• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Parameterization of Nuclear Hulthén Potential for Nucleus-Nucleus Elastic Scattering

    2018-05-23 06:03:59BhoiUpadhyayandLaha
    Communications in Theoretical Physics 2018年2期

    J.Bhoi, R.Upadhyay, and U.Laha

    1Department of Physics,Government College of Engineering,Kalahandi-766002,Odisha,India

    2Department of Physics,National Institute of Technology,Jamshedpur-831014,India

    1 Introduction

    Theα-αandα-3He systems have been studied quite extensively by a number of groups.[1?16]These studies provide a large number of data.Besides experiments,several phenomenological interaction models have also been proposed for theα-αandα-3He systems[17?30]which produce more or less similar results although their way of approaches to the problems are different.Thus,one can easily rely on these data.The basic purposes of theααscattering experiments are to gather information about the nature ofα-αinteraction and also to investigate the energy levels of8Be[16,26?29,31?34]through the study of resonance behavior of phase shifts.8Be,being an unstable system,can easily be dissolved into twoαparticles and is a typical example of a system of twoα-particles.Similarly,7Li is regarded as two clusters of nucleons namely anα-particle and a triton.In such model the effective interaction,considered between each pair of particles,is a fi nite depth central potential.Since theα-particles are tightly bound,the low lying states of such systems can be determined fairly well through the relative motion of theα-particle only.One of the interesting features of theα-αscattering is to see whether,resonances corresponding to the low energy states in8Be are observed or not.The general procedure to understand it is to make use of the partial wave analysis of the phase shiftsδlfor a given partial wave with angular momentuml.Since the spin ofαparticle is zero and possess high internal binding energy,so the phase shifts can easily be reduced to a minimum and one can able to analyze the scattering in terms of real phase shifts up to a laboratory bombarding energy of 35 MeV.Theα-αandα-3He elastic scattering have also been studied quite extensively by a number of groups.[35?42]Mohr[42]has treated the low energyα-3He elastic scattering within the framework of a simple two-body model together with a double-folding potential.In the recent past,Ne ff[43]studied the radiative capture cross sections for theα-3He andα-3H reactions using a two-body effective interaction together with microscopic fermionic molecular dynamics approach to the problem.

    Theα-α,α-3He orα-3H interaction is a combination of the Coulomb potential and a short range interaction.The short range interaction is of nuclear origin while the Coulomb potential takes care of the charges.We propose here a two-term four parameter nuclear Hulthén[30,44]type potential for the short range part and the atomic Hulthén one for the electromagnetic interaction.Based on the phase function method(PFM)for local potentials[45]we shall compute the elastic scattering phase shifts for the systems under consideration and judge the merit of our proposed model.The present article is an effort in this direction.In Sec.2 we propose our interaction model and brie fl y outline the PFM.Section 3 is devoted to results and discussion.Finally,we conclude in Sec.4.

    2 Interaction Model and the PFM

    In the phenomenological approach one generally attempts to construct an interaction which reproduces the standard values of the low energy scattering parameters and the phase shifts for a particular system.Assuming8Be a 2αsystem Haefner[18]in 1951 proposed anα-αpotential which is repulsive for smallrand attractive for intermediater.Later,with a modi fi ed Haefner interaction,Nilsonet al.[19]were able to reproduce theα-αscattering phase shifts in the energy range 0 to 22 MeV.In 1958 Van der Spuy and Pienaar[20]made a phenomenological analysis of theα-αscattering up to a bombarding energy of 6 MeV by considering a potential with three parameter namely:the hard core radius,the nuclear interaction range and the well depth.Further,in 1964 Endo,Shimodaya and Hiura[22]investigated theα-αscattering with an energy independent butl-dependent potential with an attractive and a repulsive part.They obtained a good fi t to phase shifts up toELab=50 MeV for lower partial waves.Later on several potentials have also been proposed by a number of authors to study the systems involving light nuclei.

    In 1977 Buck,Friedrich and Wheatley[25]proposed a two-parameter angular momentum and energyindependent local Gaussian potential of the form

    withV0=?122.6225 MeV andα=0.22 fm?2.They were able to reproduce the scattering phase shifts up toELab=80 MeV together with the binding energy and resonance width of the ground state of8Be.Marquez[27]successfully described theα-αsystem by considering a Woods-Saxon type potential for the nuclear part of the form

    The above potential involves four adjustable parametersVw,Aw,Rw,andRcto reproduce the energy and decay width of the8Be ground state as well as the phase shifts for the partial waves up tol=6.Subsequently,in 1984 it was proved[26]that the Potential of Bucket al.[25]and the one proposed by Marquez[27]are identical.In the meantime,several sophisticated potential models for the light nuclei systems have also been proposed.[16,31?33,43]

    In the recent past we have studied the alpha-nucleon systems within the formalism of supersymmetric quantum mechanics and alpha-nucleus systems by representing the short range interaction with a two-parameter nuclear Hulthén potential.[30,44]Our two-term four parameter nuclear Hulthén interaction reads as

    withV0,the strength anda,the screening radius of the atomic Hulthén potential. In the limit,the potential in Eq.(5)goes over to Coulomb potential ifV0a2=e2=1 in atomic unit,au=5.291 772×10?11m).In the un-screening limit i.e.andV0→0 such that their product remains a constantaV0=2kη,whereηis the Sommerfeld parameter.[44]In atomic and plasma physics screened and cut-o ffCoulomb potentials are important.Many standard results in non-relativistic scattering theory for the short-range potentials have to be modi fi ed for charged particle scattering as the particles interacting via the Coulomb potential never behave like free particles.Even the asymptotic condition for a well behaved potential does not hold and as a consequence the concept of a phase shift is ill defined for Coulomb scattering.To that end an exponentially screened Coulomb potential,the atomic Hulthn one,is considered for the electromagnetic part.It has been used frequently in dynamical calculations because it is explicitly soluble.[45]HereVE(r)is a short range potential and can be dealt with within the framework of traditional phase function method.

    The phase function method represents an efficient approach to evaluate the scattering phase shifts for quantum mechanical problems involving local[46]and non-local interactions.[47?50]In this case the radial wave function of the Schr?dinger equation is separated into an amplitude part and an oscillating part with a variable phaseδl(k,r).For a local potentialδl(k,r)satisfies a first order nonlinear differential equation given by

    withthe Riccati Bessel functions.Hereindicates the derivative ofwith respect tor.In the phase convention of Calogaro[46]the Riccati Hankel function of first kind is written asThe scattering phase shiftδl(k)is obtained by solving this equation from the origin to the asymptotic region with the initial conditionδl(k,0)=0.The integral equation corresponding to Eq.(6)may be written as

    The first order approximation to scattering phase shift reads as

    Here?l(kr)andηl(kr)stand for the spherical Bessel functions.The scattering phase shifts will be computed by considering Eqs.(6),(8)and(9).

    3 Results and Discussions

    According to Levinsons theorem[51]each newly introduced bound state raises the zero energy phase shift by 180?and for reasonable potentials the zero energy phase shifts for higher angular momenta are always integral multiple ofπ.The smaller the resonance width Γ,the stronger is the change in scattering phase shift atE=ER.This implies that at small Γ there is a sharp jump of the phase shift by nearlyπin a very close interval of energies.In the first step of computation all the parametersandwere varied continuously to reproduce a phase shiftfor theα-αsystem andfor theα-3He system in the zero energy limit.For all other states the strength parameterswere given free running,keeping the parametersfixed,to obtain best possible agreement with standard data.[37,49?50]Recently,Li Xuet al.[52]obtained a reasonable description of the elastic scattering of triton by applying systematic helium-3 global optical model potential.Similarly,in this text also the nuclear part of theα-3He andα-3H systems are represented by the same nuclear Hulthén interaction.It is obvious from the fact that the parameters for the nuclear part of the interaction,used in this text,for both the systems are identical.Here we have chosen to work withV0a=0.2758 fm?1forα-αsystem;[49]V0a=0.2364 fm?1forα-3He system;V0a=0.1182 fm?1forα-3H system anda=50 au(atomic unit).Exploiting Eq.(6)along with the parameters in Tabless 1 and 2,we have portrayed the phase shifts for various partial wave states under consideration for theα-α,α-3He,andα-3H systems along with the standard results[37,49?50]in Figs.1–7 respectively.The results for the first and second order Born approximations are also presented in the figures for comparison.

    As expected,the S-wave phase shifts for theα-αsystem are positive at low energies and become negative at high energies.The S-wave phase shift changes its sign atELab=19.6 MeV which deviates by 3?from our earlier work based on exact calculation of the Coulomb plus separable potential[49]but coincides with the results of Refs.[12–13,50]. Beyond 19.6 MeV our phase shifts become negative but possess slightly higher values than those of Ref.[49]up to 70 MeV.In the energy range 70–100 MeV they agree quite well with Ref.[49].The first order Born approximation toδ0changes the sign of the phase shift at about 7 MeV and gradually approaches the values of Ref.[49]as energy increases while the second order approximation produces poor fit to standard data.Our D-wave phase shift reaches its peak value of about 124.915?atELab=4 MeV in contrast to the standard results[13,49?50]at about 8 MeV.However,beyond 20 MeV our D-wave phase shifts compare well with the earlier work.[49]Our first and second order Born approximations reproduce better fi t with those of Ref.[49]beyond 40 MeV.The G-wave phase shifts are in numerical disagreement with standard data[49?50]in the very low energy range but are in reasonable agreement with those of Ref.[49]beyond 30 MeV.Born approximations to G-wave phase shifts give much lower values than standard results.Although the G-wave phases slightly discern from standard data at low energies,they reproduce correct nature of the phase shift curve.It is observed that our Hulthén potential model is quite capable of producingα-αelastic scattering phases except for the low energy G-wave ones.

    Table 1 Parameters for the α-α system.

    Table 2 Parameters for the α-3He and α-3H systems.

    Fig.1 (Color online)Alpha-alpha phase shifts(δ0,δ2,and δ4)as a function of energy.Experimental data from Refs.[49]and[50].

    Fig.2 (Color on line)Alpha-3He phase shifts(δ1/2+,δ1/2?,and δ3/2+)as a function of energy.Experimental data from Ref.[37].

    Fig.3 (Color on line)Alpha-3He phase shifts(δ3/2? and δ5/2+)as a function of energy. Experimental data from Ref.[37].

    Fig.4 (Color online)Alpha-3He phase shifts(δ5/2? and δ7/2?)as a function of energy. Experimental data from Ref.[37].

    Fig.5 (Color on line)Alpha-3H phase shifts(δ1/2+,δ1/2?,and δ3/2+)as a function of energy.Experimental data from Ref.[37].

    Fig.6 (Color on line)Alpha-3H phase shifts(δ3/2? and δ5/2+)as a function of energy. Experimental data from Ref.[37].

    Forα-3He andα-3H systems the effective potentials vary due to variation in their electromagnetic parts.With these interactions the phase shifts for various angular momentum states have been computed and compared with the standard results.[37,42]It is noticed that the phase shifts computed for different states are in reasonable agreement with the works of Spiger and Tombrello(1967)[37]and Mohr.[42]The phase shiftsδ1/2+forα-3He system differ significantly with those of Ref.[37]in the range 4–7 MeV but agree quite well in the energy range 7 MeV to 12.5 MeV while those for theα-3H system are in good agreement with those of Ref.[37,42].However,the values for thefor both theα-3He andα-3H systems compare well with the standard results[37,42]over the entire energy range.Bothδ3/2+andδ5/2+for the systems under consideration decrease very slowly,almost remain near zero,as energy increases.As forδ5/2?(Figs.4 and 7)significant disagreements with experimental data[37]are observed for both the systems.Out of these two sets of data better results are obtained for theα-3H system as they are comparable with Ref.[37]in the low energy range.However,the nature of ourδ5/2?curve for theα-3He system is very much similar to that of Ref.[42]obtained through a sophisticated model.It reflects that our potential model falls short in producing correct phase shifts for 5/2?states for both theα-3He andα-3H systems.Thus to achieve better agreement in phase shift values with experimental data energy-dependent correction factors are incorporated to the respective interactions.These correction factors areforα-3He andforα-3H systems respectively with the numbers 0.266 and 0.165 in the unit of fm?2.With these correction factors we obtained good agreement with experimental results.[37]The corrected phase shifts are denoted byand are also depicted in Figs.4 and 7.Looking closely into Figs.4 and 7 it is noticed that the values forδ7/2?for theα-3He system compare well with Refs.[37,42]in the low energy range but differ slightly beyond 5.5 MeV,while,on the other hand,the same for theα-3H system discern in the low energy range(up to 6 MeV)but are in good agreement with experimental values[37]beyond 6 MeV.

    Fig.7 (Color on line)Alpha-3H phase shifts(δ5/2? and δ7/2?)as a function of energy. Experimental data from Ref.[37].

    Fig.8 (Color online)Alpha-alpha potentials(for S,P,and D states)as a function of distance.

    Fig.9 (Color online)Alpha-3He potentials(for 1/2+,1/2?,3/2?,3/2+,and 5/2+states)as a function of distance.

    Fig.10 (Color on line)Alpha-3He potentials(for 5/2?and 7/2?states)as a function of distance.

    Forα-3He andα-3H systems it is observed that the results for the first order Born approximation is quite comparable to exact calculations except for the 5/2?and 7/2?states,whereas the second order approximations reproduce poor fit to standard data.[49?50]For 3/2+and 5/2+states the differences in phase shift values between exact and approximate calculations are too small to visualize in the scale of the figures as seen in Fig.2.Thus,we have not plotted the results for the Born approximations for the same states in Figs.3,5,and 6.The interactions for the 5/2?and 7/2?states for theα-3He andα-3H systems have sharp depths at small values ofrwhich needs sufficiently high energies for the projectiles to reach that part of the interactions.At low energies only the tail part of the said interactions comes into play and thus produce lower phase shifts.

    Plots of the respective effective potentials forα-α,α-3He andα-3H systems are shown in Figs.8–12.The potentials are plotted in MeV units by multiplying Eq.(5)by the factors~2/2m=10.3675 MeV·fm2forα-αand~2/2m=24.190 833 MeV·fm2forα-3He andα-3H systems respectively.From Fig.8 it is seen that our potentials for theα-αsystem possess repulsive cores followed by their attractive parts.The presence of the repulsive cores in the potentials ensures less and less overlap of the particles.As per investigation of Ali and Bodmer[13]the size of the repulsive core as well as the depth of the potential should be decreased with the increase of the?-value.In contrast to this,the size of the repulsive cores as well as the depths of our potentials increases with the increment in?-value.This may be due the parameterization of the nuclear Hulthén type interaction.The potentials of Bucket al.[26]and of Marquez[28]have very strong attractive parts only.The maximum depth of their potentials is of the order of 125 MeV,while the depth of our S-wave potential is about 5 MeV.Our S-wave phase shifts for theα-αsystem give an indication of resonance at an energy which is far below the barely unbound ground state of8Be.This may be due to the insufficient depth of our S-wave potential.The interactions for the various partial wave states under consideration are depicted in Figs.9–12 for theα-3He andα-3H systems.In Figs.10 and 12 the potentials for 5/2?states with energy-dependent correction factors are also portrayed fork=0.2 fm?1andk=0.6 fm?1respectively.The natures of the potentials for both the systems are same except small differences in their strengths are observed.This is originated due to variation in the electromagnetic parts of the effective interactions forα-3He andα-3H systems.The exceptionally huge depth of our F-wave potentials appear to be consistent with the sharp steps in the 5/2?and 7/2?phase shifts.[37]

    4 Conclusion

    It is a well-known fact that knowing the general feature of the interactions,various phenomenological potentials with a certain number of free parameters in it can be constructed which are of interest in the cluster model of light nuclei.Variousα-αandα-3He potentials have been proposed earlier with the superposition of repulsive and attractive square well or Gaussian shapes.[26]Kukulinet al.[25]and Marquez[28]were able to fi t theααscattering phase shifts by using Woods-Saxon potential.Apart from square well,Gaussian or Woods-Saxon shapes,we have used here a Hulthén type potential and found reasonable agreement in the phase shift values with the earlier calculations[12?13,37,42,49?50]for theα-α,α-3He andα-3H systems.Also it is noticed that our present model of interaction reproduces better results than our earlier approach.[30]The essential features of the shortrange part of the nucleus-nucleus interaction have been clarified by the microscopic theories like the generator coordinate method(GCM)or the resonating group method(RGM).[53?54]With the RGM,a large number of elastic collisions are described with a good precision[55?56]by using two-body phenomenological interactions.In the RGM there appears an interaction generated from the two-nucleon forces which consists of two parts:(i)a direct part and(ii)a fairly complicated nonlocal kernel.This non-local kernel presents mathematical difficulties for rigorous inclusion of the Coulomb effect in the studies of nucleus-nucleus elastic scattering.Within the framework of RGM,although the numerical complications are considerably higher than the present method,good agreements with the real part of the experimental phase shifts for various partial wave states have been observed.But it seems rather difficult to reproduce the numbers of the RGM calculation by a simple minded potential as used by us.Looking closely into Figs.1,4,and 7 it is observed that our low energy G-wave phase values for theα-αsystem and those for 5/2?states forα-3He andα-3H systems differ slightly from those of Refs.[13,37,49–50],which indicate certain demerits in the potentials for these states.However,good agreements are achieved with the introduction of a correction factor to the potentials of 5/2?states.As it is well known that the fundamental studies of theα-α,α-3He andα-3H interactions provide a useful basis for understanding the interaction between complex nuclei,our potential model may be of considerable interest in treating the complex nucleus-nucleus scattering.In the recent past Nersisyan and Fernndez-Varea[57]applied

    [1]E.Rutherford and J.Chadwick,Phil.Mag.4(1927)605.

    [2]L.Rosenfeld,Nuclear Forcesa,North-Holland Publ.Co.,Amsterdam(1948).

    [3]D.M.Dennison,Phys.Rev.96(1954)378.

    [4]F.E.Steigert and M.B.Sampson,Phys.Rev.92(1953)660.

    [5]A.E.Glassgold and A.Galonsky,Phys.Rev.103(1956)701.

    [6]N.P.Heydenberg and G.M.Temmer,Phys.Rev.104(1956)123.

    [7]J.L.Russell,G.C.Phillips,and C.W.Reich,Phys.Rev.104(1956)135.

    [8]C.M.Jones,G.C.Phillips,and P.D.Miller,Phys.Rev.117(1960)525.

    [9]N.Berk,F.E.Steigert,and G.L.Salinger,Phys.Rev.117(1960)531.

    [10]J.R.Dunning,A.M.Smith,and F.E.Steigert,Phys.Rev.121(1961)580.

    [11]R.Chiba,H.E.Conzett,H.Morinaga,et al.,Phys.Soc.Japan 16(1961)1077.

    [12]T.A.Tombrello and L.S.Senhouse,Phys.Rev.129(1963)2252.

    [13]S.Ali and A.R.Bodmer,Nucl.Phys.80(1966)99.

    [14]T.A.Tombrello and P.D.Parker,Phys.Rev.131(1963)2582.

    [15]T.Kajino and A.Arima,Phys.Rev.Lett.52(1984)739.

    [16]P.R.Page,Phys.Rev.C 72(2005)054312.

    [17]P.Darriulat,G.Igo,H.G.Pugh,and H.D.Holmgren,Phys.Rev.137(1965)B315.

    [18]R.R.Haefner,Rev.Mod.Phys.23(1951)228.

    [19]R.Nilson,W.K.Jentschke,G.R.Briggs,et al.,Phys.Rev.109(1958)850.

    [20]E.van der Spuy and H.J.Pienaar,Nucl.Phys.7(1958)397.

    [21]G.Igo,Phys.Rev.117(1960)1079.

    [22]O.Endo,I.Shimodaya,and J.Hiura,Prog.Theor.Phys.(Kyoto)31(1964)1157.second order Born approximation for the computation of scattering phase shifts with electron-ion interaction potential and found some reasonable agreement with exact calculation.But this perturbative approach to the problem is not quite satisfactory in our cases as the strengths of the interactions under consideration are too strong to validate the perturbative approach.Further,also it is of importance to have in the literature the alternative approaches to the problem for calculation of physical observables of a particular system.Thus,it is our belief that the present potential model for the light nuclei systems will be of quite interesting to a wide variety of physicists and deserves some attention.

    [23]S.Ali and S.A.Afzal,Nuovo Cimento 50(1967)355.

    [24]V.I.Kukulin,V.G.Neudatchin,and Y.F.Smirnov,Nucl.Phys.A 245(1975)429.

    [25]B.Buck,H.Friedrich,and C.Wheatley,Nucl.Phys.A 275(1977)246.

    [26]H.Friedrich,Phys.Rep.74(1981)209;Phys.Rev.C 30(1984)1102.

    [27]L.Marquez,Phys.Rev.C 28(1983)2525.

    [28]P.Mohr,et al.,Z.Phys.A-Atomic Nuclei 349(1994)339.

    [29]S.Elhatisari,D.Lee,G.Rupak,et al.,Nature(London)528(2015)111.

    [30]J.Bhoi and U.Laha,Pramana-J.Phys.88(2017)42.

    [31]E.Caurier,P.Navrtil,W.E.Ormand,and J.P.Vary,Phys.Rev.C 64(2001)051301.

    [32]T.Yoshida,N.Shimizu,T.Abe,and T.J.Otsuka,Phys.Conf.Ser.454(2013)012050.

    [33]T.Myo,A.Umeya,K.Horii,et al.,Prog.Theor.Exp.Phys.(2014)033D01.

    [34]V.M.Datar,et al.,Phys.Rev.Lett.111(2013)062502.

    [35]P.Mohr,H.Abele,R.Zwiebel,et al.,Phys.Rev.C 48(1993)1420.

    [36]A.C.L.Barnard,C.M.Jones,and G.C.Phillip,Nucl.Phys.50(1964)629.

    [37]R.J.Spiger and T.A.Tombrello,Phys.Rev.163(1967)964.

    [38]L.S.Chuang,Nucl.Phys.A 174(1971)399.

    [39]W.R.Boykin,S.D.Baker,and D.M.Hardy,Nucl.Phys.A 195(1972)241.

    [40]D.M.Hardy,R.J.Spiger,S.D.Baker,et al.,Nucl.Phys.A 195(1972)250.

    [41]R.H.Cyburt and B.Davids,Phys.Rev.C 78(2008)064614.

    [42]P.Mohr,Phys.Rev.C 79(2009)065804.

    [43]T.Ne ff,Phys.Rev.Lett.106(2011)042502.

    [44]U.Laha and J.Bhoi,Phys.Rev.C 91(2015)034614.

    [45]S.Flgge,Practical Quantum Mechanics,Springer,Berlin(1971)p.175.

    [46]F.Calogero,Variable Phase Approach to Potential Scattering,Academic,New York(1967).

    [47]B.Talukdar,D.Chatterjee,and P.Banerjee,J.Phys.G:Nucl.Phys.3(1977)813.

    [48]G.C.Sett,U.Laha,and B.Talukdar,J.Phys.A:Math.Gen.21(1988)3643.

    [49]U.Laha,N.Haque,T.Nandi,and G.C.Sett,Z.Phys.A-Atomic Nuclei 332(1989)305.

    [50]S.A.Afzal,A.A.Z.Ahmad,and S.Ali,Rev.Mod.Phys.41(1969)247.

    [51]R.G.Newton,Scattering Theory of Waves and Particles,McGraw Hill,New York(1982).

    [52]Y.L.Xu,H.R.Guo,Y.L.Han,and Q.B.Shen,Int.J.Mod.Phys.E 24(2015)1550005.

    [53]D.L.Hill and J.A.Wheeler,Phys.Rev.89(1953)1102.

    [54]K.Wildermuth and W.McClure,Cluster Representation of Nuclei-Springer Tracts in Modern Physics 41,Springer,New York(1966).

    [55]Y.C.Tang,inTopics in Nuclear Physics II,Lecture Notes in Physics,V.145,Springer,Berlin(1981)p.571.

    [56]H.Horiuchi,Prog.Theor.Phys.Suppl.62(1977)90.

    [57]H.B.Nersisyan and Jos M.Fernndez-Varea,Nucl.Instrum.Methods Phys.Res.B 311(2013)121.

    免费看光身美女| 国产精品女同一区二区软件 | 国产精品自产拍在线观看55亚洲| 色精品久久人妻99蜜桃| 最新在线观看一区二区三区| 国产精品电影一区二区三区| 麻豆成人av在线观看| 国产精品久久久久久亚洲av鲁大| 国产高清视频在线观看网站| 国内精品美女久久久久久| 天堂动漫精品| 成人三级黄色视频| 国产一区二区激情短视频| 黄色丝袜av网址大全| 18禁在线播放成人免费| 嫩草影视91久久| 国产aⅴ精品一区二区三区波| 我要搜黄色片| 女生性感内裤真人,穿戴方法视频| 99热只有精品国产| 精品一区二区免费观看| 一区福利在线观看| 国产高潮美女av| 在线观看66精品国产| 伊人久久精品亚洲午夜| 免费av观看视频| 国产精品不卡视频一区二区 | 午夜a级毛片| 他把我摸到了高潮在线观看| 欧美午夜高清在线| 少妇被粗大猛烈的视频| 日本免费一区二区三区高清不卡| 国产亚洲精品久久久久久毛片| 99久久精品一区二区三区| 校园春色视频在线观看| 婷婷丁香在线五月| 亚洲久久久久久中文字幕| 精品久久久久久成人av| 国产精品久久电影中文字幕| 欧美色欧美亚洲另类二区| 一本一本综合久久| 91久久精品国产一区二区成人| 舔av片在线| 免费高清视频大片| 又粗又爽又猛毛片免费看| av福利片在线观看| 小蜜桃在线观看免费完整版高清| 精品久久久久久久久久久久久| 男人和女人高潮做爰伦理| 亚洲精品粉嫩美女一区| 婷婷色综合大香蕉| 一个人看的www免费观看视频| 美女xxoo啪啪120秒动态图 | 夜夜爽天天搞| 亚洲真实伦在线观看| 18美女黄网站色大片免费观看| 国产精品一区二区三区四区久久| 国产一级毛片七仙女欲春2| 亚洲午夜理论影院| 成人美女网站在线观看视频| 老女人水多毛片| 美女高潮的动态| 免费在线观看亚洲国产| 国产真实乱freesex| 男插女下体视频免费在线播放| 欧美成人a在线观看| 日本a在线网址| 有码 亚洲区| 在线观看美女被高潮喷水网站 | 久久久久久久久中文| 好看av亚洲va欧美ⅴa在| 三级男女做爰猛烈吃奶摸视频| 精品久久久久久久久亚洲 | 久久久国产成人精品二区| 成人精品一区二区免费| 婷婷精品国产亚洲av在线| 国产精品三级大全| 桃色一区二区三区在线观看| 757午夜福利合集在线观看| 日韩欧美精品v在线| 亚洲狠狠婷婷综合久久图片| 男人狂女人下面高潮的视频| 亚洲经典国产精华液单 | 亚洲在线自拍视频| 午夜福利高清视频| 听说在线观看完整版免费高清| 99热6这里只有精品| 国产精品不卡视频一区二区 | 精品人妻一区二区三区麻豆 | av在线老鸭窝| 日本免费一区二区三区高清不卡| 欧美日韩乱码在线| 久久久久精品国产欧美久久久| 在线观看免费视频日本深夜| 国产欧美日韩精品亚洲av| 亚洲成av人片免费观看| 国产伦精品一区二区三区四那| 国产乱人视频| 制服丝袜大香蕉在线| 亚洲精品456在线播放app | 一区福利在线观看| 成年人黄色毛片网站| 精品久久久久久久久久免费视频| 91字幕亚洲| 亚洲性夜色夜夜综合| 性欧美人与动物交配| 老司机深夜福利视频在线观看| 亚洲美女黄片视频| 性插视频无遮挡在线免费观看| 高清在线国产一区| 国产精品一区二区性色av| 国产成人福利小说| 国产精品亚洲av一区麻豆| 一本综合久久免费| 一进一出好大好爽视频| 99在线视频只有这里精品首页| 国产探花在线观看一区二区| 国产野战对白在线观看| 中亚洲国语对白在线视频| 亚洲天堂国产精品一区在线| 国产乱人视频| 深爱激情五月婷婷| 国产国拍精品亚洲av在线观看| 亚洲熟妇中文字幕五十中出| 欧美不卡视频在线免费观看| 神马国产精品三级电影在线观看| av国产免费在线观看| 亚洲无线在线观看| 天天躁日日操中文字幕| 男人的好看免费观看在线视频| 51午夜福利影视在线观看| 亚洲性夜色夜夜综合| 国产精品美女特级片免费视频播放器| 亚洲国产精品久久男人天堂| 赤兔流量卡办理| 亚洲国产高清在线一区二区三| 最新中文字幕久久久久| 国内毛片毛片毛片毛片毛片| 18禁在线播放成人免费| 极品教师在线免费播放| 国产一区二区三区在线臀色熟女| 亚洲黑人精品在线| 给我免费播放毛片高清在线观看| 男人和女人高潮做爰伦理| 欧美中文日本在线观看视频| 中文在线观看免费www的网站| 国产精品不卡视频一区二区 | 国产成人福利小说| 丝袜美腿在线中文| 少妇人妻精品综合一区二区 | 2021天堂中文幕一二区在线观| 免费观看人在逋| 午夜福利成人在线免费观看| 91九色精品人成在线观看| 国产免费一级a男人的天堂| 美女cb高潮喷水在线观看| 18美女黄网站色大片免费观看| 久久久久九九精品影院| 欧美黑人巨大hd| 桃红色精品国产亚洲av| xxxwww97欧美| av黄色大香蕉| 午夜日韩欧美国产| 国产精品1区2区在线观看.| 成人毛片a级毛片在线播放| 亚洲精品成人久久久久久| 日韩欧美三级三区| 91在线精品国自产拍蜜月| 国产淫片久久久久久久久 | 国产精品不卡视频一区二区 | 久久久久国内视频| 久久久久九九精品影院| 大型黄色视频在线免费观看| 国产免费一级a男人的天堂| 91字幕亚洲| www.色视频.com| 成人特级av手机在线观看| 日韩av在线大香蕉| 亚洲黑人精品在线| 免费高清视频大片| 自拍偷自拍亚洲精品老妇| 国产极品精品免费视频能看的| 九九在线视频观看精品| 免费av观看视频| 亚洲在线自拍视频| 非洲黑人性xxxx精品又粗又长| 国产精品久久久久久久久免 | 日本三级黄在线观看| 久久久精品大字幕| 看免费av毛片| 日日夜夜操网爽| 又紧又爽又黄一区二区| 国产蜜桃级精品一区二区三区| 亚洲国产欧洲综合997久久,| 欧美成人性av电影在线观看| 亚洲成人久久爱视频| 一本精品99久久精品77| 久久国产精品影院| 男人舔女人下体高潮全视频| 性色av乱码一区二区三区2| 久久精品国产99精品国产亚洲性色| 一本综合久久免费| 日韩欧美精品v在线| 国产一区二区亚洲精品在线观看| 国产人妻一区二区三区在| 欧美一级a爱片免费观看看| 国产极品精品免费视频能看的| 欧美黑人欧美精品刺激| 在现免费观看毛片| 国产在线精品亚洲第一网站| 白带黄色成豆腐渣| 深夜a级毛片| 岛国在线免费视频观看| 欧美高清性xxxxhd video| 免费无遮挡裸体视频| av国产免费在线观看| 最后的刺客免费高清国语| 亚洲在线观看片| 国产精品99久久久久久久久| 麻豆成人午夜福利视频| 如何舔出高潮| 黄色配什么色好看| 日韩欧美精品v在线| 天美传媒精品一区二区| 欧美黄色淫秽网站| 欧美高清性xxxxhd video| 中文字幕精品亚洲无线码一区| 成人精品一区二区免费| 国产男靠女视频免费网站| 国产黄色小视频在线观看| 极品教师在线视频| 亚洲av五月六月丁香网| 精品国产三级普通话版| 97热精品久久久久久| av在线老鸭窝| 欧美一区二区精品小视频在线| 女生性感内裤真人,穿戴方法视频| 非洲黑人性xxxx精品又粗又长| av在线老鸭窝| 国语自产精品视频在线第100页| 国产免费av片在线观看野外av| 亚洲五月婷婷丁香| 脱女人内裤的视频| 日韩人妻高清精品专区| 久久久久久国产a免费观看| 国产视频内射| 国产毛片a区久久久久| 男女做爰动态图高潮gif福利片| 亚洲欧美清纯卡通| 精品国内亚洲2022精品成人| 大型黄色视频在线免费观看| 国内毛片毛片毛片毛片毛片| 校园春色视频在线观看| 在线天堂最新版资源| 亚洲精品粉嫩美女一区| 一级黄片播放器| 中文资源天堂在线| avwww免费| 在线观看午夜福利视频| 国产高清三级在线| 日韩人妻高清精品专区| 免费观看人在逋| 亚洲不卡免费看| 两个人的视频大全免费| 亚洲狠狠婷婷综合久久图片| 国产精品永久免费网站| 1000部很黄的大片| 琪琪午夜伦伦电影理论片6080| 欧美日韩亚洲国产一区二区在线观看| 永久网站在线| 噜噜噜噜噜久久久久久91| 久久草成人影院| 久久久久国产精品人妻aⅴ院| 亚洲精品日韩av片在线观看| 欧美一区二区亚洲| 国产麻豆成人av免费视频| 蜜桃久久精品国产亚洲av| 熟妇人妻久久中文字幕3abv| 最好的美女福利视频网| 噜噜噜噜噜久久久久久91| 国内精品久久久久久久电影| 18+在线观看网站| 免费看a级黄色片| 深爱激情五月婷婷| 色综合欧美亚洲国产小说| 国产精品一区二区三区四区免费观看 | 精华霜和精华液先用哪个| 成人午夜高清在线视频| 成人亚洲精品av一区二区| 波野结衣二区三区在线| 国产精品av视频在线免费观看| 伊人久久精品亚洲午夜| 国内精品美女久久久久久| 欧美bdsm另类| 亚洲av熟女| 国产精品永久免费网站| 欧美区成人在线视频| 十八禁网站免费在线| 可以在线观看的亚洲视频| 午夜免费男女啪啪视频观看 | 欧美中文日本在线观看视频| 成年版毛片免费区| 国产精品免费一区二区三区在线| 久久久国产成人免费| 午夜日韩欧美国产| 美女免费视频网站| or卡值多少钱| 欧美一级a爱片免费观看看| 久久精品国产亚洲av香蕉五月| 久久草成人影院| 精品人妻1区二区| 午夜精品久久久久久毛片777| 久久香蕉精品热| 欧美激情在线99| 91狼人影院| 久久精品综合一区二区三区| 啦啦啦韩国在线观看视频| 国产精品一及| 国产在视频线在精品| 久久精品国产自在天天线| 欧美丝袜亚洲另类 | 十八禁网站免费在线| 午夜久久久久精精品| 久久亚洲精品不卡| 蜜桃久久精品国产亚洲av| 搡老岳熟女国产| 97超级碰碰碰精品色视频在线观看| 午夜福利高清视频| 国产美女午夜福利| 亚洲专区中文字幕在线| 美女 人体艺术 gogo| 身体一侧抽搐| 最近在线观看免费完整版| 夜夜看夜夜爽夜夜摸| 欧美xxxx黑人xx丫x性爽| 黄色一级大片看看| 亚洲黑人精品在线| 免费av不卡在线播放| 女人十人毛片免费观看3o分钟| 熟妇人妻久久中文字幕3abv| 亚洲av第一区精品v没综合| 国产亚洲精品综合一区在线观看| 嫩草影院精品99| 麻豆一二三区av精品| 国产精品一区二区三区四区久久| 天堂网av新在线| 丰满人妻一区二区三区视频av| 欧美国产日韩亚洲一区| 亚洲激情在线av| 亚洲国产精品久久男人天堂| 他把我摸到了高潮在线观看| 国产又黄又爽又无遮挡在线| 亚州av有码| 久久人妻av系列| 宅男免费午夜| 淫妇啪啪啪对白视频| 国产精品,欧美在线| 亚洲不卡免费看| 久久亚洲精品不卡| 天堂影院成人在线观看| 国产成年人精品一区二区| 国产高清三级在线| 哪里可以看免费的av片| 成人欧美大片| 欧美一区二区国产精品久久精品| 在线国产一区二区在线| 国产精品女同一区二区软件 | 亚洲成人精品中文字幕电影| 老司机午夜福利在线观看视频| 亚洲自拍偷在线| 成人鲁丝片一二三区免费| 欧美日本亚洲视频在线播放| 老司机午夜福利在线观看视频| 久久国产乱子免费精品| 欧美成人免费av一区二区三区| 97人妻精品一区二区三区麻豆| 免费看日本二区| 亚洲国产精品sss在线观看| 日本黄色片子视频| 女生性感内裤真人,穿戴方法视频| 99热这里只有是精品在线观看 | 九色国产91popny在线| 永久网站在线| 日韩欧美精品免费久久 | 精品久久久久久,| 国产精品嫩草影院av在线观看 | 亚洲av免费在线观看| 两人在一起打扑克的视频| 久久精品91蜜桃| 18禁在线播放成人免费| 欧美一级a爱片免费观看看| 日韩中字成人| 精品人妻熟女av久视频| 国产精品乱码一区二三区的特点| av欧美777| 少妇人妻精品综合一区二区 | 国产白丝娇喘喷水9色精品| 国产一区二区在线av高清观看| 精品日产1卡2卡| 日韩人妻高清精品专区| 色精品久久人妻99蜜桃| 中文字幕av在线有码专区| www.色视频.com| 美女 人体艺术 gogo| 欧美日韩综合久久久久久 | 日韩欧美三级三区| 两人在一起打扑克的视频| 女同久久另类99精品国产91| 日本免费a在线| 欧美最黄视频在线播放免费| 久久精品国产清高在天天线| 国产精品伦人一区二区| 97碰自拍视频| 男人狂女人下面高潮的视频| 久久亚洲精品不卡| 亚洲人成网站高清观看| 麻豆国产97在线/欧美| 午夜免费男女啪啪视频观看 | 麻豆国产97在线/欧美| 看黄色毛片网站| 我要看日韩黄色一级片| 两性午夜刺激爽爽歪歪视频在线观看| 夜夜爽天天搞| 国产一区二区三区视频了| 日韩有码中文字幕| 自拍偷自拍亚洲精品老妇| 蜜桃亚洲精品一区二区三区| 亚洲 国产 在线| 禁无遮挡网站| 尤物成人国产欧美一区二区三区| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 身体一侧抽搐| 亚洲国产精品成人综合色| 天堂av国产一区二区熟女人妻| 久久婷婷人人爽人人干人人爱| 最新在线观看一区二区三区| 日本黄色视频三级网站网址| 91在线精品国自产拍蜜月| 国产成人a区在线观看| 少妇丰满av| 简卡轻食公司| 午夜两性在线视频| 嫩草影院新地址| 淫妇啪啪啪对白视频| av中文乱码字幕在线| 久久九九热精品免费| h日本视频在线播放| 亚洲性夜色夜夜综合| 国产精品亚洲美女久久久| 国产国拍精品亚洲av在线观看| 中文字幕高清在线视频| 观看美女的网站| 成年版毛片免费区| 久久午夜亚洲精品久久| 国产av在哪里看| 成人亚洲精品av一区二区| 久久精品国产清高在天天线| a级一级毛片免费在线观看| 国产精品女同一区二区软件 | 日本 av在线| 真实男女啪啪啪动态图| 国产精品爽爽va在线观看网站| 老司机深夜福利视频在线观看| 性插视频无遮挡在线免费观看| 精品一区二区三区视频在线观看免费| 国产精品嫩草影院av在线观看 | 在线观看免费视频日本深夜| 久99久视频精品免费| 又粗又爽又猛毛片免费看| 国产单亲对白刺激| 国产高清激情床上av| 国产单亲对白刺激| 亚洲自拍偷在线| 免费黄网站久久成人精品 | 精品一区二区三区av网在线观看| 国产精品,欧美在线| 精品一区二区三区av网在线观看| 我要看日韩黄色一级片| 一个人看的www免费观看视频| 亚洲av免费高清在线观看| 亚洲av成人不卡在线观看播放网| 老司机福利观看| 97超视频在线观看视频| 小蜜桃在线观看免费完整版高清| 久久6这里有精品| 亚洲国产高清在线一区二区三| 日韩 亚洲 欧美在线| 亚洲国产精品sss在线观看| 99久久成人亚洲精品观看| 少妇的逼好多水| 好看av亚洲va欧美ⅴa在| 日本 欧美在线| 成人av一区二区三区在线看| 免费在线观看亚洲国产| 久久婷婷人人爽人人干人人爱| 免费在线观看日本一区| 国产精品爽爽va在线观看网站| 少妇高潮的动态图| 好男人在线观看高清免费视频| 国产精品影院久久| 欧美国产日韩亚洲一区| 成年女人永久免费观看视频| 黄色一级大片看看| 久9热在线精品视频| 亚洲欧美日韩无卡精品| 国产 一区 欧美 日韩| 淫秽高清视频在线观看| 一个人看的www免费观看视频| 久9热在线精品视频| 成人三级黄色视频| 精品一区二区三区av网在线观看| 国产精品女同一区二区软件 | 精品乱码久久久久久99久播| 欧美日本视频| 国模一区二区三区四区视频| 国产三级中文精品| 亚洲男人的天堂狠狠| 九色成人免费人妻av| 亚洲最大成人中文| 1024手机看黄色片| 婷婷色综合大香蕉| 免费人成在线观看视频色| 男女之事视频高清在线观看| 亚洲成人免费电影在线观看| 很黄的视频免费| 国产免费av片在线观看野外av| 麻豆一二三区av精品| 国产精品久久久久久人妻精品电影| 12—13女人毛片做爰片一| 国产精品伦人一区二区| 亚洲国产欧洲综合997久久,| 亚洲va日本ⅴa欧美va伊人久久| 日韩欧美精品免费久久 | 亚洲精品乱码久久久v下载方式| 床上黄色一级片| 两性午夜刺激爽爽歪歪视频在线观看| 成年人黄色毛片网站| 亚洲欧美日韩无卡精品| 午夜精品一区二区三区免费看| 在线观看美女被高潮喷水网站 | 啪啪无遮挡十八禁网站| 在线观看av片永久免费下载| 国产久久久一区二区三区| 欧美日韩中文字幕国产精品一区二区三区| 国产乱人伦免费视频| 国产麻豆成人av免费视频| 国产主播在线观看一区二区| 天堂av国产一区二区熟女人妻| 久久亚洲真实| 国产精品久久久久久亚洲av鲁大| av黄色大香蕉| 听说在线观看完整版免费高清| 熟女电影av网| 人人妻人人看人人澡| 色播亚洲综合网| 久久精品人妻少妇| 丰满人妻熟妇乱又伦精品不卡| 精品久久久久久久久av| 国产黄片美女视频| 国产麻豆成人av免费视频| 99久久精品热视频| 欧美日本视频| 国产亚洲av嫩草精品影院| 国产野战对白在线观看| 淫妇啪啪啪对白视频| 日日干狠狠操夜夜爽| 国产高清视频在线播放一区| 亚洲美女搞黄在线观看 | 美女高潮喷水抽搐中文字幕| 久久精品国产亚洲av涩爱 | 日韩欧美精品v在线| 淫妇啪啪啪对白视频| 亚洲最大成人av| 人妻制服诱惑在线中文字幕| 性插视频无遮挡在线免费观看| 午夜福利在线观看免费完整高清在 | 18+在线观看网站| www.www免费av| 成人毛片a级毛片在线播放| 亚洲精品乱码久久久v下载方式| 露出奶头的视频| 国产精品久久久久久久电影| 亚洲第一欧美日韩一区二区三区| 国产成人福利小说| 在线a可以看的网站| 免费在线观看成人毛片| 美女高潮喷水抽搐中文字幕| 黄色配什么色好看| 51国产日韩欧美| 色吧在线观看| 少妇熟女aⅴ在线视频| 日韩 亚洲 欧美在线| 香蕉av资源在线| 特级一级黄色大片| av女优亚洲男人天堂| 国产蜜桃级精品一区二区三区| 中文资源天堂在线| 国产欧美日韩一区二区精品| 亚洲美女视频黄频| 好看av亚洲va欧美ⅴa在| 亚洲欧美日韩高清专用| 男人舔女人下体高潮全视频| 看黄色毛片网站| 青草久久国产| 国内揄拍国产精品人妻在线| 韩国av一区二区三区四区| 欧美色视频一区免费| 男女做爰动态图高潮gif福利片| 91狼人影院| 成人av在线播放网站| 草草在线视频免费看| 亚洲,欧美,日韩| 熟女人妻精品中文字幕| 国产精品免费一区二区三区在线| 国内精品一区二区在线观看|