• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Parameterization of Nuclear Hulthén Potential for Nucleus-Nucleus Elastic Scattering

    2018-05-23 06:03:59BhoiUpadhyayandLaha
    Communications in Theoretical Physics 2018年2期

    J.Bhoi, R.Upadhyay, and U.Laha

    1Department of Physics,Government College of Engineering,Kalahandi-766002,Odisha,India

    2Department of Physics,National Institute of Technology,Jamshedpur-831014,India

    1 Introduction

    Theα-αandα-3He systems have been studied quite extensively by a number of groups.[1?16]These studies provide a large number of data.Besides experiments,several phenomenological interaction models have also been proposed for theα-αandα-3He systems[17?30]which produce more or less similar results although their way of approaches to the problems are different.Thus,one can easily rely on these data.The basic purposes of theααscattering experiments are to gather information about the nature ofα-αinteraction and also to investigate the energy levels of8Be[16,26?29,31?34]through the study of resonance behavior of phase shifts.8Be,being an unstable system,can easily be dissolved into twoαparticles and is a typical example of a system of twoα-particles.Similarly,7Li is regarded as two clusters of nucleons namely anα-particle and a triton.In such model the effective interaction,considered between each pair of particles,is a fi nite depth central potential.Since theα-particles are tightly bound,the low lying states of such systems can be determined fairly well through the relative motion of theα-particle only.One of the interesting features of theα-αscattering is to see whether,resonances corresponding to the low energy states in8Be are observed or not.The general procedure to understand it is to make use of the partial wave analysis of the phase shiftsδlfor a given partial wave with angular momentuml.Since the spin ofαparticle is zero and possess high internal binding energy,so the phase shifts can easily be reduced to a minimum and one can able to analyze the scattering in terms of real phase shifts up to a laboratory bombarding energy of 35 MeV.Theα-αandα-3He elastic scattering have also been studied quite extensively by a number of groups.[35?42]Mohr[42]has treated the low energyα-3He elastic scattering within the framework of a simple two-body model together with a double-folding potential.In the recent past,Ne ff[43]studied the radiative capture cross sections for theα-3He andα-3H reactions using a two-body effective interaction together with microscopic fermionic molecular dynamics approach to the problem.

    Theα-α,α-3He orα-3H interaction is a combination of the Coulomb potential and a short range interaction.The short range interaction is of nuclear origin while the Coulomb potential takes care of the charges.We propose here a two-term four parameter nuclear Hulthén[30,44]type potential for the short range part and the atomic Hulthén one for the electromagnetic interaction.Based on the phase function method(PFM)for local potentials[45]we shall compute the elastic scattering phase shifts for the systems under consideration and judge the merit of our proposed model.The present article is an effort in this direction.In Sec.2 we propose our interaction model and brie fl y outline the PFM.Section 3 is devoted to results and discussion.Finally,we conclude in Sec.4.

    2 Interaction Model and the PFM

    In the phenomenological approach one generally attempts to construct an interaction which reproduces the standard values of the low energy scattering parameters and the phase shifts for a particular system.Assuming8Be a 2αsystem Haefner[18]in 1951 proposed anα-αpotential which is repulsive for smallrand attractive for intermediater.Later,with a modi fi ed Haefner interaction,Nilsonet al.[19]were able to reproduce theα-αscattering phase shifts in the energy range 0 to 22 MeV.In 1958 Van der Spuy and Pienaar[20]made a phenomenological analysis of theα-αscattering up to a bombarding energy of 6 MeV by considering a potential with three parameter namely:the hard core radius,the nuclear interaction range and the well depth.Further,in 1964 Endo,Shimodaya and Hiura[22]investigated theα-αscattering with an energy independent butl-dependent potential with an attractive and a repulsive part.They obtained a good fi t to phase shifts up toELab=50 MeV for lower partial waves.Later on several potentials have also been proposed by a number of authors to study the systems involving light nuclei.

    In 1977 Buck,Friedrich and Wheatley[25]proposed a two-parameter angular momentum and energyindependent local Gaussian potential of the form

    withV0=?122.6225 MeV andα=0.22 fm?2.They were able to reproduce the scattering phase shifts up toELab=80 MeV together with the binding energy and resonance width of the ground state of8Be.Marquez[27]successfully described theα-αsystem by considering a Woods-Saxon type potential for the nuclear part of the form

    The above potential involves four adjustable parametersVw,Aw,Rw,andRcto reproduce the energy and decay width of the8Be ground state as well as the phase shifts for the partial waves up tol=6.Subsequently,in 1984 it was proved[26]that the Potential of Bucket al.[25]and the one proposed by Marquez[27]are identical.In the meantime,several sophisticated potential models for the light nuclei systems have also been proposed.[16,31?33,43]

    In the recent past we have studied the alpha-nucleon systems within the formalism of supersymmetric quantum mechanics and alpha-nucleus systems by representing the short range interaction with a two-parameter nuclear Hulthén potential.[30,44]Our two-term four parameter nuclear Hulthén interaction reads as

    withV0,the strength anda,the screening radius of the atomic Hulthén potential. In the limit,the potential in Eq.(5)goes over to Coulomb potential ifV0a2=e2=1 in atomic unit,au=5.291 772×10?11m).In the un-screening limit i.e.andV0→0 such that their product remains a constantaV0=2kη,whereηis the Sommerfeld parameter.[44]In atomic and plasma physics screened and cut-o ffCoulomb potentials are important.Many standard results in non-relativistic scattering theory for the short-range potentials have to be modi fi ed for charged particle scattering as the particles interacting via the Coulomb potential never behave like free particles.Even the asymptotic condition for a well behaved potential does not hold and as a consequence the concept of a phase shift is ill defined for Coulomb scattering.To that end an exponentially screened Coulomb potential,the atomic Hulthn one,is considered for the electromagnetic part.It has been used frequently in dynamical calculations because it is explicitly soluble.[45]HereVE(r)is a short range potential and can be dealt with within the framework of traditional phase function method.

    The phase function method represents an efficient approach to evaluate the scattering phase shifts for quantum mechanical problems involving local[46]and non-local interactions.[47?50]In this case the radial wave function of the Schr?dinger equation is separated into an amplitude part and an oscillating part with a variable phaseδl(k,r).For a local potentialδl(k,r)satisfies a first order nonlinear differential equation given by

    withthe Riccati Bessel functions.Hereindicates the derivative ofwith respect tor.In the phase convention of Calogaro[46]the Riccati Hankel function of first kind is written asThe scattering phase shiftδl(k)is obtained by solving this equation from the origin to the asymptotic region with the initial conditionδl(k,0)=0.The integral equation corresponding to Eq.(6)may be written as

    The first order approximation to scattering phase shift reads as

    Here?l(kr)andηl(kr)stand for the spherical Bessel functions.The scattering phase shifts will be computed by considering Eqs.(6),(8)and(9).

    3 Results and Discussions

    According to Levinsons theorem[51]each newly introduced bound state raises the zero energy phase shift by 180?and for reasonable potentials the zero energy phase shifts for higher angular momenta are always integral multiple ofπ.The smaller the resonance width Γ,the stronger is the change in scattering phase shift atE=ER.This implies that at small Γ there is a sharp jump of the phase shift by nearlyπin a very close interval of energies.In the first step of computation all the parametersandwere varied continuously to reproduce a phase shiftfor theα-αsystem andfor theα-3He system in the zero energy limit.For all other states the strength parameterswere given free running,keeping the parametersfixed,to obtain best possible agreement with standard data.[37,49?50]Recently,Li Xuet al.[52]obtained a reasonable description of the elastic scattering of triton by applying systematic helium-3 global optical model potential.Similarly,in this text also the nuclear part of theα-3He andα-3H systems are represented by the same nuclear Hulthén interaction.It is obvious from the fact that the parameters for the nuclear part of the interaction,used in this text,for both the systems are identical.Here we have chosen to work withV0a=0.2758 fm?1forα-αsystem;[49]V0a=0.2364 fm?1forα-3He system;V0a=0.1182 fm?1forα-3H system anda=50 au(atomic unit).Exploiting Eq.(6)along with the parameters in Tabless 1 and 2,we have portrayed the phase shifts for various partial wave states under consideration for theα-α,α-3He,andα-3H systems along with the standard results[37,49?50]in Figs.1–7 respectively.The results for the first and second order Born approximations are also presented in the figures for comparison.

    As expected,the S-wave phase shifts for theα-αsystem are positive at low energies and become negative at high energies.The S-wave phase shift changes its sign atELab=19.6 MeV which deviates by 3?from our earlier work based on exact calculation of the Coulomb plus separable potential[49]but coincides with the results of Refs.[12–13,50]. Beyond 19.6 MeV our phase shifts become negative but possess slightly higher values than those of Ref.[49]up to 70 MeV.In the energy range 70–100 MeV they agree quite well with Ref.[49].The first order Born approximation toδ0changes the sign of the phase shift at about 7 MeV and gradually approaches the values of Ref.[49]as energy increases while the second order approximation produces poor fit to standard data.Our D-wave phase shift reaches its peak value of about 124.915?atELab=4 MeV in contrast to the standard results[13,49?50]at about 8 MeV.However,beyond 20 MeV our D-wave phase shifts compare well with the earlier work.[49]Our first and second order Born approximations reproduce better fi t with those of Ref.[49]beyond 40 MeV.The G-wave phase shifts are in numerical disagreement with standard data[49?50]in the very low energy range but are in reasonable agreement with those of Ref.[49]beyond 30 MeV.Born approximations to G-wave phase shifts give much lower values than standard results.Although the G-wave phases slightly discern from standard data at low energies,they reproduce correct nature of the phase shift curve.It is observed that our Hulthén potential model is quite capable of producingα-αelastic scattering phases except for the low energy G-wave ones.

    Table 1 Parameters for the α-α system.

    Table 2 Parameters for the α-3He and α-3H systems.

    Fig.1 (Color online)Alpha-alpha phase shifts(δ0,δ2,and δ4)as a function of energy.Experimental data from Refs.[49]and[50].

    Fig.2 (Color on line)Alpha-3He phase shifts(δ1/2+,δ1/2?,and δ3/2+)as a function of energy.Experimental data from Ref.[37].

    Fig.3 (Color on line)Alpha-3He phase shifts(δ3/2? and δ5/2+)as a function of energy. Experimental data from Ref.[37].

    Fig.4 (Color online)Alpha-3He phase shifts(δ5/2? and δ7/2?)as a function of energy. Experimental data from Ref.[37].

    Fig.5 (Color on line)Alpha-3H phase shifts(δ1/2+,δ1/2?,and δ3/2+)as a function of energy.Experimental data from Ref.[37].

    Fig.6 (Color on line)Alpha-3H phase shifts(δ3/2? and δ5/2+)as a function of energy. Experimental data from Ref.[37].

    Forα-3He andα-3H systems the effective potentials vary due to variation in their electromagnetic parts.With these interactions the phase shifts for various angular momentum states have been computed and compared with the standard results.[37,42]It is noticed that the phase shifts computed for different states are in reasonable agreement with the works of Spiger and Tombrello(1967)[37]and Mohr.[42]The phase shiftsδ1/2+forα-3He system differ significantly with those of Ref.[37]in the range 4–7 MeV but agree quite well in the energy range 7 MeV to 12.5 MeV while those for theα-3H system are in good agreement with those of Ref.[37,42].However,the values for thefor both theα-3He andα-3H systems compare well with the standard results[37,42]over the entire energy range.Bothδ3/2+andδ5/2+for the systems under consideration decrease very slowly,almost remain near zero,as energy increases.As forδ5/2?(Figs.4 and 7)significant disagreements with experimental data[37]are observed for both the systems.Out of these two sets of data better results are obtained for theα-3H system as they are comparable with Ref.[37]in the low energy range.However,the nature of ourδ5/2?curve for theα-3He system is very much similar to that of Ref.[42]obtained through a sophisticated model.It reflects that our potential model falls short in producing correct phase shifts for 5/2?states for both theα-3He andα-3H systems.Thus to achieve better agreement in phase shift values with experimental data energy-dependent correction factors are incorporated to the respective interactions.These correction factors areforα-3He andforα-3H systems respectively with the numbers 0.266 and 0.165 in the unit of fm?2.With these correction factors we obtained good agreement with experimental results.[37]The corrected phase shifts are denoted byand are also depicted in Figs.4 and 7.Looking closely into Figs.4 and 7 it is noticed that the values forδ7/2?for theα-3He system compare well with Refs.[37,42]in the low energy range but differ slightly beyond 5.5 MeV,while,on the other hand,the same for theα-3H system discern in the low energy range(up to 6 MeV)but are in good agreement with experimental values[37]beyond 6 MeV.

    Fig.7 (Color on line)Alpha-3H phase shifts(δ5/2? and δ7/2?)as a function of energy. Experimental data from Ref.[37].

    Fig.8 (Color online)Alpha-alpha potentials(for S,P,and D states)as a function of distance.

    Fig.9 (Color online)Alpha-3He potentials(for 1/2+,1/2?,3/2?,3/2+,and 5/2+states)as a function of distance.

    Fig.10 (Color on line)Alpha-3He potentials(for 5/2?and 7/2?states)as a function of distance.

    Forα-3He andα-3H systems it is observed that the results for the first order Born approximation is quite comparable to exact calculations except for the 5/2?and 7/2?states,whereas the second order approximations reproduce poor fit to standard data.[49?50]For 3/2+and 5/2+states the differences in phase shift values between exact and approximate calculations are too small to visualize in the scale of the figures as seen in Fig.2.Thus,we have not plotted the results for the Born approximations for the same states in Figs.3,5,and 6.The interactions for the 5/2?and 7/2?states for theα-3He andα-3H systems have sharp depths at small values ofrwhich needs sufficiently high energies for the projectiles to reach that part of the interactions.At low energies only the tail part of the said interactions comes into play and thus produce lower phase shifts.

    Plots of the respective effective potentials forα-α,α-3He andα-3H systems are shown in Figs.8–12.The potentials are plotted in MeV units by multiplying Eq.(5)by the factors~2/2m=10.3675 MeV·fm2forα-αand~2/2m=24.190 833 MeV·fm2forα-3He andα-3H systems respectively.From Fig.8 it is seen that our potentials for theα-αsystem possess repulsive cores followed by their attractive parts.The presence of the repulsive cores in the potentials ensures less and less overlap of the particles.As per investigation of Ali and Bodmer[13]the size of the repulsive core as well as the depth of the potential should be decreased with the increase of the?-value.In contrast to this,the size of the repulsive cores as well as the depths of our potentials increases with the increment in?-value.This may be due the parameterization of the nuclear Hulthén type interaction.The potentials of Bucket al.[26]and of Marquez[28]have very strong attractive parts only.The maximum depth of their potentials is of the order of 125 MeV,while the depth of our S-wave potential is about 5 MeV.Our S-wave phase shifts for theα-αsystem give an indication of resonance at an energy which is far below the barely unbound ground state of8Be.This may be due to the insufficient depth of our S-wave potential.The interactions for the various partial wave states under consideration are depicted in Figs.9–12 for theα-3He andα-3H systems.In Figs.10 and 12 the potentials for 5/2?states with energy-dependent correction factors are also portrayed fork=0.2 fm?1andk=0.6 fm?1respectively.The natures of the potentials for both the systems are same except small differences in their strengths are observed.This is originated due to variation in the electromagnetic parts of the effective interactions forα-3He andα-3H systems.The exceptionally huge depth of our F-wave potentials appear to be consistent with the sharp steps in the 5/2?and 7/2?phase shifts.[37]

    4 Conclusion

    It is a well-known fact that knowing the general feature of the interactions,various phenomenological potentials with a certain number of free parameters in it can be constructed which are of interest in the cluster model of light nuclei.Variousα-αandα-3He potentials have been proposed earlier with the superposition of repulsive and attractive square well or Gaussian shapes.[26]Kukulinet al.[25]and Marquez[28]were able to fi t theααscattering phase shifts by using Woods-Saxon potential.Apart from square well,Gaussian or Woods-Saxon shapes,we have used here a Hulthén type potential and found reasonable agreement in the phase shift values with the earlier calculations[12?13,37,42,49?50]for theα-α,α-3He andα-3H systems.Also it is noticed that our present model of interaction reproduces better results than our earlier approach.[30]The essential features of the shortrange part of the nucleus-nucleus interaction have been clarified by the microscopic theories like the generator coordinate method(GCM)or the resonating group method(RGM).[53?54]With the RGM,a large number of elastic collisions are described with a good precision[55?56]by using two-body phenomenological interactions.In the RGM there appears an interaction generated from the two-nucleon forces which consists of two parts:(i)a direct part and(ii)a fairly complicated nonlocal kernel.This non-local kernel presents mathematical difficulties for rigorous inclusion of the Coulomb effect in the studies of nucleus-nucleus elastic scattering.Within the framework of RGM,although the numerical complications are considerably higher than the present method,good agreements with the real part of the experimental phase shifts for various partial wave states have been observed.But it seems rather difficult to reproduce the numbers of the RGM calculation by a simple minded potential as used by us.Looking closely into Figs.1,4,and 7 it is observed that our low energy G-wave phase values for theα-αsystem and those for 5/2?states forα-3He andα-3H systems differ slightly from those of Refs.[13,37,49–50],which indicate certain demerits in the potentials for these states.However,good agreements are achieved with the introduction of a correction factor to the potentials of 5/2?states.As it is well known that the fundamental studies of theα-α,α-3He andα-3H interactions provide a useful basis for understanding the interaction between complex nuclei,our potential model may be of considerable interest in treating the complex nucleus-nucleus scattering.In the recent past Nersisyan and Fernndez-Varea[57]applied

    [1]E.Rutherford and J.Chadwick,Phil.Mag.4(1927)605.

    [2]L.Rosenfeld,Nuclear Forcesa,North-Holland Publ.Co.,Amsterdam(1948).

    [3]D.M.Dennison,Phys.Rev.96(1954)378.

    [4]F.E.Steigert and M.B.Sampson,Phys.Rev.92(1953)660.

    [5]A.E.Glassgold and A.Galonsky,Phys.Rev.103(1956)701.

    [6]N.P.Heydenberg and G.M.Temmer,Phys.Rev.104(1956)123.

    [7]J.L.Russell,G.C.Phillips,and C.W.Reich,Phys.Rev.104(1956)135.

    [8]C.M.Jones,G.C.Phillips,and P.D.Miller,Phys.Rev.117(1960)525.

    [9]N.Berk,F.E.Steigert,and G.L.Salinger,Phys.Rev.117(1960)531.

    [10]J.R.Dunning,A.M.Smith,and F.E.Steigert,Phys.Rev.121(1961)580.

    [11]R.Chiba,H.E.Conzett,H.Morinaga,et al.,Phys.Soc.Japan 16(1961)1077.

    [12]T.A.Tombrello and L.S.Senhouse,Phys.Rev.129(1963)2252.

    [13]S.Ali and A.R.Bodmer,Nucl.Phys.80(1966)99.

    [14]T.A.Tombrello and P.D.Parker,Phys.Rev.131(1963)2582.

    [15]T.Kajino and A.Arima,Phys.Rev.Lett.52(1984)739.

    [16]P.R.Page,Phys.Rev.C 72(2005)054312.

    [17]P.Darriulat,G.Igo,H.G.Pugh,and H.D.Holmgren,Phys.Rev.137(1965)B315.

    [18]R.R.Haefner,Rev.Mod.Phys.23(1951)228.

    [19]R.Nilson,W.K.Jentschke,G.R.Briggs,et al.,Phys.Rev.109(1958)850.

    [20]E.van der Spuy and H.J.Pienaar,Nucl.Phys.7(1958)397.

    [21]G.Igo,Phys.Rev.117(1960)1079.

    [22]O.Endo,I.Shimodaya,and J.Hiura,Prog.Theor.Phys.(Kyoto)31(1964)1157.second order Born approximation for the computation of scattering phase shifts with electron-ion interaction potential and found some reasonable agreement with exact calculation.But this perturbative approach to the problem is not quite satisfactory in our cases as the strengths of the interactions under consideration are too strong to validate the perturbative approach.Further,also it is of importance to have in the literature the alternative approaches to the problem for calculation of physical observables of a particular system.Thus,it is our belief that the present potential model for the light nuclei systems will be of quite interesting to a wide variety of physicists and deserves some attention.

    [23]S.Ali and S.A.Afzal,Nuovo Cimento 50(1967)355.

    [24]V.I.Kukulin,V.G.Neudatchin,and Y.F.Smirnov,Nucl.Phys.A 245(1975)429.

    [25]B.Buck,H.Friedrich,and C.Wheatley,Nucl.Phys.A 275(1977)246.

    [26]H.Friedrich,Phys.Rep.74(1981)209;Phys.Rev.C 30(1984)1102.

    [27]L.Marquez,Phys.Rev.C 28(1983)2525.

    [28]P.Mohr,et al.,Z.Phys.A-Atomic Nuclei 349(1994)339.

    [29]S.Elhatisari,D.Lee,G.Rupak,et al.,Nature(London)528(2015)111.

    [30]J.Bhoi and U.Laha,Pramana-J.Phys.88(2017)42.

    [31]E.Caurier,P.Navrtil,W.E.Ormand,and J.P.Vary,Phys.Rev.C 64(2001)051301.

    [32]T.Yoshida,N.Shimizu,T.Abe,and T.J.Otsuka,Phys.Conf.Ser.454(2013)012050.

    [33]T.Myo,A.Umeya,K.Horii,et al.,Prog.Theor.Exp.Phys.(2014)033D01.

    [34]V.M.Datar,et al.,Phys.Rev.Lett.111(2013)062502.

    [35]P.Mohr,H.Abele,R.Zwiebel,et al.,Phys.Rev.C 48(1993)1420.

    [36]A.C.L.Barnard,C.M.Jones,and G.C.Phillip,Nucl.Phys.50(1964)629.

    [37]R.J.Spiger and T.A.Tombrello,Phys.Rev.163(1967)964.

    [38]L.S.Chuang,Nucl.Phys.A 174(1971)399.

    [39]W.R.Boykin,S.D.Baker,and D.M.Hardy,Nucl.Phys.A 195(1972)241.

    [40]D.M.Hardy,R.J.Spiger,S.D.Baker,et al.,Nucl.Phys.A 195(1972)250.

    [41]R.H.Cyburt and B.Davids,Phys.Rev.C 78(2008)064614.

    [42]P.Mohr,Phys.Rev.C 79(2009)065804.

    [43]T.Ne ff,Phys.Rev.Lett.106(2011)042502.

    [44]U.Laha and J.Bhoi,Phys.Rev.C 91(2015)034614.

    [45]S.Flgge,Practical Quantum Mechanics,Springer,Berlin(1971)p.175.

    [46]F.Calogero,Variable Phase Approach to Potential Scattering,Academic,New York(1967).

    [47]B.Talukdar,D.Chatterjee,and P.Banerjee,J.Phys.G:Nucl.Phys.3(1977)813.

    [48]G.C.Sett,U.Laha,and B.Talukdar,J.Phys.A:Math.Gen.21(1988)3643.

    [49]U.Laha,N.Haque,T.Nandi,and G.C.Sett,Z.Phys.A-Atomic Nuclei 332(1989)305.

    [50]S.A.Afzal,A.A.Z.Ahmad,and S.Ali,Rev.Mod.Phys.41(1969)247.

    [51]R.G.Newton,Scattering Theory of Waves and Particles,McGraw Hill,New York(1982).

    [52]Y.L.Xu,H.R.Guo,Y.L.Han,and Q.B.Shen,Int.J.Mod.Phys.E 24(2015)1550005.

    [53]D.L.Hill and J.A.Wheeler,Phys.Rev.89(1953)1102.

    [54]K.Wildermuth and W.McClure,Cluster Representation of Nuclei-Springer Tracts in Modern Physics 41,Springer,New York(1966).

    [55]Y.C.Tang,inTopics in Nuclear Physics II,Lecture Notes in Physics,V.145,Springer,Berlin(1981)p.571.

    [56]H.Horiuchi,Prog.Theor.Phys.Suppl.62(1977)90.

    [57]H.B.Nersisyan and Jos M.Fernndez-Varea,Nucl.Instrum.Methods Phys.Res.B 311(2013)121.

    国产午夜福利久久久久久| 最近最新中文字幕大全免费视频| 国产亚洲精品久久久com| 两人在一起打扑克的视频| 中文字幕久久专区| 精品一区二区三区视频在线观看免费| 欧美黑人欧美精品刺激| www.www免费av| 狂野欧美激情性xxxx| 免费av观看视频| 午夜福利高清视频| 深夜精品福利| 男人和女人高潮做爰伦理| 国产久久久一区二区三区| 午夜免费男女啪啪视频观看 | 床上黄色一级片| 国产成人影院久久av| 亚洲国产中文字幕在线视频| 免费看光身美女| 97碰自拍视频| 听说在线观看完整版免费高清| 别揉我奶头~嗯~啊~动态视频| xxx96com| 不卡一级毛片| 深夜精品福利| 麻豆成人午夜福利视频| 99精品在免费线老司机午夜| 国产一区二区三区视频了| 久久久久久久久大av| 亚洲黑人精品在线| 级片在线观看| 国产免费一级a男人的天堂| 国产精品免费一区二区三区在线| 国产精品嫩草影院av在线观看 | 一级a爱片免费观看的视频| 他把我摸到了高潮在线观看| 日本免费a在线| 国产精品嫩草影院av在线观看 | 国产精品香港三级国产av潘金莲| 国产精品自产拍在线观看55亚洲| 男人和女人高潮做爰伦理| 欧美一级a爱片免费观看看| 国产欧美日韩精品一区二区| 久久精品亚洲精品国产色婷小说| 国产黄片美女视频| 日韩人妻高清精品专区| 啦啦啦免费观看视频1| 国产精品久久久人人做人人爽| 欧美黑人欧美精品刺激| 极品教师在线免费播放| 中文资源天堂在线| 内射极品少妇av片p| 亚洲欧美日韩东京热| 欧美区成人在线视频| 国产乱人视频| 国产三级中文精品| 97碰自拍视频| 亚洲欧美日韩无卡精品| 精品久久久久久,| 在线免费观看的www视频| 丰满乱子伦码专区| 最近最新免费中文字幕在线| 欧美色欧美亚洲另类二区| 精品久久久久久成人av| av专区在线播放| 免费看光身美女| 成人av一区二区三区在线看| 欧美日韩中文字幕国产精品一区二区三区| 久久久久久国产a免费观看| 免费人成视频x8x8入口观看| 桃色一区二区三区在线观看| 亚洲人成网站高清观看| www日本在线高清视频| 国内精品美女久久久久久| 亚洲精品日韩av片在线观看 | 亚洲性夜色夜夜综合| 国产麻豆成人av免费视频| 亚洲在线自拍视频| 内射极品少妇av片p| 变态另类成人亚洲欧美熟女| 免费在线观看影片大全网站| 国产av在哪里看| 99久久精品热视频| 亚洲熟妇熟女久久| 性色av乱码一区二区三区2| a在线观看视频网站| 夜夜夜夜夜久久久久| 尤物成人国产欧美一区二区三区| 精品久久久久久久人妻蜜臀av| 无限看片的www在线观看| 不卡一级毛片| 国产伦精品一区二区三区视频9 | 国产视频内射| 精品久久久久久久人妻蜜臀av| 久久欧美精品欧美久久欧美| 亚洲黑人精品在线| 99热精品在线国产| 婷婷精品国产亚洲av在线| av在线天堂中文字幕| 性欧美人与动物交配| 国产精品乱码一区二三区的特点| 国产91精品成人一区二区三区| 亚洲五月婷婷丁香| 日韩欧美在线乱码| 久久99热这里只有精品18| 99riav亚洲国产免费| 99热这里只有是精品50| 999久久久精品免费观看国产| 亚洲自拍偷在线| 日本精品一区二区三区蜜桃| 国产伦人伦偷精品视频| 真人一进一出gif抽搐免费| 国产日本99.免费观看| 精品午夜福利视频在线观看一区| 久久久久精品国产欧美久久久| 免费人成在线观看视频色| 国产毛片a区久久久久| 国产极品精品免费视频能看的| 美女大奶头视频| 床上黄色一级片| 嫩草影院入口| 非洲黑人性xxxx精品又粗又长| 亚洲 欧美 日韩 在线 免费| 国产精品久久电影中文字幕| 老汉色∧v一级毛片| 十八禁网站免费在线| 操出白浆在线播放| 国产伦精品一区二区三区四那| 成人欧美大片| 操出白浆在线播放| 亚洲最大成人手机在线| 在线免费观看不下载黄p国产 | 国产午夜福利久久久久久| 搡老岳熟女国产| 欧美黄色片欧美黄色片| 超碰av人人做人人爽久久 | 国产精品野战在线观看| 一个人看的www免费观看视频| 亚洲精品一区av在线观看| 精品乱码久久久久久99久播| 一个人免费在线观看电影| 桃红色精品国产亚洲av| 成年女人毛片免费观看观看9| 丁香六月欧美| 在线观看一区二区三区| 18禁黄网站禁片午夜丰满| 一本综合久久免费| 精品乱码久久久久久99久播| 成年免费大片在线观看| 精品国产亚洲在线| 日本免费a在线| 成人18禁在线播放| 人人妻,人人澡人人爽秒播| 亚洲av第一区精品v没综合| 天堂影院成人在线观看| 亚洲乱码一区二区免费版| 丝袜美腿在线中文| 一区二区三区国产精品乱码| 国产一区二区在线观看日韩 | 国语自产精品视频在线第100页| 深夜精品福利| 97超级碰碰碰精品色视频在线观看| www日本在线高清视频| 美女黄网站色视频| 性欧美人与动物交配| 一级黄色大片毛片| 极品教师在线免费播放| 久久久精品大字幕| 中文字幕人成人乱码亚洲影| 国产成人aa在线观看| 少妇熟女aⅴ在线视频| 97超视频在线观看视频| 国产单亲对白刺激| 每晚都被弄得嗷嗷叫到高潮| 日日干狠狠操夜夜爽| 99热这里只有是精品50| 久久精品国产自在天天线| 午夜免费激情av| 亚洲国产欧美网| 精品久久久久久,| 十八禁人妻一区二区| 成人精品一区二区免费| 欧美午夜高清在线| 久久久久性生活片| 动漫黄色视频在线观看| 亚洲欧美一区二区三区黑人| 国产欧美日韩精品一区二区| 久久精品国产清高在天天线| 老司机午夜福利在线观看视频| 国产老妇女一区| 欧美一区二区国产精品久久精品| 欧美日韩亚洲国产一区二区在线观看| 久久精品人妻少妇| a在线观看视频网站| 免费av观看视频| 国产伦精品一区二区三区视频9 | 好男人电影高清在线观看| 69av精品久久久久久| 啦啦啦韩国在线观看视频| 成人三级黄色视频| 亚洲人与动物交配视频| 亚洲人成网站在线播放欧美日韩| 男女之事视频高清在线观看| 亚洲av中文字字幕乱码综合| 亚洲av免费在线观看| 性欧美人与动物交配| 精品国产超薄肉色丝袜足j| 香蕉丝袜av| 九色国产91popny在线| 日本五十路高清| 久久久久国内视频| 欧美日韩瑟瑟在线播放| 听说在线观看完整版免费高清| 亚洲天堂国产精品一区在线| 国产一区在线观看成人免费| 免费在线观看成人毛片| 全区人妻精品视频| 啪啪无遮挡十八禁网站| 一本综合久久免费| 欧美日韩中文字幕国产精品一区二区三区| 九色国产91popny在线| 日韩欧美精品v在线| 亚洲最大成人手机在线| 老熟妇乱子伦视频在线观看| 少妇的逼好多水| 99热这里只有精品一区| 日本黄色视频三级网站网址| 97超视频在线观看视频| 99久久综合精品五月天人人| 一个人看的www免费观看视频| 搡女人真爽免费视频火全软件 | 精品一区二区三区人妻视频| 国产精品久久视频播放| 欧美日本视频| 免费电影在线观看免费观看| 内地一区二区视频在线| 人人妻,人人澡人人爽秒播| 十八禁人妻一区二区| 无限看片的www在线观看| 亚洲熟妇中文字幕五十中出| 成人18禁在线播放| 色噜噜av男人的天堂激情| 亚洲人成电影免费在线| 亚洲电影在线观看av| 最近最新中文字幕大全免费视频| 欧美日韩国产亚洲二区| 亚洲精品美女久久久久99蜜臀| 夜夜夜夜夜久久久久| 亚洲精品在线美女| 两个人视频免费观看高清| 麻豆一二三区av精品| 亚洲激情在线av| 成年女人毛片免费观看观看9| 悠悠久久av| 男女视频在线观看网站免费| 国产精品乱码一区二三区的特点| 叶爱在线成人免费视频播放| 99热精品在线国产| 亚洲av免费在线观看| 欧美另类亚洲清纯唯美| 亚洲国产精品999在线| 操出白浆在线播放| 国产免费一级a男人的天堂| 国产精品 国内视频| 国产午夜精品论理片| 国产久久久一区二区三区| 国产精品影院久久| 精品一区二区三区视频在线 | 别揉我奶头~嗯~啊~动态视频| 黄色成人免费大全| 欧美zozozo另类| 看黄色毛片网站| 久久久久久久久久黄片| 精品人妻一区二区三区麻豆 | 99热6这里只有精品| 全区人妻精品视频| 日韩欧美精品免费久久 | 中文字幕人成人乱码亚洲影| 欧美中文日本在线观看视频| 午夜免费成人在线视频| 可以在线观看的亚洲视频| 久久香蕉精品热| 最近最新中文字幕大全免费视频| 久久精品国产亚洲av涩爱 | av女优亚洲男人天堂| 婷婷精品国产亚洲av| 在线观看美女被高潮喷水网站 | 岛国在线观看网站| 国内毛片毛片毛片毛片毛片| 久久精品国产综合久久久| 国产精品一区二区三区四区久久| 国产综合懂色| 国内揄拍国产精品人妻在线| 欧美3d第一页| 亚洲美女黄片视频| 桃色一区二区三区在线观看| 国产av在哪里看| 99精品久久久久人妻精品| 亚洲人成网站在线播放欧美日韩| 在线观看午夜福利视频| 亚洲专区国产一区二区| 亚洲精华国产精华精| 无限看片的www在线观看| 久久久久久久午夜电影| 真人做人爱边吃奶动态| 久久久久久久午夜电影| 天堂av国产一区二区熟女人妻| 亚洲,欧美精品.| 精品99又大又爽又粗少妇毛片 | 亚洲专区中文字幕在线| 操出白浆在线播放| 亚洲一区二区三区色噜噜| 国模一区二区三区四区视频| 日本成人三级电影网站| 久久久久久久精品吃奶| 成人高潮视频无遮挡免费网站| 久久久精品欧美日韩精品| 免费人成在线观看视频色| 精品乱码久久久久久99久播| 日本一本二区三区精品| 国产精品久久久久久精品电影| 熟女少妇亚洲综合色aaa.| 久久人人精品亚洲av| 热99re8久久精品国产| 人妻夜夜爽99麻豆av| 亚洲五月婷婷丁香| 日本成人三级电影网站| 十八禁人妻一区二区| 亚洲精品一卡2卡三卡4卡5卡| 岛国在线免费视频观看| 国产免费男女视频| 午夜亚洲福利在线播放| 天天一区二区日本电影三级| 亚洲av第一区精品v没综合| 亚洲无线观看免费| 免费观看人在逋| 久久精品国产综合久久久| 成人特级av手机在线观看| 啦啦啦韩国在线观看视频| 男女床上黄色一级片免费看| 国产色婷婷99| 国产av不卡久久| 欧美一级a爱片免费观看看| 日韩欧美三级三区| 国产在线精品亚洲第一网站| 国产精品一区二区三区四区久久| 99热精品在线国产| 成年女人永久免费观看视频| 看片在线看免费视频| 亚洲精品粉嫩美女一区| 成人精品一区二区免费| 天天添夜夜摸| 内射极品少妇av片p| 香蕉丝袜av| 国产熟女xx| 舔av片在线| 免费av观看视频| 淫秽高清视频在线观看| 中文资源天堂在线| 男女之事视频高清在线观看| 亚洲国产精品合色在线| 亚洲黑人精品在线| 女同久久另类99精品国产91| 美女cb高潮喷水在线观看| 国产亚洲精品久久久久久毛片| 国产成人影院久久av| 久久香蕉精品热| a在线观看视频网站| 99视频精品全部免费 在线| 欧美xxxx黑人xx丫x性爽| 一个人看的www免费观看视频| 欧美黑人巨大hd| 免费av不卡在线播放| 嫩草影院入口| 成人特级黄色片久久久久久久| 黄片大片在线免费观看| 亚洲成人久久性| av女优亚洲男人天堂| 老熟妇仑乱视频hdxx| 操出白浆在线播放| 国产av在哪里看| 色视频www国产| 最好的美女福利视频网| 狂野欧美激情性xxxx| av国产免费在线观看| 亚洲av不卡在线观看| 色噜噜av男人的天堂激情| 欧美另类亚洲清纯唯美| 香蕉av资源在线| 国产aⅴ精品一区二区三区波| 日韩欧美三级三区| 成人欧美大片| 叶爱在线成人免费视频播放| 757午夜福利合集在线观看| 久久久久久久精品吃奶| 国产老妇女一区| 国产亚洲av嫩草精品影院| 999久久久精品免费观看国产| 国产欧美日韩一区二区精品| 国产三级中文精品| 国产单亲对白刺激| 久久婷婷人人爽人人干人人爱| 黄色丝袜av网址大全| 色吧在线观看| 中文字幕久久专区| or卡值多少钱| 亚洲欧美日韩东京热| 啪啪无遮挡十八禁网站| 亚洲 欧美 日韩 在线 免费| 国产精品美女特级片免费视频播放器| 欧美日本亚洲视频在线播放| 亚洲久久久久久中文字幕| 久久这里只有精品中国| 国产高清三级在线| 成年女人永久免费观看视频| 久久精品亚洲精品国产色婷小说| 母亲3免费完整高清在线观看| 黄色成人免费大全| 久久久色成人| 神马国产精品三级电影在线观看| 亚洲精品456在线播放app | 精品久久久久久,| 人妻久久中文字幕网| 搡女人真爽免费视频火全软件 | 国产主播在线观看一区二区| 国产高清三级在线| 欧美一区二区国产精品久久精品| 国产精品99久久久久久久久| 母亲3免费完整高清在线观看| 熟女电影av网| 真人一进一出gif抽搐免费| 国产乱人视频| 中出人妻视频一区二区| 国产精品久久久久久精品电影| 精品久久久久久久久久免费视频| 成年女人永久免费观看视频| 搞女人的毛片| 成人无遮挡网站| 在线观看免费视频日本深夜| 成人av在线播放网站| 国产精品影院久久| 亚洲av不卡在线观看| 精品国产美女av久久久久小说| xxx96com| 国产精品爽爽va在线观看网站| 搞女人的毛片| 性色avwww在线观看| 亚洲人与动物交配视频| 人人妻人人澡欧美一区二区| 国产精品久久电影中文字幕| 国产高清视频在线观看网站| 在线播放无遮挡| а√天堂www在线а√下载| 网址你懂的国产日韩在线| a在线观看视频网站| 国产高潮美女av| 桃色一区二区三区在线观看| 国产伦精品一区二区三区视频9 | 精品国产美女av久久久久小说| 怎么达到女性高潮| 18禁在线播放成人免费| 免费av不卡在线播放| 欧美色视频一区免费| 人人妻,人人澡人人爽秒播| 精品日产1卡2卡| 国产精品免费一区二区三区在线| 人人妻人人看人人澡| 国产黄色小视频在线观看| 日本熟妇午夜| 亚洲五月婷婷丁香| av天堂在线播放| 亚洲人成网站在线播| 国产私拍福利视频在线观看| 中文字幕高清在线视频| 亚洲欧美日韩卡通动漫| 日本黄大片高清| 99热6这里只有精品| 少妇丰满av| 国产 一区 欧美 日韩| 国产亚洲欧美在线一区二区| 国产精品乱码一区二三区的特点| 国产精华一区二区三区| 精品人妻1区二区| 亚洲avbb在线观看| 老汉色av国产亚洲站长工具| 无限看片的www在线观看| 欧美成人一区二区免费高清观看| 每晚都被弄得嗷嗷叫到高潮| 99久国产av精品| 免费电影在线观看免费观看| 9191精品国产免费久久| 久久精品91无色码中文字幕| 亚洲专区中文字幕在线| 欧美日韩亚洲国产一区二区在线观看| 免费高清视频大片| 怎么达到女性高潮| 国产精品一区二区三区四区久久| 国产高清videossex| 91麻豆精品激情在线观看国产| 国产色爽女视频免费观看| 色综合站精品国产| 成人国产综合亚洲| 国产真实乱freesex| 亚洲成人精品中文字幕电影| 久久国产精品人妻蜜桃| 国产精品自产拍在线观看55亚洲| 又紧又爽又黄一区二区| 一级黄片播放器| 久久精品夜夜夜夜夜久久蜜豆| 脱女人内裤的视频| 亚洲欧美日韩卡通动漫| 99久久久亚洲精品蜜臀av| 少妇的丰满在线观看| 在线免费观看的www视频| 亚洲国产日韩欧美精品在线观看 | 日韩人妻高清精品专区| 精品久久久久久成人av| 成年女人永久免费观看视频| 亚洲av五月六月丁香网| 在线观看日韩欧美| 男人舔女人下体高潮全视频| 国产av麻豆久久久久久久| 女人十人毛片免费观看3o分钟| 人妻夜夜爽99麻豆av| 欧美一级毛片孕妇| 少妇的逼好多水| 久久久久国产精品人妻aⅴ院| 一本一本综合久久| 精华霜和精华液先用哪个| 亚洲人成网站高清观看| 男女之事视频高清在线观看| 三级国产精品欧美在线观看| 狂野欧美激情性xxxx| 男女床上黄色一级片免费看| 国产精品乱码一区二三区的特点| 99在线视频只有这里精品首页| 18禁黄网站禁片免费观看直播| 久久久久久久亚洲中文字幕 | 99久久综合精品五月天人人| 老汉色av国产亚洲站长工具| 欧美激情久久久久久爽电影| 午夜精品久久久久久毛片777| 色噜噜av男人的天堂激情| 国产精品电影一区二区三区| 99久久无色码亚洲精品果冻| 大型黄色视频在线免费观看| 日韩欧美在线二视频| 九色成人免费人妻av| 欧美不卡视频在线免费观看| bbb黄色大片| 黄色女人牲交| 9191精品国产免费久久| 男人的好看免费观看在线视频| 国产野战对白在线观看| 国产精品一区二区免费欧美| 天美传媒精品一区二区| 12—13女人毛片做爰片一| 欧美日韩亚洲国产一区二区在线观看| 国产一区二区亚洲精品在线观看| 精品福利观看| 在线看三级毛片| 99热只有精品国产| 在线十欧美十亚洲十日本专区| 久久久国产成人免费| 午夜福利欧美成人| 国产欧美日韩精品一区二区| 午夜福利在线观看吧| 午夜免费成人在线视频| 亚洲av成人精品一区久久| 91在线精品国自产拍蜜月 | 成人亚洲精品av一区二区| 亚洲国产欧美人成| 国产精品99久久99久久久不卡| 很黄的视频免费| 97超视频在线观看视频| www日本在线高清视频| 国产美女午夜福利| 精品国产美女av久久久久小说| 好看av亚洲va欧美ⅴa在| 久久午夜亚洲精品久久| 久久精品夜夜夜夜夜久久蜜豆| 18+在线观看网站| 99riav亚洲国产免费| 少妇人妻一区二区三区视频| 美女被艹到高潮喷水动态| 欧美成人a在线观看| 亚洲精品一区av在线观看| 欧美一级a爱片免费观看看| 日韩av在线大香蕉| 国产精品久久久久久亚洲av鲁大| 日本一本二区三区精品| 日韩av在线大香蕉| 日本五十路高清| 人妻丰满熟妇av一区二区三区| 99久久无色码亚洲精品果冻| 免费看a级黄色片| 中文字幕久久专区| 亚洲精华国产精华精| 亚洲乱码一区二区免费版| 免费观看精品视频网站| 中亚洲国语对白在线视频| 色在线成人网| 国产精品电影一区二区三区| 一边摸一边抽搐一进一小说| 无遮挡黄片免费观看| 99精品在免费线老司机午夜| 在线观看午夜福利视频| 亚洲成人中文字幕在线播放| 少妇的逼水好多| 亚洲成av人片免费观看| 久久精品夜夜夜夜夜久久蜜豆| 国产熟女xx| 99精品久久久久人妻精品| 久久精品国产清高在天天线| 成人高潮视频无遮挡免费网站|