• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Interface flux reconstruction method based on optimized weight essentially non-oscillatory scheme

    2018-05-17 10:06:36PeixunYUJunqingBAIHiYANGSongCHENKiPAN
    CHINESE JOURNAL OF AERONAUTICS 2018年5期

    Peixun YU,Junqing BAI,Hi YANG,Song CHEN,Ki PAN

    aNorthwestern Polytechnical University,Xi’an 710072,China

    bAircraft Strength Research Institute of China,Laboratory of Aeronautical Acoustics and Dynamics,Xi’an 710065,China

    cHubei Space Aircraft Research Institute,Wuhan 430040,China

    1.Introduction

    In the past few decades,high order finite difference methods have been developed in ComputationalAeroAcoustics(CAA).Most of these methods evolve from the Dispersion-Relation-Preserving(DRP)scheme proposed by Tam and Webb,1or the compact finite difference scheme by Lele.2Though having gained great success in CAA,the high order finite difference methods cannot be applied to practical CAA multi-scale problems with complex geometry difficultly,since it requires that the flux across the grid interface has to be continuous.When facing aeroacoustics problems with complex geometries,multi-size structured grids are usually employed,which greatly improves the capability of application in some practical engineering problems such as aircraft high lift systems and landing gears.However,how to construct the interface flux efficiently and stably is still a hot issue.

    Aimed at multi-scale CAA problems,Tam and Kurbatskii3proposed low-dissipation&low-dispersion DRP scheme by optimizing the interpolation parameters with comparing multiple grid scales ratio.Besides,Tam improved the stencil DRP scheme and artificial selective damping terms which are used in the interface flux construction,in order to compute the flux accurately.

    WENO scheme was initially proposed by Liu and Osher4based on Essentially Non-Oscillatory(ENO)scheme.5The weights depend on the local smoothness of the data.Smoothness measurements cause stencils that span large flow field gradients to have relative small weights; any candidate stencil containing a shock receives a nearly zero weight.In completely smooth regions,weights revert to optimal values,where optimal value is defined by maximum order of accuracy or maximum bandwidth.In the following years,Jiang and Shu6,7cast WENO scheme in to finite difference form.This scheme,which is referred to as WENO-JS hereinafter,can be capable of resolving shocks with high resolution.However,WENO-JS is too dissipative for the detailed simulation of turbulent flow.Martin et al.8,9developed two new formulations of a symmetric WENO method for the direct numerical simulation of compressible turbulence.The schemes are designed to maximize order of accuracy and bandwidth,while minimizing dissipation.The formulations and the corresponding coefficients are introduced.Numerical solutions to canonical flow problems are used to determine the dissipation and bandwidth properties of the numerical schemes.In addition,the suitability and accuracy of the bandwidth-optimized schemes for direct numerical simulations of turbulent flows are assessed in decaying isotropic turbulence and supersonic turbulent boundary layers. Wu et al.10presenteda maximum order preserving optimized WENO scheme which is a weighted average of the maximum order scheme and an optimized scheme.Hou et al.11modified the weights of WENO scheme to be smoother,which can eliminate the fluctuation within the grid variation.Lin and Hu12presented two groups of WENO schemes based on the dissipation and dissipation,which are investigated for computational aeroacoustics.

    In this paper,the modified WENO scheme is deduced firstly.Then,we apply modified WENO scheme to establish the model of interface flux.On this basis,the accuracy of the model in multi-scale grid problems has been verified by several standard verification cases.The numerical simulation results with interface flux method are presented in Section 5,and the brief conclusions are given in Section 6.

    2.Optimized WENO scheme

    In the design of a traditional WENO scheme,the practice is to maximize the order of accuracy of the WENO scheme given the size of the difference stencil.However,high order schemes may not be the best for CAA problems.Aimed at short waves,the finite difference scheme needs to maintain its lowdissipation and low-dispersion property,as shown by Tam and Webb.To fix the idea,the initial value problem associated with the scalar wave equation is considered as follows:

    where x is coordinate,t is time,u is function of x and t,a is constant number.

    Given a uniform grid xi=iΔx with the same grid spacing Δx,the semi-discretized form of Eq.(1)is

    where i is integer number,aui+1/2and aui-1/2are numerical fluxes which depend on k(r+s+1=k,r≥0,s≥0;r and s are different integer numbers respectively)grid points including xiitself,i.e.,

    Here crjcould be obtained by achieving k-th order accuracy in Taylor series truncation expansion.Considering five-point stencil WENO-JS scheme,according to Ref.6,it would be divided to 3 candidate stencils{S1,S2,S3}.Each of candidate stencils has three nodes,as shown in Fig.1.The second order polynomial approximation uk(x)=akx2+bkx+ckcould be obtained by using the function value of u(x)in each candidate stencil,where k=1,2,3.

    In each candidate stencil,the formula for uk(x)could be obtained by Taylor series expansion at xjas follows:

    When x=Δx/2,Eq.(4)can be approximated by

    Then the numerical flux in five-point-stencil WENO scheme could be denoted with weights as

    where ω is weight coefficient.

    As for CAA problems,it is very important to simulate the short waves with a limited stencil scheme as much as possible.We may equate Eq.(6)and Eq.(1)to yield

    Table 1 Different free parameter ω0and λ.

    where

    Consider the Fourier transform of the left-hand and right-hand sides of Eq.(7).Then using a Taylor expansion,we can find

    When function u(x)is discontinuous,smoothness factor has to be defined to change the redistribution of weights,which could guarantee that the node value approximation is essentially non-oscillatory around the discontinuity.Due to the design method proposed by Jiang and Shu6,in this fivepoint-stencil WENO scheme,the smoothness factor βmcould be denoted as

    Then the non-linear weights are

    In order to avoid the denominator being zero,ε=10-6,m=0,1,2.

    By calculating the non-linear weighting parameters,the flux term of Eq.(6)could be denoted as

    For numerical stability,modification has been made to the flux term of WENO scheme by the Lax-Friedrichs flux-vector splitting method,and the flux term of Eq.(1)could be denoted as

    3.Modified WENO scheme verification

    In this section,the comparison of dispersion and dissipation between the modified WENO scheme and the DRP scheme has been conducted with 1D convection equation,in which multiple initial conditions and different weights have been taken into account.

    Consider 1D linear convection equation

    The initial condition is

    values,the dissipation of the scheme would be different.The scheme acts as central when β=0,and acts as upwind when β=1.According to the β definition in Ref.12,the definition of β within[s1,s2]has been modified as shown below:

    The grid scale has been set as Δx=0.004,with time step Δt=0.0001 and the number of iterations being 10000.The time marching method used is six-level four-order HALERK6 scheme.13,14Fig.4 shows the comparison of different spatial discretion schemes with analytical solution with grid scale as Δx=0.004.It is also shown in these two figures that:(A)the DRP scheme could induce serious oscillations.Though the oscillation could be attenuated by adding artificial dissipation,the oscillation near the discontinuity is still very severe.(B)All the WENO scheme solutions match the analytical solutions very well,with the accuracy getting better when spatial grid scale is smaller.(C)As for the same WENO scheme,the computational result varies very little while using different flux splitting methods.

    4.Interface flux reconstruction

    DRP spatial discretion scheme coupled with artificial dissipation is usually applied to the computation of flux at the interface.With the function test results in Part 3,when the magnitude of discontinuity at the interface is unknown,the amount of the artificial dissipation could not be determined with this method.The flux dissipation would be too much when the artificial dissipation is excessive,while it could result in oscillations when the dissipation is inadequate.In this paper,modi fied WENO scheme is applied at the interface,with hybrid Lax-Friedirchs flux-vector splitting method15,16used for flux splitting,and high order DRP scheme has been used inside the grid elements,as shown in Fig.5.F is flux term.The flux at grid node A of the interface of Block 1 could be discreetly solved.The grid node variable of Block 2 could be interpolated from the neighbor grid nodes.

    WENO schemes are applied at the interface of blocks,which well keep the numerical stability without damaging the overall computational accuracy.Besides,in order to further improve the computational stability,WENO_opt6 is applied at node C,while WENO_opt4 is applied at node B and WENO_opt1 at node A.

    5.Numerical simulation

    In order to verify the feasibility of the interface flux reconstruction in multi-block patch/non-patch interface,two study cases have been conducted.

    5.1.Gauss impulse propagation

    One Gauss impulse sound source has been set at the center of the computational domain,as shown in Fig.6,with the background Mach number as zero.At the initial time t=0,the initial value of the Gauss sound source is set as

    where u′and v′are component of fluctuation velocity,ρ′is fluctuation density,p′is fluctuation pressure.

    In order to avoid the numerical contamination from the sound wave reflection,Perfect Match Layer(PML)nonreflection boundary condition17has been applied at the farfield.The unified unitless time step dt=0.5 has been used in sound field computation.Three different grid topologies have been used,which are named as Case 1(Δd1=1,Δd2=1),Case 2 (Δd1=1,Δd2=1/2), and Case 3 (Δd1=1/2,Δd2=1).As shown in the right part of Fig.6,it is the grid topology of Case 2 con figuration.

    Figs.7 and 8 includes the sound pressure distribution contour of the Gauss impulse at t=100Δt and the sound pressure curve at the location of y=0 station.It is shown in the sound propagation contour that sound wave could propagate uniformly to the space with constant speed in different kinds of patched grids.From the comparison of the computational results and the analytical solutions,it could be concluded that the interface flux reconstruction method could be effectively applied in sound wave propagation.Fig.9 is comparison of sound pressure by using three grid topologies.Compared to Case 1,the calculation results of Case 2 and Case 3 are more closer to analytical solution.

    5.2.A Harmonic energy source scattering from multiple cylinders

    In order to further prove the simulation capability of the interface flux reconstruction method applied to complex con figuration problems,the periodical point sound source propagation across triple 2D cylinder test case from the NASA 4th CAA workshop18–20has been selected for verification.

    As shown in Fig.10,three cylinders of various diameters have been laid out in the computational domain.The left cylinder is at(x=-4,y=0)with diameter being 1,the upper right and lower right cylinder are at (x=3,y=4) and(x=3,y=-4)respectively,with both of the diameters being 0.75.At the center of the computational domain,(x=0,y=0)is a periodical point sound source,the formula of which is as follows:

    where S is sound source term.Slide wall boundary has been applied in order to simulate the interference,diffraction and other complex phenomenon of the sound waves,while the PML non-reflection boundary condition17has been used at the far- field.Seven-point four-order DRP scheme is used for spatial discretion,seven-point stencil dissipation scheme is used inside the grid block,the flux reconstruction scheme with modified WENO scheme is applied at the interface,and time advancing method used is the 6-level 4-order Runge-Kutta scheme.21The size of the complete computational domain is(x ∈ [-9,9],y ∈ [-9,9]),the topology of the grid domain is shown in Fig.10.Two different grid distribution methods have been used in this case.At the interface near the three cylinders,1–1 grid node matching and 1–2 patch are both used,with the grid details at the cylinder as shown in Fig.11.Grid scale Δx=0.025 has been used for non-patch grid sound field simulation,with unified unitless time step Δt=0.002 and the number of iterations as 105.

    Figs.12–14 are the sound pressure distribution contour of the periodical sound source propagation procedure at different moments.From the comparison,it could be shown that(A)interference always occur between the sound waves regardless of any grid subdivision methodology,so does the diffraction;(B)the computational results by 1–2 patch grid could obtain higher definition of sound wave compared to the 1–1 node matching results.

    In order to quantitatively analyze the capability of interface flux reconstruction in the program,the RMS of the sound pressure distribution on the centroid line y=0 together with that on the cylinder surface is presented,as shown in Figs.15 and 16.From the comparison,it is shown that the peak value of the sound wave computed in this paper is slightly less than that of exact solution.In Fig.16,the sound wave peak value on the right cylinder surface is also slightly less than that of exact solution.The possible reason that causes the discrepancy might be that interface of block had more large dissipation.However,the total trend has shown that the current results well match that of the references,and the patch grid could even obtain better results.

    6.Conclusions

    For multi-scale grid problems,interface flux reconstruction method based on modi fied WENO scheme has been introduced.Based on the methodology of DRP scheme,the modified WENO scheme has been deduced.

    (1)For different weights of the phase errors and amplitude errors,the influence of this scheme on the grid definition and dissipation has been analyzed.Then a hybrid flux vector splitting method with treatment to grid discontinuity has been developed and verified using sine wave function and hybrid wave function.The results have shown that modified WENO scheme could effectively simulate non-discontinuous wave and continuous wave problems with enough grid definition.

    (2)According to the characteristic of the dissipation of the modified WENO scheme, flux reconstruction method has been developed using amplitude error accumulation at the discrete grid node on the interface.The feasibility and accuracy of the developed flux reconstruction method applied in multi-scale grid problem have been verified by comparing the numerical result of Gauss impulse sound source radiation with the analytical solutions.

    (3)The accuracy of the developed method based on multiscale grid applied to complex con figuration problems has been verified by analysis of triple cylinder interference case.

    References

    1.Tam CKW,Webb JC.Dispersion-relation-preserving finite difference schemes for computational acoustics.J Comput Phys 1993;107(2):262–81.

    2.Lele SK.Compact finite difference schemes with spectral-like resolution.J Comput Phys 1992;103(1):16–42.

    3.Tam CKW,Kurbatskii KA.Multi-size-mesh multi-time-step dispersion-relation-preserving scheme for multiple-scales aeroacoustics problems.Int J Comput Fluid Dynam 2014;17(2):119–32.

    4.Liu XD,Osher S,Chan T.Weighted essentially non-oscillatory schemes.J Comput Phys 1994;115(1):200–12.

    5.Shu CW,Osher S.efficient implementation of essentially nonoscillatory shock capturing schemes.J Comput Phys 1988;77(2):439–71.

    6.Jiang GS,Shu CW.efficient implementation of weighted ENO schemes.J Comput Phys 1996;126(1):202–28.

    7.Zhang SH,Jiang GS,Shu CW.Improvement of convergence to steady state solutions of Euler equations of Euler equations with the WENO schemes.J Sci Comput 2011;47(2):216–38.

    8.Martin MP,Taylor EM,Wu M.A bandwidth-optimized WENO scheme for the effective direct numerical simulation of compressible turbulence.J Comput Phys 2006;220(1):270–89.

    9.Martin MP.DNS of hypersonic turbulent boundary layers.Part I:Initialization and comparison with experiments.J Fluids 2007;570(1):347–64.

    10.Wu CH,Zhao N,Tian LL.An improved hybrid compact WENO scheme.Acta Aerodynamica Sinica 2013;31(4):477–81[Chinese].

    11.Hou ZX,Yi SH,Li H.Analysis and improvement of high precision,high resolution WENO schemes.J Nat Univ Defense Technol 2003;25(1):17–20[Chinese].

    12.Lin SY,Hu JJ.Parametric study of weighted essentially nonoscillatory schemes for computational aeroacoustics.AIAA J 2001;39(3):1002–14.

    13.Allampalli V,Hixon R,Nallasamy M.High-accuracy large-step explicit Runge-Kutta(HALE-RK)schemes for computational aeroacoustics.J Comput Phys 2009;228(18):3837–50.

    14.Calvo M,Franco JM.A new minimum storage Runge-Kutta scheme for computational acoustics.J Comput Phys 2004;201(2):1–12.

    15.Kang L,Lee CH.A non- flux-splitting WENO scheme with low numerical dissipation.Sci China Tech Sci 2011;41(4):460–73.

    16.Zhu HJ,Yan ZG,Liu HY.Properties of Osher flux with entropy fix with entropy fix in high-order WCNS.Acta Aeronautica et Astronautica Sinica 2017;38(5):1–10[Chinese].

    17.Hu FQ,Li XD,Lin DK.Absorbing boundary conditions for nonlinear Euler and Navier-Stokes equations based on the perfectly matched layer technique.J Comput Phys 2008;227(1):4398–424.

    18.Dahl MD.Fourth computational aeroacoustics(CAA)workshop on benchmark problems.Washington D.C.:NASA Glenn Research Center;2004.Report No.:NASA/CP-2004-212954.

    19.Gao JH.A block interface flux reconstruction method for numerical simulation with high order finite difference scheme.J Comput Phys 2014;241(3):1–17.

    20.Gao JH,Yang ZG,Li XD.An optimized spectral difference method for CAA problems.J Comput Phys 2013;231(1):4848–66.

    21.Liu L,Li XD,Hu FQ.Non-uniform time-step explicit Runge-Kutta discontinuous Galerkin method for computational aeroacoustics.J Comput Phys 2010;229(19):6874–97.

    美女国产视频在线观看| 亚洲国产精品999| 亚洲精品一区蜜桃| 亚洲精品乱码久久久v下载方式| 三级国产精品片| 国产精品99久久99久久久不卡 | 欧美日韩国产mv在线观看视频| 久久影院123| 精品午夜福利在线看| 欧美精品一区二区免费开放| 制服丝袜香蕉在线| 精品国产露脸久久av麻豆| 欧美激情国产日韩精品一区| 日韩在线高清观看一区二区三区| 天天影视国产精品| 国产乱人偷精品视频| 久久99热6这里只有精品| 老司机影院成人| 91精品国产国语对白视频| 欧美少妇被猛烈插入视频| 日本wwww免费看| av免费观看日本| 国产精品偷伦视频观看了| 激情五月婷婷亚洲| 久久久亚洲精品成人影院| 黑丝袜美女国产一区| 性高湖久久久久久久久免费观看| 考比视频在线观看| 赤兔流量卡办理| 18禁动态无遮挡网站| 一级毛片我不卡| 91久久精品国产一区二区成人| 国产精品一区二区在线不卡| 黑人高潮一二区| 国产精品秋霞免费鲁丝片| av福利片在线| 69精品国产乱码久久久| 一级,二级,三级黄色视频| 一级毛片黄色毛片免费观看视频| 一个人看视频在线观看www免费| 久久久精品免费免费高清| 亚洲av在线观看美女高潮| 国产无遮挡羞羞视频在线观看| 少妇人妻精品综合一区二区| 亚洲国产精品成人久久小说| 人妻人人澡人人爽人人| 在线观看免费高清a一片| 久久久国产一区二区| 亚洲一级一片aⅴ在线观看| 人人妻人人澡人人看| 国产国语露脸激情在线看| 美女国产视频在线观看| 国产亚洲欧美精品永久| 99久久中文字幕三级久久日本| 一区在线观看完整版| 日韩av在线免费看完整版不卡| 男女免费视频国产| 亚洲国产精品一区二区三区在线| 制服丝袜香蕉在线| 国产免费一级a男人的天堂| 亚洲欧美精品自产自拍| 精品国产露脸久久av麻豆| 国产成人精品久久久久久| 人妻夜夜爽99麻豆av| 视频在线观看一区二区三区| 久久99精品国语久久久| 亚洲精品日韩av片在线观看| 最黄视频免费看| 又大又黄又爽视频免费| 亚洲欧美成人综合另类久久久| 国产极品粉嫩免费观看在线 | 久久久精品94久久精品| 久久午夜综合久久蜜桃| 人人澡人人妻人| 少妇猛男粗大的猛烈进出视频| 嫩草影院入口| 99九九在线精品视频| 老司机亚洲免费影院| 美女cb高潮喷水在线观看| 亚洲欧美中文字幕日韩二区| 国产片特级美女逼逼视频| 丝袜脚勾引网站| 亚洲av综合色区一区| 日本黄色片子视频| 国产69精品久久久久777片| 狠狠精品人妻久久久久久综合| 国产日韩欧美亚洲二区| 男人添女人高潮全过程视频| av专区在线播放| 熟女av电影| 岛国毛片在线播放| 高清午夜精品一区二区三区| 国产永久视频网站| 亚洲天堂av无毛| 国产一区二区在线观看日韩| 少妇人妻久久综合中文| 一边亲一边摸免费视频| 青青草视频在线视频观看| 精品少妇内射三级| 一本大道久久a久久精品| 国产精品久久久久久精品电影小说| 一边摸一边做爽爽视频免费| 丝袜在线中文字幕| 亚洲第一av免费看| 亚洲精华国产精华液的使用体验| 人妻制服诱惑在线中文字幕| 九九在线视频观看精品| 国产免费福利视频在线观看| 亚洲国产精品一区二区三区在线| 欧美亚洲 丝袜 人妻 在线| 国产欧美日韩综合在线一区二区| 色婷婷av一区二区三区视频| 亚洲精品乱久久久久久| 有码 亚洲区| 亚洲情色 制服丝袜| 亚洲,一卡二卡三卡| 亚洲精品国产av成人精品| 亚洲国产精品成人久久小说| 少妇熟女欧美另类| 999精品在线视频| 成年av动漫网址| 青春草视频在线免费观看| 少妇被粗大的猛进出69影院 | 大香蕉97超碰在线| 久久久久国产精品人妻一区二区| 性色av一级| 中文字幕免费在线视频6| 成人综合一区亚洲| 麻豆成人av视频| 考比视频在线观看| 99久久精品一区二区三区| 欧美+日韩+精品| 欧美日韩一区二区视频在线观看视频在线| 纵有疾风起免费观看全集完整版| 人成视频在线观看免费观看| 亚洲天堂av无毛| 七月丁香在线播放| 亚洲欧洲日产国产| 国产精品女同一区二区软件| 国产av国产精品国产| 久久 成人 亚洲| 午夜福利影视在线免费观看| 久久人人爽人人片av| 丝袜在线中文字幕| 丁香六月天网| 亚洲丝袜综合中文字幕| 国产精品不卡视频一区二区| 黄色配什么色好看| 亚洲av日韩在线播放| 蜜臀久久99精品久久宅男| 国产一区二区在线观看av| 免费av中文字幕在线| 黄色毛片三级朝国网站| 插阴视频在线观看视频| 少妇熟女欧美另类| 91精品国产九色| 亚洲第一av免费看| 尾随美女入室| 精品国产露脸久久av麻豆| 亚洲av国产av综合av卡| 成人国产麻豆网| 自拍欧美九色日韩亚洲蝌蚪91| 亚洲精品av麻豆狂野| 久久久久精品性色| 蜜桃国产av成人99| 欧美精品高潮呻吟av久久| 久热这里只有精品99| 精品酒店卫生间| 91久久精品电影网| 最新中文字幕久久久久| 一级毛片电影观看| 男男h啪啪无遮挡| 欧美日韩av久久| 日日啪夜夜爽| 久久亚洲国产成人精品v| 免费高清在线观看日韩| 久久热精品热| 国产国语露脸激情在线看| 免费久久久久久久精品成人欧美视频 | 秋霞在线观看毛片| 欧美亚洲日本最大视频资源| 久久久a久久爽久久v久久| 午夜免费男女啪啪视频观看| 夫妻性生交免费视频一级片| 午夜日本视频在线| 亚洲av男天堂| 亚洲国产精品一区三区| 日韩免费高清中文字幕av| 51国产日韩欧美| 久久精品国产鲁丝片午夜精品| 日韩成人伦理影院| 永久网站在线| 久久久久精品久久久久真实原创| 啦啦啦在线观看免费高清www| 啦啦啦视频在线资源免费观看| 菩萨蛮人人尽说江南好唐韦庄| 欧美三级亚洲精品| 汤姆久久久久久久影院中文字幕| 色婷婷av一区二区三区视频| 一级二级三级毛片免费看| 男人爽女人下面视频在线观看| 狠狠精品人妻久久久久久综合| 一级毛片aaaaaa免费看小| 五月开心婷婷网| 22中文网久久字幕| 最近最新中文字幕免费大全7| xxxhd国产人妻xxx| 国产视频内射| 日本欧美视频一区| 亚洲人成77777在线视频| 一区二区三区精品91| 久久久国产一区二区| 日本av手机在线免费观看| 狂野欧美白嫩少妇大欣赏| 一个人免费看片子| 国产成人精品福利久久| 亚洲激情五月婷婷啪啪| 久久久久久伊人网av| 免费观看性生交大片5| 97精品久久久久久久久久精品| 久久久久久久久久久丰满| 日韩在线高清观看一区二区三区| 国产免费一级a男人的天堂| 99热网站在线观看| 中文字幕av电影在线播放| 最近的中文字幕免费完整| av黄色大香蕉| 十八禁网站网址无遮挡| 欧美日韩成人在线一区二区| 国产男女内射视频| 国产在视频线精品| 18禁观看日本| 狂野欧美激情性xxxx在线观看| 中文字幕av电影在线播放| 久久99热6这里只有精品| 精品一品国产午夜福利视频| 久久国产精品大桥未久av| 91国产中文字幕| a级毛片免费高清观看在线播放| 51国产日韩欧美| 狂野欧美白嫩少妇大欣赏| 老女人水多毛片| av有码第一页| av播播在线观看一区| 男女高潮啪啪啪动态图| 亚洲av免费高清在线观看| 国产深夜福利视频在线观看| 精品少妇黑人巨大在线播放| 亚洲精品视频女| 免费久久久久久久精品成人欧美视频 | av专区在线播放| 纵有疾风起免费观看全集完整版| 色婷婷av一区二区三区视频| 综合色丁香网| 久久久精品区二区三区| 考比视频在线观看| 欧美日本中文国产一区发布| 久久久久久久大尺度免费视频| xxxhd国产人妻xxx| 69精品国产乱码久久久| 成人亚洲精品一区在线观看| 国产乱人偷精品视频| 如何舔出高潮| www.av在线官网国产| 国产成人91sexporn| 国产片特级美女逼逼视频| av在线app专区| 久久国产精品大桥未久av| 极品人妻少妇av视频| 最后的刺客免费高清国语| 亚洲av在线观看美女高潮| 成人免费观看视频高清| 26uuu在线亚洲综合色| 久久青草综合色| 特大巨黑吊av在线直播| 久久久久国产网址| 日韩不卡一区二区三区视频在线| 在线观看免费高清a一片| 国产欧美日韩一区二区三区在线 | 日韩av免费高清视频| a级毛片黄视频| 久久久国产欧美日韩av| 国产av码专区亚洲av| 成人国产av品久久久| 一个人看视频在线观看www免费| 欧美日韩成人在线一区二区| 日韩av免费高清视频| 少妇人妻精品综合一区二区| 97超碰精品成人国产| 欧美亚洲 丝袜 人妻 在线| 视频中文字幕在线观看| 亚洲美女搞黄在线观看| 国产成人精品无人区| 丰满迷人的少妇在线观看| 亚洲精品第二区| 精品少妇黑人巨大在线播放| 国产精品成人在线| 国产精品女同一区二区软件| 黄色视频在线播放观看不卡| 天堂俺去俺来也www色官网| 麻豆成人av视频| 人体艺术视频欧美日本| 又大又黄又爽视频免费| 99九九在线精品视频| 久久精品国产a三级三级三级| videosex国产| 色吧在线观看| 亚洲四区av| 国产免费又黄又爽又色| 久久人妻熟女aⅴ| 国产男人的电影天堂91| 国产片特级美女逼逼视频| 欧美激情国产日韩精品一区| 欧美日韩精品成人综合77777| 黑人欧美特级aaaaaa片| 三级国产精品片| 国产探花极品一区二区| 成人国产麻豆网| 高清欧美精品videossex| 国产免费又黄又爽又色| 我的老师免费观看完整版| 久久久精品94久久精品| 青春草国产在线视频| 91精品一卡2卡3卡4卡| av在线观看视频网站免费| 一区二区三区四区激情视频| 久久精品国产鲁丝片午夜精品| 在线天堂最新版资源| 啦啦啦在线观看免费高清www| 国产黄色视频一区二区在线观看| 91精品一卡2卡3卡4卡| 欧美日韩视频精品一区| 美女福利国产在线| 丝袜喷水一区| 久久久亚洲精品成人影院| 国产精品一区二区在线不卡| 一边摸一边做爽爽视频免费| av视频免费观看在线观看| 亚洲熟女精品中文字幕| 黄色毛片三级朝国网站| 亚洲国产毛片av蜜桃av| 亚洲激情五月婷婷啪啪| 青青草视频在线视频观看| 午夜精品国产一区二区电影| 久久久国产精品麻豆| 少妇被粗大猛烈的视频| av国产精品久久久久影院| 熟妇人妻不卡中文字幕| 91精品三级在线观看| 国产国语露脸激情在线看| 美女cb高潮喷水在线观看| av视频免费观看在线观看| 日韩中字成人| 国语对白做爰xxxⅹ性视频网站| 美女中出高潮动态图| 久久久久国产网址| www.色视频.com| 国产 精品1| 国产精品99久久久久久久久| 亚洲综合色惰| 最近的中文字幕免费完整| 黄色一级大片看看| 爱豆传媒免费全集在线观看| 久久久精品区二区三区| 夫妻性生交免费视频一级片| 一边亲一边摸免费视频| 韩国高清视频一区二区三区| 国产男女超爽视频在线观看| 九色成人免费人妻av| 婷婷成人精品国产| 波野结衣二区三区在线| 日韩中文字幕视频在线看片| 在线免费观看不下载黄p国产| 在线精品无人区一区二区三| 最近最新中文字幕免费大全7| 亚洲欧美一区二区三区国产| 亚洲精品美女久久av网站| 亚洲国产av影院在线观看| 国产成人aa在线观看| 岛国毛片在线播放| 一本色道久久久久久精品综合| 三级国产精品片| 国产成人精品在线电影| 亚洲美女视频黄频| 精品一区二区三区视频在线| 色5月婷婷丁香| 少妇人妻久久综合中文| 国产精品嫩草影院av在线观看| 免费看不卡的av| 精品久久久久久电影网| 女性被躁到高潮视频| 欧美激情国产日韩精品一区| 美女国产视频在线观看| 日韩 亚洲 欧美在线| 久久国产精品大桥未久av| a级毛片免费高清观看在线播放| 高清毛片免费看| 母亲3免费完整高清在线观看 | 久久久久久人妻| 91久久精品电影网| 一二三四中文在线观看免费高清| 老女人水多毛片| 国产精品成人在线| 热99国产精品久久久久久7| 国产在线视频一区二区| 国产一区亚洲一区在线观看| 国产69精品久久久久777片| 大话2 男鬼变身卡| 亚洲欧美日韩卡通动漫| 久久这里有精品视频免费| 久久久久精品久久久久真实原创| 丝袜脚勾引网站| 成人亚洲欧美一区二区av| 男女国产视频网站| 亚洲精品乱码久久久v下载方式| 男女边摸边吃奶| 午夜福利影视在线免费观看| 国产成人一区二区在线| 爱豆传媒免费全集在线观看| 嘟嘟电影网在线观看| 22中文网久久字幕| 丝袜美足系列| 日韩在线高清观看一区二区三区| 女人精品久久久久毛片| 热re99久久精品国产66热6| 欧美三级亚洲精品| 日本av手机在线免费观看| 大又大粗又爽又黄少妇毛片口| 又大又黄又爽视频免费| 国产精品一区www在线观看| 久久女婷五月综合色啪小说| 国产精品一区二区在线不卡| 午夜影院在线不卡| 欧美人与性动交α欧美精品济南到 | 国产 精品1| 久久久国产精品麻豆| 久久影院123| 精品一区二区三卡| 国产伦精品一区二区三区视频9| a级毛色黄片| 寂寞人妻少妇视频99o| 91久久精品电影网| 国产一区二区在线观看av| 建设人人有责人人尽责人人享有的| 国产熟女欧美一区二区| 成人18禁高潮啪啪吃奶动态图 | 国产免费现黄频在线看| a级毛片免费高清观看在线播放| 亚洲av在线观看美女高潮| 亚洲av国产av综合av卡| 好男人视频免费观看在线| 一个人看视频在线观看www免费| 大片电影免费在线观看免费| 日韩一区二区三区影片| 插逼视频在线观看| 久久青草综合色| 久久毛片免费看一区二区三区| 一本—道久久a久久精品蜜桃钙片| 女的被弄到高潮叫床怎么办| 亚洲精品视频女| 日本欧美国产在线视频| 亚洲经典国产精华液单| 久久ye,这里只有精品| 亚洲第一av免费看| 国产国语露脸激情在线看| 日本黄色片子视频| 母亲3免费完整高清在线观看 | 亚洲第一av免费看| 3wmmmm亚洲av在线观看| a 毛片基地| 一级毛片黄色毛片免费观看视频| 校园人妻丝袜中文字幕| 久久这里有精品视频免费| 桃花免费在线播放| 国产一级毛片在线| 久久免费观看电影| 春色校园在线视频观看| www.av在线官网国产| 成人18禁高潮啪啪吃奶动态图 | 国产免费一级a男人的天堂| 亚洲成人手机| 高清视频免费观看一区二区| 欧美另类一区| 青春草视频在线免费观看| 国产精品国产三级国产av玫瑰| 18禁动态无遮挡网站| 免费人妻精品一区二区三区视频| 欧美日韩av久久| 最近中文字幕2019免费版| 国产成人免费无遮挡视频| 不卡视频在线观看欧美| 国产亚洲最大av| 久久狼人影院| 亚洲精品色激情综合| 久久久久久人妻| 国产精品秋霞免费鲁丝片| 国产无遮挡羞羞视频在线观看| 亚洲精品久久久久久婷婷小说| 男人爽女人下面视频在线观看| 国产熟女欧美一区二区| 久久韩国三级中文字幕| 赤兔流量卡办理| 国产国拍精品亚洲av在线观看| 涩涩av久久男人的天堂| 美女主播在线视频| 久久99热6这里只有精品| freevideosex欧美| 日韩欧美精品免费久久| 亚洲无线观看免费| 免费av中文字幕在线| 精品一品国产午夜福利视频| 自拍欧美九色日韩亚洲蝌蚪91| 精品人妻一区二区三区麻豆| 久久精品久久久久久噜噜老黄| 在线观看www视频免费| 久久久久久久久久久久大奶| 亚洲av免费高清在线观看| 国产av精品麻豆| 国产免费一区二区三区四区乱码| 精品少妇黑人巨大在线播放| 国产高清国产精品国产三级| 人妻 亚洲 视频| 一级毛片 在线播放| 老熟女久久久| 一区二区av电影网| 蜜桃久久精品国产亚洲av| 3wmmmm亚洲av在线观看| 亚洲精品456在线播放app| 日产精品乱码卡一卡2卡三| 国产成人aa在线观看| 久久久久久久久久久久大奶| 卡戴珊不雅视频在线播放| 国产成人精品福利久久| 久久99热这里只频精品6学生| 亚洲在久久综合| 日本av手机在线免费观看| 日韩成人伦理影院| 中文字幕最新亚洲高清| 考比视频在线观看| 男女国产视频网站| 亚洲人成网站在线观看播放| 欧美国产精品一级二级三级| 成人午夜精彩视频在线观看| 一级毛片电影观看| 热99久久久久精品小说推荐| 国产精品欧美亚洲77777| 成人午夜精彩视频在线观看| 亚洲欧洲日产国产| 午夜视频国产福利| 男女国产视频网站| 午夜免费男女啪啪视频观看| 国产视频首页在线观看| 午夜免费观看性视频| 欧美另类一区| 91精品一卡2卡3卡4卡| 久久ye,这里只有精品| 另类亚洲欧美激情| 青春草亚洲视频在线观看| 日日摸夜夜添夜夜添av毛片| 丰满乱子伦码专区| 久久亚洲国产成人精品v| 观看美女的网站| 亚洲中文av在线| 亚洲婷婷狠狠爱综合网| 国产男女超爽视频在线观看| 精品久久久精品久久久| 欧美三级亚洲精品| 国产老妇伦熟女老妇高清| 欧美精品人与动牲交sv欧美| 狂野欧美激情性bbbbbb| av在线观看视频网站免费| 麻豆精品久久久久久蜜桃| 久久99蜜桃精品久久| 青春草国产在线视频| 亚洲色图 男人天堂 中文字幕 | 自拍欧美九色日韩亚洲蝌蚪91| 成人综合一区亚洲| 伦理电影免费视频| 午夜福利,免费看| 国产免费视频播放在线视频| 黑丝袜美女国产一区| 热99国产精品久久久久久7| 男的添女的下面高潮视频| 99热6这里只有精品| 汤姆久久久久久久影院中文字幕| 日韩一区二区三区影片| 欧美日韩在线观看h| 狠狠精品人妻久久久久久综合| 亚洲伊人久久精品综合| av在线app专区| 日韩av免费高清视频| 欧美激情 高清一区二区三区| 久久久久久久精品精品| videosex国产| av卡一久久| 亚洲第一区二区三区不卡| 欧美日韩av久久| 亚洲精品,欧美精品| 国产精品久久久久久久久免| 最黄视频免费看| 99久久人妻综合| 我的女老师完整版在线观看| 久久久国产欧美日韩av| 一本—道久久a久久精品蜜桃钙片| 黄色欧美视频在线观看| 少妇的逼好多水| a级片在线免费高清观看视频| 久久99热这里只频精品6学生| 国产精品一区二区在线观看99| 精品久久久精品久久久| 边亲边吃奶的免费视频| 欧美丝袜亚洲另类| 日韩制服骚丝袜av| 精品视频人人做人人爽| 18禁在线播放成人免费|