免费观看| 不卡av一区二区三区| 黄频高清免费视频| 亚洲最大成人中文| 亚洲黑人精品在线| 99视频精品全部免费 在线 | 日韩免费av在线播放| xxxwww97欧美| 少妇人妻一区二区三区视频| 亚洲第一欧美日韩一区二区三区| 最新中文字幕久久久久 | 99视频精品全部免费 在线 | 老熟妇仑乱视频hdxx| 欧美3d第一页| 日韩 欧美 亚洲 中文字幕| 国产精品 欧美亚洲| 久久精品国产清高在天天线| 一本精品99久久精品77| 波多野结衣高清作品| 国产亚洲精品综合一区在线观看| 99国产精品一区二区蜜桃av| 久久精品91蜜桃| 久久久色成人| 伊人久久大香线蕉亚洲五| 老司机福利观看| 国产精品免费一区二区三区在线| 久久久久久久久免费视频了| 亚洲av电影在线进入| 国产精品一区二区三区四区免费观看 | 看黄色毛片网站| 男女之事视频高清在线观看| 欧美又色又爽又黄视频| 国内精品久久久久久久电影| avwww免费| 精品国产乱子伦一区二区三区| 俄罗斯特黄特色一大片| 亚洲欧美精品综合一区二区三区| 午夜精品久久久久久毛片777| 婷婷精品国产亚洲av在线| 欧美成人免费av一区二区三区| 国产蜜桃级精品一区二区三区| 淫妇啪啪啪对白视频| 亚洲av电影在线进入| 国产精品99久久99久久久不卡| tocl精华| 天天躁狠狠躁夜夜躁狠狠躁| 久久午夜综合久久蜜桃|