• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A transient bulk flow model with circular whirl motion for rotordynamic coefficients of annular seals

    2018-05-17 10:07:28PengXIAZhanshengLIUXiangyuYUJingmingZHAO
    CHINESE JOURNAL OF AERONAUTICS 2018年5期

    Peng XIA,Zhansheng LIU,Xiangyu YU,Jingming ZHAO

    School of Energy Science and Engineering,Harbin Institute of Technology,Harbin 150001,China

    1.Introduction

    Rotordynamic characteristics of high-performance turbomachinery significantly depend on the hydrodynamic forces developed by annular pressure seals.1Accordingly,a large number of studies have been conducted to theoretically predict and to experimentally measure the hydrodynamic forces in a number of seal configurations under various operating conditions.

    The bulk flow model introduced by Hirs2has been widely used to predict the dynamic coefficients for turbulent annular seals.In order to simplify the Navier-Stokes equations and reduce substantial computational costs,the bulk flow theory associated bulk mean flow in the seal clearance with averaged turbulence forces.Childs3firstly used 1D bulk flow model with fluid inertia effect to calculate the rotor dynamic coefficients for smooth annular seals concentric with rotors.San Andres4developed a Computational Fluid Dynamics(CFD)solution for eccentric smooth annular seals.A finite difference scheme was implemented to solve 2D bulk flow model and the numerical solution procedure was based on the Semi-Implicit Method for Pressure Linked Equation(SIMPLE)to accelerate convergence.To improve the accuracy of bulk flow model,simplified turbulence models for different surface textures were developed based on a large number of experimental data in the Refs.5,6Although the turbulent models were proved to be effective in those studies,it was difficult to capture the full nature of turbulence flow based on analogical experiments.In the Refs.7,8,the analytical results and experiment data had good agreement by manually adjusting the friction factors in the turbulence models.Saba et al.9evaluated the friction factors by minimizing leakage derivation between analytical results and experiment data,and the prediction of rotor dynamic coefficients had good agreement with experiment results.However,empirical boundary conditions used in the Refs.7–9were another important error source.As the boundary conditions of bulk flow model also had an influence on the leakage flowrate,the friction factors could not be determined independently in the Ref.9Actually,the boundary conditions such as pressure loss coefficient and pre-swirl ratio could be measured in experiments,but the measurements were very expensive and seldom have been conducted.In the Refs.3–9,the bulk flow model was a static model and a perturbation method was implemented to calculate rotordynamic coefficients with a mathematical simpli fication that the amplitude of rotor whirl motion was much smaller than the clearance thickness,but the amplitude in experiments and engineering hardly fulfilled the perturbation simplification.In addition,there were many other cases where the perturbation condition did not ful fill.In the Refs.10,11,the large-scale dynamic responses of floating ring seals were investigated and the hydrodynamic forces were calculated by the perturbed bulk flow model.

    In recent years,CFD has been increasingly used to predict the performance of annular seals.CFD method solves the complete Navier-Stokes equations and is able to predict turbulence flow at a highly detailed level in the solution.Moore and Palazzolo12conducted CFD simulations to investigate the liquid mean velocity of a grooved liquid annular seal.Numerical predictions of the mean velocity at different positions across the seal showed good agreement with experimental results.With the development of computational technology,CFD method was used to calculate rotordynamic coefficients for annular seals.Moore13introduced a steady-state CFD method to calculate rotordynamic coefficients of a labyrinth seal.The method used a steady-state flow field and a rotor whirl motion with small eccentricities.The axisymmetric geometry of the labyrinth seal allowed frequency-independent rotordynamic coefficients to be evaluated with impedance calculation at three different whirl frequencies.Untaroiu et al.14calculated rotordynamic coefficients for a circumferentially grooved liquid seal with the steady-state method.To study pre-swirl effect,the upstream region for the seal was explicitly modeled in CFD study.Chochua and Soulas15developed a 3D transient,dynamic mesh method to calculate dynamic characteristics of a hole-pattern gas seal.Yan et al.16improved the dynamic mesh method with a small circular rotor whirl motion,and the computational costs for a simulation needed 15 days on an Intel Core2 Quad6600 2.4 GHz CPU.Generally,full 3D CFD method demonstrated superior capacity in predicting leakage and rotordynamic coefficients over bulk flow model while the CFD method required long solution time for calculating the dynamic coefficients.In addition,for wall-bounded flow in liquid seals,turbulence intensity in the clearance was much lower than requirements of the wall function in CFD theory and was inevitable to exponentially increase computational costs to solve the wall-bounded flow in 3D CFD analysis.

    Several investigations were conducted to take advantage of the two methods.Arghir et al.17modified the turbulence model in bulk flow model with a great deal of CFD results for a typical cell extracted from seal textured surfaces.Migliorini et al.18substituted wall shear stress predicted by steady-state CFD analysis into bulk flow model to calculate rotordynamic coefficients.However,the wall shear stress was only part of the turbulence resistance in seal clearance.

    2.Analytical model

    2.1.Bulk flow model with arbitrary rotor motion

    Under high pressure drop and rotational speed,the flow of low viscosity is characterized by high levels of turbulence.By neglecting velocity variation in the radial(y)direction and incorporating simpli fied turbulence models into the Navier-Stokes equations,the bulk flow continuity and momentum equations(Eqs.(1)–(3))in the axial(z)and circumferential(x)directions are given by the Ref.4within each control volume of 2D flow field in seal clearance.

    wheret is the time,w is the axial averaged velocity,u is the circumferential averaged velocity,usis the velocity relative to the stator,uris the velocity relative to the rotor,h is the clearance thickness,p is the fluid pressure,ρ is the fluid density,R is the rotor radius,Ω is the rotor speed,frand fsare Moody’s turbulence formulas at rotor and stator surfaces,n is the friction factor.

    To directly consider rotor whirl motion,the squeeze velocity Vsin the control volume is explicitly represented as the time derivative of film thickness.

    where θ is the circumferential angle of a control volume,Vradialis the radial velocity and Vtangentialis the tangential velocity in the local coordinate system shown in Fig.1.

    Within a trivial time interval Δt,it is assumed that flow variables in Eqs.(1)–(3)lineally vary.For incompressible fluid,the equations are discretized between t and t+Δt time step.

    As shown in Fig.1,the 2D control volumes keep the same shape in the local coordinate system at each time step.The node variables of t time step(φt=pt,ut,wt)in the coordinate system of t+Δt time step are obtained by linear interpolation inside the linear discretized control volumes of the t time step.

    2.2.Boundary conditions with CFD calibration

    Boundary conditions for the velocity and pressure fields at the seal entrance and exit are:

    (1)At the seal entrance,the pressure loss effect is modeled aswhere pinis the upstream pressure,penis the seal entrance pressure and δ is the pressure loss coefficient and wenis the mean flow axial velocity at seal entrance.

    (2)Depending on upstream conditions,the entrance circumferential velocity is uen= βRΩ,where β is the pres wirl ratio.

    (3)At the seal exit,no pressure recovery effect is assumed to exist,pex=pout,where poutis the downstream pressure and pexis the seal exit pressure.

    To obtain the above parameters of the boundary conditions,CFD method is used to simulate the steady-state flow ifeld in and around the seal clearance.By extracting weighted-average CFD results at the seal entrance and exit,the parameters are determined,and the friction factor of bulk flow model is further evaluated by minimizing leakage flowrate deviation between CFD method and bulk flow model.

    2.3.Numerical solution procedure

    The flow field of each time step is discretized with rectangular elements shown in Fig.2,and the distributions of flow variables are obtained by assuming that the variables are linearly distributed inside each element domain Ωe.

    where φ=u,w,p;Niis the 2D Lagrange interpolation function and i is the node number in an element.

    To obtain the finite element matrix represented by Eq.(9),the Eqs.(5)–(7)are multiplied by the Galerkin test function and integrated over a master isopara metric element.Xu19detailed coordinate transformation and numerical integration procedure with the Gauss-Legendre quadrature formulas.

    The sub-matrixes in the left side of the Eq.(9)are 4×4 2D matrixes and the sub-matrixes in the right side are 4×1 1D matrixes.The sub-coefficients in each sub-matrix are given in detail in Appendix A.ue,we,and peare the 4×1 1D matrixes of the node variable ui,wiand piin an element.

    The finite element matrixes of all the elements in the flow field are assembled to form an equation system.The alternating linear iteration algorithm is used to solve the equation system and obtain the velocity and pressure distributions in seal clearance.

    2.4.Fluid film forces and rotor dynamic coefficients

    The leakage flowrate is given by integration of the axial velocity at the seal exit as

    At each time step,the hydrodynamic forces in the local coordinate system are given by Eq.(11)and can be transferred into the fixed reference system to obtain the force components in X and Y directions.

    where Ftand Frare the hydrodynamic forces in the tangential and radial directions of the local coordinate system,and L is the length of the seal.

    When the rotor moves around the seal geometry center with a circular path,the relationship14between the hydrodynamic forces in the local coordinate system and the rotor dynamic coefficients is

    where Rwis rotor whirl radius and ω is rotor whirl speed,K is the direct stiffness,k is the cross-coupled stiffness,C is the direct damping,c is the cross-coupled damping,M is the direct inertia coefficient and m is the cross-coupled inertia coefficient.

    In order to identify the stiffness,damping,and inertia coefficients in the Eqs.(12)and(13),the hydrodynamic forces are calculated at multiple whirl speeds and a linear least square curve fit is conducted.

    3.Results and discussion

    3.1.CFD calibration

    The smooth annular seal schematically illustrated in Fig.3 is chosen from an experimental seal tested at Texas A&M University.7The seal geometry and operating conditions are shown in Table 1,and the test operating speed is respectively 10200,17400 and 24600 r/min,much lower than the first critical speed(30000 r/min)of the rotor in the test rig.When the seal is concentric with the shaft,a 2D axisymmetric analysis of wall-bounded flow in the clearance with high resolution is conducted to reduce substantial computational costs.Thermal effect is not incorporated,since the specific heat of liquid water is large and leakage flow quickly takes energy dissipation away.Rotor surface is defined as a moving wall with tangential velocity and stator surface is specified as a stationary wall.The walls for the surfaces are set to be nonslip,and centrifugal growth20of the rotor is calculated by

    The software ICEM 14.0 is used to generate structured mesh.Under low Reynold number,turbulence flow in the clearance is significantly influenced by the presence of the walls.The k-ε standard turbulence model is used with the enhanced-wall treatment,and the y+values for the first grids near the walls are below 1 with more than 20 nodes inside boundary layers.Total pressure and turbulence quantities are defined at the inlet boundary,and static pressure is specified at the outlet boundary.Discretization scheme is the second-order upwind to guarantee numerical precision.Convergence condition is that the weighted-average pressure,axial velocity and swirl velocity monitored at the seal entrance and exit do not fluctuate with the corresponding scaled residuals of continuous,momentum and turbulence equations reaching 10-8.

    In the case of5.52 MPa and 10200 r/min,a gridindependence study is conducted.Fig.4 depicts the grid distributions at the seal entrance with respectively 1.31(Mesh A),2.73(Mesh B)and 5.32(Mesh C)million elements.The velocities and pressure at the seal entrance are selected to be the key variables for the grid-independence study.Fig.5 shows that the pro files of the static pressure have good agreement,and Fig.6 shows the pro files of the axial velocity and the tangential velocity are almost the same with each other.Consequently,Mesh B is convergent and used in the CFD analysis.

    As there are no turbulence models which demonstrate superior for turbulent flow in annular seals,the comparison including the k-ε standard model,the k-ε renormalization model,the k-ω model and the SST(Shear Stress Transport)model is conducted.The enhanced wall treatment is used with the k-ε turbulence models,and the k-ω model and the SST model candirectly solve boundary layers.Fig.7 shows the leakage comparison of the turbulence models.The k-ω model underestimates the leakage flowrate, while the SST model overestimates.The leakage flowrates of the k-ε renormalization model and the k-ε standard model are between the k-ω model and the SST model.Compared with the test results,the overall leakage flowrate error for the k-ε standard model is smaller than that of other turbulent models with the maximum derivation below 2.68%.Thus,the k-ε standard model with enhanced wall treatment is used to calibrate bulk flow model.

    Table 1 Seal geometry and operating conditions.7

    As there is a sudden narrowing at the seal entrance, fluid inertia accelerates the fluid from an upstream stagnant condition to a flow with high axial speed.Fig.8 shows the distributions of pressure and velocity at the seal entrance in the case of Δp=4.14 MPa and Ω =10200 r/min.

    In all the cases of this work,the violent variation of the flow field at the entrance is con fined to the entrance region,and the weighted-average variables are measured at the position with 4cl away from the seal entrance.Table 2 shows the parameters of bulk flow model calibrated with CFD results.The pressureloss coefficient decreases with increasing pressure drop.The preswirl ratio increases with increasing rotational speed and decreases with increasing pressure drop.

    3.2.Fluid film forces

    To minimize numerical errors of the linear curve fit,eleven whirl frequencies ranging from 0.5Ω/60 to 1.5Ω/60 are used to evaluate rotor dynamic coefficients.For each frequency,360 time steps are used during every period and the rotor whirl radius is 0.025cl.

    Table 2 Bulk flow parameters with CFD calibration.

    Fig.9 shows the reaction forces of four excitation frequencies on the rotor surface in the case of Δp=5.52 MPa and Ω=10200 r/min.The reaction forces FXand FYhave the same frequency with the rotor whirl motion and the amplitudes of the forces increase with increasing the rotor whirl frequency.Table 3 shows the radial force and the tangential force in thelocal coordinate system at the eleven whirl frequencies.With the whirl frequency increasing,the radial force decreases while the tangential force increases.It indicates that the rotor whirl frequency is important for the dynamic stability of the rotor and seal system.Fig.10 shows the data of the forces agree very well with the least square fitted curve.

    Table 3 Radial forces and tangential forces on rotor surface with different whirl frequencies.

    In addition,to reduce computational costs of calculating rotor dynamic coefficients,the convergence condition for each whirl frequency is that the scaled residuals for the radial force and the tangential force reach 10-6.The computational time for the eleven frequencies is about 1.5 h on an Intel Core i7-4770 3.40 GHz CPU.

    3.3.Comparisons and validation

    In order to validate the bulk flow model developed in present study,as shown from Fig.11,the rotor dynamic coefficients are compared with the experimental data and analytic results in Ref.7The experimental difference of the direct damping(CXXand CYY)and direct inertia coefficients(MXXand MYY)is due to experimental errors,and the results of the cross-coupled inertia coefficients are not shown in the reference.In addition,the results calculated by the perturbed bulk flow model4with calibrated parameters are included in the comparison.

    Compared with the analytic results,the direct stiffness of the calibrated bulk flow model has better agreement with the test data.Other results excluding the direct damping and cross-coupled damping agree well with the experimental results.Although the overestimation of the direct damping is apparent and the cross-coupled damping is underestimated,the comparisons indicate that CFD calibration improves the accuracy of bulk flow model.In the reference,the pressure loss coefficient is empirically selected to be 0.1,and the preswirl ratio and the friction factor are not shown explicitly.However,the calibrated pressure loss coefficient shown in Table 2 is much higher than 0.1.The reason may be that the direct stiffness and direct damping of the calibrated model are much higher than the results of the reference.

    On the other hand,the transient bulk flow model provides further improvement for the rotordynamic coefficients in comparison with the perturbed bulk flow model.Although the overestimation of the direct damping still exists,the direct damping of the transient model is smaller than the result of the perturbed model and is closer to the experiment data.Meanwhile,the cross-coupled damping of the transient model is higher than the result of the perturbed model and has better agreement with the test data.The direct stiffness,crosscoupled stiffness and direct inertia coefficients of the transient model show slight improvement.The cross-coupled inertia coefficient of the present model is much larger than the result of the perturbed model.

    4.Conclusions

    (1)In comparison with other turbulence models,the k-ε standard turbulence model with the enhanced wall treatment is accurate to calculate the wall-bounded flow in seal clearance under low Reynolds number.

    (2)The pressure loss coefficient decreases with increasing pressure drop;the preswirl ratio increases with increasing the rotational speed and decreases with increasing the pressure drop.

    (3)The reaction force on the rotor surface has the same frequency with the rotor whirl motion.The radial force decreases and the tangential force increases with increasing the whirl frequency.

    (4)The accuracy of the perturbed bulk flow model with the CFD calibration is improved in comparison with the analytical results in the reference.Furthermore,compared with the perturbed model,the predictions of the transient bulk flow model are in better agreement with experimental data.

    Acknowledgement

    This study was supported by the National Natural Science Foundation of China(No.11176010).

    Appendix A

    These are the sub-coefficients in the sub-matrix of the Eq.(9).The coefficient of lower-case letter is corresponding to the submatrix of capital letter.The subscript m and n is corresponding to the dimension of the sub-matrix.

    References

    1.Childs DW.Turbomachinery rotordynamics.Hoboken:John Wiley&Sons;1993.p.8–10.

    2.Hirs GG.A bulk- flow theory for turbulence in lubricant films.J Lubr Technol 1973;95(2):137–45.

    3.Childs DW.Finite-length solutions for rotordynamic coefficients of turbulent annular seals.J Lubr Technol 1983;105(1):437–45.

    4.San Andres L.Analysis of variable fluid properties,turbulent annular seals.J Tribol 1991;113(4):694–702.

    5.Ha T,Childs DW.Annular honeycomb-stator turbulent gas seal analysis using new friction-factor model based on flat plate tests.J Tribol 1994;116(2):352–60.

    6.Childs DW,Kheireddin B,Phillips S,Asirvatham TD.Friction factor behavior from flat-plate tests of smooth and hole-pattern roughened surfaces with supply pressures up to 84 bars.J Eng Gas Turbines Power 2011;133(9):092504.

    7.Marquette OR,Childs DW,San Andres L.Eccentricity effects on the rotordynamic coefficients of plain annular seals:Theory versus experiment.J Tribol 1997;119(3):443–7.

    8.Lindsey WT,Childs DW.The effects of converging and diverging axial taper on the rotordynamic coefficients of liquid annular pressure seals:theory versus experiment.J Vibr Acoust 2000;122(2):126–31.

    9.Saba D,Forte P,Vannini G.Review and upgrade of a bulk flow model for the analysis of honeycomb gas seals based on new high pressure experimental data.J Mech Eng 2014;60(5):321–30.

    10.Arghir M,Nguyen MH,Tonon D,Dehouve J.Analytic modeling of floating ring annular seals.J Eng Gas Turbines Power 2012;134(5):052507.

    11.Mariot A,Arghir M,Helies P,Dehouve J.Experimental analysis of floating ring annular seals and comparisons with theoretical predictions.J Eng Gas Turbines Power 2016;138(4):042503.

    12.Moore JJ,Palazzolo AB.CFD comparison to 3D laser anemometer and rotordynamic force measurements for grooved liquid annular seals.J Tribol 1999;121(2):306–14.

    13.Moore JJ.Three-dimensional CFD rotordynamic analysis of gas labyrinth seals.J Vibr Acoust 2003;125(4):427–33.

    14.Untaroiu A,Hayrapetian V,Untaroiu CD,Wood HG,Schiavello J,Mcguire J.On the dynamic properties of pump liquid seals.J Fluids Eng 2013;135(5):051104.

    15.Chochua G,Soulas TA.Numerical modeling of rotordynamic coefficients for deliberately roughened stator gas annular seals.J Tribol 2007;129(2):424–9.

    16.Yan X,Li J,Feng Z.Investigations on the rotordynamic characteristics of a hole-pattern seal using transient CFD and periodic circular orbit model.J Vibr Acoust 2011;133(4):041007.

    17.Arghir M,Billy F,Pineau G,Frene J,Texier A.Theoretical analysis of textured damper annular seals.J Tribol 2007;129(3):669–78.

    18.Migliorini PJ,Untaroiu A,Wood HG,Allaire PE.A computational fluid dynamics/bulk- flow hybrid method for determining rotordynamic coefficients of annular gas seals.J Tribol 2012;134(2):022202.

    19.Xu CW.Finite element method.Beijing:Tsinghua University Press;2003.p.130–56[chinese].

    20.Warren Y,Richard B.Roark’s formulas for stress and strain.7th ed.New York:McGraw-Hill;2002.p.683.

    一边亲一边摸免费视频| 91精品一卡2卡3卡4卡| 99热这里只有是精品在线观看| 九色成人免费人妻av| 日韩人妻高清精品专区| 亚洲在线自拍视频| 久久久久精品性色| 2021天堂中文幕一二区在线观| 日韩成人伦理影院| 国产一级毛片在线| 视频中文字幕在线观看| 久久久久久久久大av| 成人亚洲欧美一区二区av| 99热这里只有是精品50| 麻豆成人午夜福利视频| 国产精品三级大全| 精品人妻偷拍中文字幕| 国产精品一区二区三区四区免费观看| 啦啦啦韩国在线观看视频| 99热这里只有是精品在线观看| 国产成人a∨麻豆精品| 国产精品一区二区三区四区久久| 午夜福利在线在线| 九草在线视频观看| 80岁老熟妇乱子伦牲交| 尤物成人国产欧美一区二区三区| 少妇猛男粗大的猛烈进出视频 | 日日摸夜夜添夜夜添av毛片| 日韩欧美国产在线观看| 午夜激情福利司机影院| 成人午夜高清在线视频| 免费不卡的大黄色大毛片视频在线观看 | 蜜桃久久精品国产亚洲av| 国产黄片视频在线免费观看| 午夜激情久久久久久久| 午夜日本视频在线| 久久久久久久久久久免费av| 久久久久久久久中文| 99热这里只有精品一区| 免费观看的影片在线观看| 亚洲精品国产成人久久av| 黄片无遮挡物在线观看| 国产午夜福利久久久久久| 看黄色毛片网站| 久久精品国产亚洲av天美| 欧美xxxx黑人xx丫x性爽| 欧美性感艳星| 亚洲伊人久久精品综合| 午夜福利高清视频| 在线天堂最新版资源| 麻豆成人av视频| 嘟嘟电影网在线观看| 午夜福利在线观看吧| 在线免费观看的www视频| 精品久久久久久久久亚洲| 人体艺术视频欧美日本| 日韩电影二区| 麻豆精品久久久久久蜜桃| 丰满少妇做爰视频| 欧美激情在线99| 中国国产av一级| 国产一区亚洲一区在线观看| 亚洲精品日韩在线中文字幕| 熟女电影av网| 久久这里有精品视频免费| 直男gayav资源| 亚洲人与动物交配视频| 日韩亚洲欧美综合| 国产综合精华液| 日本猛色少妇xxxxx猛交久久| 亚洲一级一片aⅴ在线观看| 久久国产乱子免费精品| 国产av在哪里看| 黄色一级大片看看| 欧美97在线视频| 国产单亲对白刺激| 亚洲精品久久午夜乱码| 免费看美女性在线毛片视频| av一本久久久久| 精品久久久久久电影网| kizo精华| 午夜精品一区二区三区免费看| 午夜福利成人在线免费观看| 国产乱来视频区| 亚洲最大成人手机在线| av在线天堂中文字幕| 亚洲欧洲日产国产| 亚洲av成人av| 免费电影在线观看免费观看| 免费观看a级毛片全部| 亚洲精品视频女| 亚洲激情五月婷婷啪啪| 成人毛片a级毛片在线播放| 人妻制服诱惑在线中文字幕| 高清欧美精品videossex| 日本午夜av视频| 最近中文字幕2019免费版| 小蜜桃在线观看免费完整版高清| 国产中年淑女户外野战色| 成人无遮挡网站| 久久精品久久精品一区二区三区| 91av网一区二区| 一级毛片黄色毛片免费观看视频| av专区在线播放| 男女那种视频在线观看| 干丝袜人妻中文字幕| 婷婷色综合www| 国产黄片视频在线免费观看| 国产成人精品婷婷| 亚洲美女视频黄频| 亚洲av.av天堂| 免费看a级黄色片| 午夜福利在线在线| 午夜福利高清视频| 色网站视频免费| 大陆偷拍与自拍| 欧美激情国产日韩精品一区| 一级毛片aaaaaa免费看小| 欧美丝袜亚洲另类| 熟女人妻精品中文字幕| 2021少妇久久久久久久久久久| 亚洲国产最新在线播放| 欧美成人a在线观看| 搡老妇女老女人老熟妇| 一级毛片电影观看| 一级毛片 在线播放| 亚洲精品一二三| 少妇熟女欧美另类| 亚洲熟妇中文字幕五十中出| 色吧在线观看| 国产v大片淫在线免费观看| 国产精品国产三级国产专区5o| 婷婷色av中文字幕| 国产久久久一区二区三区| 直男gayav资源| 老师上课跳d突然被开到最大视频| 别揉我奶头 嗯啊视频| av黄色大香蕉| 国产69精品久久久久777片| 午夜福利成人在线免费观看| 一级黄片播放器| 蜜桃亚洲精品一区二区三区| 国产单亲对白刺激| 精品久久久久久成人av| 五月伊人婷婷丁香| 亚洲欧洲国产日韩| 欧美bdsm另类| 婷婷六月久久综合丁香| 久久99热这里只有精品18| 欧美日韩精品成人综合77777| 国产 亚洲一区二区三区 | 1000部很黄的大片| 你懂的网址亚洲精品在线观看| 一区二区三区高清视频在线| 午夜福利高清视频| 亚洲欧美精品专区久久| 亚洲av日韩在线播放| 九九在线视频观看精品| 一级毛片黄色毛片免费观看视频| 22中文网久久字幕| 2022亚洲国产成人精品| 午夜日本视频在线| 日本午夜av视频| 亚洲18禁久久av| 久久久久久久午夜电影| 亚洲欧美日韩卡通动漫| 性色avwww在线观看| 男插女下体视频免费在线播放| 2021少妇久久久久久久久久久| 少妇人妻精品综合一区二区| 人妻少妇偷人精品九色| 亚洲精品成人av观看孕妇| 欧美 日韩 精品 国产| 精品人妻一区二区三区麻豆| 国产精品麻豆人妻色哟哟久久 | 日本免费在线观看一区| 夫妻性生交免费视频一级片| 午夜福利在线观看免费完整高清在| 午夜日本视频在线| 哪个播放器可以免费观看大片| 色吧在线观看| 99九九线精品视频在线观看视频| 一本久久精品| 日本欧美国产在线视频| 日韩欧美国产在线观看| 18+在线观看网站| 欧美最新免费一区二区三区| 精品国产一区二区三区久久久樱花 | 国产黄色视频一区二区在线观看| 亚洲欧美一区二区三区国产| 狠狠精品人妻久久久久久综合| 国产色爽女视频免费观看| 啦啦啦韩国在线观看视频| 亚洲,欧美,日韩| 你懂的网址亚洲精品在线观看| 午夜福利网站1000一区二区三区| 日韩人妻高清精品专区| 亚洲国产精品sss在线观看| 久久久成人免费电影| 国产精品三级大全| 免费观看无遮挡的男女| 18禁在线无遮挡免费观看视频| 大香蕉97超碰在线| 中文乱码字字幕精品一区二区三区 | 中文字幕免费在线视频6| 色尼玛亚洲综合影院| 免费少妇av软件| 免费黄网站久久成人精品| 免费少妇av软件| 国产精品.久久久| 日本黄大片高清| 国产极品天堂在线| 美女国产视频在线观看| 国产高清国产精品国产三级 | 午夜精品一区二区三区免费看| 亚洲精华国产精华液的使用体验| 国产伦一二天堂av在线观看| 高清午夜精品一区二区三区| 国产精品国产三级专区第一集| 国产 亚洲一区二区三区 | 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 一级av片app| 一级黄片播放器| 高清在线视频一区二区三区| 成年女人在线观看亚洲视频 | 成年av动漫网址| 伊人久久国产一区二区| 夜夜爽夜夜爽视频| 亚洲性久久影院| 一区二区三区高清视频在线| 精品人妻视频免费看| 美女国产视频在线观看| or卡值多少钱| videossex国产| 色视频www国产| 午夜精品一区二区三区免费看| 亚洲,欧美,日韩| 亚洲色图av天堂| 亚洲精品乱码久久久久久按摩| 汤姆久久久久久久影院中文字幕 | 成人无遮挡网站| 日日撸夜夜添| 久久久久久久午夜电影| 性色avwww在线观看| 午夜激情欧美在线| 欧美成人精品欧美一级黄| 秋霞伦理黄片| 全区人妻精品视频| 男女边摸边吃奶| 国产精品人妻久久久影院| 男女国产视频网站| 成人无遮挡网站| 99热这里只有精品一区| 搞女人的毛片| 日韩av不卡免费在线播放| 亚洲精品乱久久久久久| 日本av手机在线免费观看| 国产黄色视频一区二区在线观看| 又爽又黄a免费视频| 国产午夜精品论理片| 成人毛片a级毛片在线播放| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 十八禁网站网址无遮挡 | 久久久久久久久久成人| 最近中文字幕2019免费版| 久久99精品国语久久久| 亚洲18禁久久av| 亚洲精品影视一区二区三区av| 国产美女午夜福利| 亚洲天堂国产精品一区在线| 亚洲欧美成人精品一区二区| 欧美xxⅹ黑人| 九九久久精品国产亚洲av麻豆| 美女xxoo啪啪120秒动态图| 2021少妇久久久久久久久久久| 亚洲一区高清亚洲精品| av专区在线播放| 日本-黄色视频高清免费观看| 成人国产麻豆网| 日韩强制内射视频| 午夜精品在线福利| 欧美成人午夜免费资源| 99re6热这里在线精品视频| 精品人妻偷拍中文字幕| 丰满乱子伦码专区| 成人性生交大片免费视频hd| 亚洲国产精品国产精品| 97超碰精品成人国产| 亚洲精品aⅴ在线观看| 日韩伦理黄色片| 美女xxoo啪啪120秒动态图| 大香蕉97超碰在线| 免费看日本二区| 亚洲精华国产精华液的使用体验| 我的老师免费观看完整版| 99久久中文字幕三级久久日本| 亚洲婷婷狠狠爱综合网| 亚洲av不卡在线观看| 欧美激情国产日韩精品一区| 日韩av不卡免费在线播放| 高清日韩中文字幕在线| 久久99热这里只频精品6学生| 啦啦啦啦在线视频资源| 天堂av国产一区二区熟女人妻| 国内精品美女久久久久久| 3wmmmm亚洲av在线观看| 国产亚洲最大av| 一本久久精品| 久久精品久久久久久久性| 国产精品不卡视频一区二区| 麻豆久久精品国产亚洲av| 一级片'在线观看视频| 亚洲综合精品二区| 免费黄频网站在线观看国产| 天堂中文最新版在线下载 | 亚洲在线自拍视频| 亚洲成色77777| 亚洲综合色惰| 嫩草影院入口| 午夜福利成人在线免费观看| 日韩,欧美,国产一区二区三区| 日韩中字成人| 色播亚洲综合网| 国产v大片淫在线免费观看| 久久久久免费精品人妻一区二区| 久久久亚洲精品成人影院| 99久久中文字幕三级久久日本| 一二三四中文在线观看免费高清| 国产乱来视频区| 亚洲人成网站在线观看播放| 日韩av在线免费看完整版不卡| 精品午夜福利在线看| 日本一二三区视频观看| av线在线观看网站| 伦精品一区二区三区| 天天躁夜夜躁狠狠久久av| 久久久久久久久久黄片| 男女视频在线观看网站免费| 欧美极品一区二区三区四区| 久久鲁丝午夜福利片| av免费观看日本| 69人妻影院| 91精品国产九色| 伊人久久精品亚洲午夜| 又大又黄又爽视频免费| 丝袜美腿在线中文| 狠狠精品人妻久久久久久综合| 岛国毛片在线播放| 看非洲黑人一级黄片| 丝袜美腿在线中文| 亚洲av不卡在线观看| 成人亚洲欧美一区二区av| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 色综合色国产| 国产黄频视频在线观看| 欧美日韩视频高清一区二区三区二| 久久精品久久久久久久性| 亚洲va在线va天堂va国产| 好男人在线观看高清免费视频| 成人综合一区亚洲| 久久精品人妻少妇| 18禁在线播放成人免费| 免费黄色在线免费观看| 国产伦理片在线播放av一区| 精华霜和精华液先用哪个| 性插视频无遮挡在线免费观看| 国产乱人偷精品视频| 大陆偷拍与自拍| 男女边吃奶边做爰视频| 亚洲成人一二三区av| 99视频精品全部免费 在线| 天堂√8在线中文| 三级毛片av免费| 国产成人精品福利久久| 精品一区二区免费观看| 亚洲va在线va天堂va国产| 国产日韩欧美在线精品| 免费观看av网站的网址| 男女边吃奶边做爰视频| 亚洲欧美中文字幕日韩二区| 91精品一卡2卡3卡4卡| 亚洲国产精品sss在线观看| 国产免费视频播放在线视频 | 永久网站在线| 亚洲精品色激情综合| 免费黄色在线免费观看| 国产白丝娇喘喷水9色精品| av免费在线看不卡| 水蜜桃什么品种好| 欧美+日韩+精品| 精品久久久久久电影网| 简卡轻食公司| 国产探花极品一区二区| 免费av毛片视频| 久久久久网色| 免费看不卡的av| 国产不卡一卡二| 国产精品嫩草影院av在线观看| 亚洲精华国产精华液的使用体验| av在线观看视频网站免费| 嫩草影院新地址| 老女人水多毛片| 婷婷色麻豆天堂久久| 深爱激情五月婷婷| 欧美成人午夜免费资源| 亚洲电影在线观看av| 久久久精品94久久精品| 久久久久久久大尺度免费视频| 久久久久久久久久人人人人人人| 又大又黄又爽视频免费| 性色avwww在线观看| 99热这里只有是精品50| 亚洲欧美一区二区三区黑人 | 成人欧美大片| 国产亚洲5aaaaa淫片| 一级毛片久久久久久久久女| 亚洲图色成人| 久久久亚洲精品成人影院| 91在线精品国自产拍蜜月| 亚洲图色成人| 成人毛片60女人毛片免费| 成人漫画全彩无遮挡| 熟妇人妻不卡中文字幕| 一区二区三区高清视频在线| 观看美女的网站| 国产色爽女视频免费观看| 国产精品综合久久久久久久免费| 国产免费视频播放在线视频 | 亚洲精品日韩在线中文字幕| 国产精品久久久久久av不卡| 国产欧美日韩精品一区二区| 日本午夜av视频| 禁无遮挡网站| 中国美白少妇内射xxxbb| 美女黄网站色视频| 久久久久性生活片| .国产精品久久| 欧美另类一区| 高清在线视频一区二区三区| 日韩一本色道免费dvd| 亚洲精品影视一区二区三区av| 成人欧美大片| 热99在线观看视频| 国产精品国产三级国产专区5o| 全区人妻精品视频| 久久99热这里只频精品6学生| 秋霞伦理黄片| 七月丁香在线播放| 青春草国产在线视频| 国产熟女欧美一区二区| 成人漫画全彩无遮挡| 大又大粗又爽又黄少妇毛片口| 日韩不卡一区二区三区视频在线| 亚洲欧美一区二区三区国产| 亚洲成色77777| 最近视频中文字幕2019在线8| 国产精品日韩av在线免费观看| 男人爽女人下面视频在线观看| 国产精品.久久久| 丰满乱子伦码专区| 国产大屁股一区二区在线视频| 午夜日本视频在线| 最近手机中文字幕大全| 国产探花极品一区二区| 床上黄色一级片| av黄色大香蕉| 精华霜和精华液先用哪个| 久久久久精品性色| 国产老妇女一区| 日本av手机在线免费观看| 波多野结衣巨乳人妻| 色吧在线观看| 如何舔出高潮| av在线蜜桃| 欧美激情在线99| 免费人成在线观看视频色| 国产精品av视频在线免费观看| 青春草国产在线视频| 成人毛片60女人毛片免费| 欧美成人一区二区免费高清观看| 亚洲精华国产精华液的使用体验| 精品午夜福利在线看| 精品人妻一区二区三区麻豆| 少妇人妻一区二区三区视频| 熟女人妻精品中文字幕| av天堂中文字幕网| 偷拍熟女少妇极品色| 精品国内亚洲2022精品成人| 精品一区二区免费观看| 久久草成人影院| 免费看a级黄色片| 日韩欧美精品免费久久| 精品久久久久久久人妻蜜臀av| 成人亚洲精品一区在线观看 | 网址你懂的国产日韩在线| 亚洲精品久久久久久婷婷小说| 七月丁香在线播放| 69av精品久久久久久| av专区在线播放| 色吧在线观看| 一级av片app| 成人毛片a级毛片在线播放| 欧美成人一区二区免费高清观看| 免费看光身美女| 97在线视频观看| 黄色欧美视频在线观看| 国产成人免费观看mmmm| 欧美 日韩 精品 国产| 蜜臀久久99精品久久宅男| 男人爽女人下面视频在线观看| 久久久久久久久久久免费av| 亚洲精品久久午夜乱码| 久久亚洲国产成人精品v| 97在线视频观看| 啦啦啦韩国在线观看视频| 国产精品久久久久久精品电影| 女的被弄到高潮叫床怎么办| 日韩av不卡免费在线播放| 乱系列少妇在线播放| 天堂中文最新版在线下载 | 久久国产乱子免费精品| 午夜激情欧美在线| 22中文网久久字幕| 老司机影院成人| 大陆偷拍与自拍| 天天躁日日操中文字幕| 不卡视频在线观看欧美| 18禁在线播放成人免费| 午夜视频国产福利| 亚洲欧洲日产国产| 亚洲三级黄色毛片| 亚洲一级一片aⅴ在线观看| 国产在线一区二区三区精| 少妇被粗大猛烈的视频| a级毛色黄片| 婷婷色麻豆天堂久久| 少妇人妻精品综合一区二区| ponron亚洲| 成人av在线播放网站| 亚洲国产高清在线一区二区三| 亚洲婷婷狠狠爱综合网| 色综合色国产| 欧美激情在线99| 人人妻人人看人人澡| 日本猛色少妇xxxxx猛交久久| 男女那种视频在线观看| 色综合亚洲欧美另类图片| 久久精品国产亚洲av天美| 亚洲自拍偷在线| 国产美女午夜福利| 国内少妇人妻偷人精品xxx网站| 最后的刺客免费高清国语| 少妇的逼水好多| 亚洲欧洲国产日韩| 国产在线一区二区三区精| av国产免费在线观看| 亚洲av免费高清在线观看| 内射极品少妇av片p| 久久久久久久午夜电影| 国产伦精品一区二区三区四那| 夫妻午夜视频| 看黄色毛片网站| 丰满乱子伦码专区| 国产又色又爽无遮挡免| 乱人视频在线观看| 亚洲av中文字字幕乱码综合| 亚洲怡红院男人天堂| 久久久久久久国产电影| 少妇丰满av| 欧美高清性xxxxhd video| 久久久久精品久久久久真实原创| 中文字幕制服av| 久久99精品国语久久久| a级毛色黄片| 黄片无遮挡物在线观看| 色视频www国产| 日韩欧美精品v在线| 久热久热在线精品观看| 成人国产麻豆网| 亚洲国产精品国产精品| 我的女老师完整版在线观看| 观看免费一级毛片| 777米奇影视久久| 亚洲丝袜综合中文字幕| 男女国产视频网站| 欧美人与善性xxx| av在线播放精品| 大陆偷拍与自拍| 99久久精品国产国产毛片| 人妻夜夜爽99麻豆av| 国产精品熟女久久久久浪| 国产精品一区二区性色av| 精品人妻熟女av久视频| 男人舔奶头视频| 午夜激情欧美在线| 久久99蜜桃精品久久| 蜜桃亚洲精品一区二区三区| 免费播放大片免费观看视频在线观看| 亚洲精品乱码久久久v下载方式| 久久久久久久久大av| 色尼玛亚洲综合影院| www.色视频.com| 国产日韩欧美在线精品| 欧美另类一区| 免费看光身美女| 性插视频无遮挡在线免费观看| 精品国产露脸久久av麻豆 | 亚洲精品一区蜜桃| 亚洲精品色激情综合| 99久久精品一区二区三区| 精品一区在线观看国产| 亚洲,欧美,日韩| 卡戴珊不雅视频在线播放| 国产高清不卡午夜福利| 午夜精品在线福利|