• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Theoretical investigation of shock stand-offdistance for non-equilibrium flows over spheres

    2018-05-17 10:06:16HuSHENChihYungWEN
    CHINESE JOURNAL OF AERONAUTICS 2018年5期

    Hu SHEN,Chih-Yung WEN

    aExtreme Computing Research Center,Computer Electrical and Mathematical Science and Engineering Division,King Abdullah University of Science and Technology,Thuwal 23955-6900,Saudi Arabia

    bDepartment of Mechanical Engineering,The Hong Kong Polytechnic University,Kowloon 999077,Hong Kong Special Administrative Region,China

    1.Introduction

    When a supersonic/hypersonic flow over a blunt body like a sphere,a detached bow shock forms around the body,and the level of the non-equilibrium of the flow is measured by the following dimensionless reaction rate parameter,1where α is the dissociation fraction,D the diameter of the sphere,u the velocity;and the subscripts ‘∞” and‘s”means the corresponding quantities at freestream and immediately behind the shock,respectively.Depending on the value of Ω,the flow can be categorized into nearly frozen flow(Ω ? 1),nearly equilibrium flow(Ω ?1),and nonequilibrium flow(otherwise).The distance between the bow shock and the stagnation point of the nose was referred to as the Shock Stand-off Distance(SSD).The SSD is much smaller than the size of the tested model,and hence experimental measurement admits large errors.Generally speaking,if there is no significant dissociation in the free stream,a larger free stream kinetic energy leads a smaller SSD,due to a higher level of vibrational excitation and chemical dissociation.But an increased SSD is observed in high enthalpy shock tunnels under the same free stream velocity and this phenomenon is attributed to the inevitable free stream dissociation in such facilities.2,3In order to understand the physics behind,it is crucial to explore the effects of the important flow parameters through theoretical analysis.Olivier et al.2first gave an estimation of the effect of free stream dissociation on SSD,but no quantitative solution was provided.

    For frozen flows,Lobb4performed extensive experiments on the SSD for spheres of various diameters using a schlieren photography technique and derived the following correlation

    where Δ is the SSD,ρ density,L a constant with a value of 0.41 for spheres.For dissociating flows,the accuracy of Lobb’s correlation is significantly degraded.5,6

    which implies the SSD is independent of all parameters other than L.Meanwhile,the equilibrium-side solution is given by

    which implies the importance of the density ratio ρs/ρe(note that the subscript ‘e” denotes the corresponding quantities at fully equilibrium states).This simple correlation is well validated by experiments,5,7CFD results8,9and a quasi-oned imensional model.10However,it relies on the semiempirical parameter L measured by experiments,and therefore cannot completely reveal the embedded physics.

    Based on a differential analysis of the governing conservation equations,Olivier11proposed the following analytic solution for the SSD in frozen and equilibrium flows:

    In view of the discussions above,the present study has two aims:(A)to derive a comprehensive analytic solution for the whole non-equilibrium flow regime without using the semiempirical parameter L;(B)to investigate the effect of two fundamental flow parameters,namely the frees tream kinetic energy,and the freestream dissociating level,on the SSD using a simple Ideal Dissociating Gas(IDG)model.13,14

    2.Analytic solution for shock stand-off distance

    Consider the control volume ΔV in the stagnation region between the shock and the body,as shown in Fig.1.The rate at which mass enters the control volume from the left-hand side is equal to ρ∞u∞b or ρ∞u∞b2,depending on whether the flow is two-dimensional or axisymmetric,respectively.Meanwhile,the rate at which mass leaves the control volume through the right-hand side is equal to

    where uτis the tangential velocity(i.e.,the component of velocity normal to the ray from the center of curvature),R is the radius of the sphere and dr is the differential element of the radius.Consequently,the mass balance is given as

    and

    for two-dimensional and axisymmetric flows,respectively.The integral terms in Eqs.(1)and(2)can be approximated using the average value,i.e.,

    and

    Furthermore,let only the flow region very close to the stagnation streamline be considered.Therefore,the following approximations can be applied:

    As a result,the solution method is restricted to this area since only the stand-off distance at the stagnation point is of interest and Eqs.(1)and(2)can be re-written as

    and

    with solutions

    and

    respectively,where

    Substituting Eq.(11)into Eq.(9)yields the following simple solution for SSD in axisymmetric flow:

    Obviously,the parameter χ is the measurement of the product of density and the tangential velocity gradient.Eqs.(8)and(12)imply that the dimensionless SSD is inversely proportional to χ.The above derivations using integral analyses are obviously more succinct than Olivier’s correlation derived from the differential analyses.Comparing Eqs.(8)and(12),the SSD for a cylinder exhibits the same qualitative behavior as that for a sphere.However,the tangential velocity gradient for a cylinder is smaller than that for a sphere,12and thus the SSD is more than twice that of a sphere.The following derivation will be focused on the SSD for spheres.

    To determine the SSD for spheres using Eq.(9)or(12),the tangential velocity gradient must be solved.At the point immediately behind the shock,the velocity gradient can be determined from the conserved tangential velocity component across the shock,i.e.,

    Meanwhile,from the momentum equation in the tangential direction at the body,we have15

    where p is the pressure.Utilizing the approximation of velocity in Eq.(5)and assuming a Newtonian pressure distribution over the surface,i.e.,,Eq.(14)can be written as

    From Eqs.(5)and(15),we can get the solution of tangential velocity gradient as

    Following Olivier,11an assumption is made here that the tangential velocity gradient pro file varies linearly with distance between the body and shock wave.For frozen flows and fully equilibrium flows,the density in the stagnant region can be treated constant and the expression of χ can be simply written as

    whereρavgis the average density along the stagnant line which is equal to ρsand ρefor frozen flows and fully equilibrium flows,respectively.For hypervelocity frozen air flows,ρs/ρb=1 and ρs/ρ∞=6.Hence,Eqs.(9)and (12)yield SSDs of~Δ=0.38 and 0.40,respectively.Both solutions are in good agreement with there sultsobtained from Lob b’s approximation and Olivier’s model,i.e.,0.41 and0.40,respectively.TheSSDof~Δ=0.38derived by the morerigorous Eq.(9)is slightly less than Lobb’s approximation and Olivier’s model.Nevertheless,it is interesting to note that for the frozen nitrogen flows,Hornung1derived a value for SSD of~Δ=0.39 which is also slightly less than that given by Lobb’s approximation.Moreover,~Δ calculated from Eqs.(9)and(12)has only a weak dependence on ρs/ρ∞for hypersonic frozen flows which is consistent with that first reported by Olivier.11When free stream Mach number Ma∞→∞,the value of ρs/ρ∞depends on the value of γ(adiabatic index).In order to compare the present model with Oliver’s model11,the dimensionless SSDs for different gases are listed in Table1.It is observed that the present model is not as sensiti veto ρs/ρ∞as Olivier’s model.For large value of ρs/ρ∞,the present theory agrees well with Olivier’s theory.But for the monoa to mic gas flow(γ=5/3,ρs/ρ∞=4.0),the difference between the two theories is more obvious.

    The values of ρ/ρ∞for non-equilibrium and fully equilibrium flows are larger than that for frozen flows,and the solutions obtained from Eqs.(9)and(12),respectively,tend to converge.Therefore,only the concise correlation Eq.(12)is employed in the following calculations.Eqs.(12)and(17)show that the density ratio ρs/ρbplays an important role in determining the SSD in non-equilibrium dissociating flows,which is consistent with the observations of Wen and Hornung5and Olivier,11respectively.

    Table 1Dimensionless SSDof frozen flows for gases with different values of ρs/ρ∞.

    Table 1Dimensionless SSDof frozen flows for gases with different values of ρs/ρ∞.

    Model Dimensionless SSD(~Δ)CO2(ρs/ρ∞=7.67)Ideal dissociating gas(ρs/ρ∞=7.0)Present,Eq.(9)Monoatomic gas(ρs/ρ∞=4.0)0.38 0.38 0.38 Present,Eq.(12)0.40 0.41 0.40 Olivier110.38 0.44 0.39

    Table 2Dimensionless SSD(~Δ)of fully equilibrium flows for gases with different values of ρs/ρbprovided with ρs/ρ∞=6.0.

    3.Correlation between shock stand-off distance and reaction rate parameter

    Eqs.(10)and(12)imply that if ρs/ρ∞is known,the SSD can be determined from the average value ofNote that,the tangential velocity gradient is already solved in the last section.On the other hand,the generalized reaction rate parameter,i.e.,can be rewritten as

    where y denotes the horizontal direction.In other words,the reaction rate parameter is governed by the spatial gradient of the density immediately behind the shock.As a result,the SSD can be correlated with the generalized reaction rate parameter by means of the density pro file between the shock and the body.

    3.1.A correlation using exponential density pro file

    Wen and Hornung5used a piecewise linear function to approximate the density pro file.They pointed out that the use of a piecewise linear function to approximate the density pro file between the shock and the body results in an overestimation of the average density,and hence an underestimation of the SSD.This error can be reduced by replacing the piecewise linear function with the following exponential function:

    where λ ranges from zero to infinity.As shown,Eq.(19)is a monotonic function for ρ with respect to λ and the density reduces to ρs(frozen flows)and ρe(fully equilibrium flows)when λ =0 and ∞,respectively.In other words,every flow regime within the range of the frozen flow to the fully equilibrium flow is represented by a specific value of λ between 0 and∞.

    Using Eq.(19),the density ratio between the shock and the body and the product of density and tangential velocity gradient and can be given as

    and

    respectively.From Eq.(19),we can easily verify that

    which represents the dimensionless density gradient right after the shock.Clearly,an explicit correlation is no longer possible.But the following uniform implicit correlation can be derived

    3.2.Comparison and discussion

    Eq.(23)shows that the correlation betweenanddepends on the values of ρs/ρ∞and ρs/ρe,respectively.Fig.2 shows the variation ofwith~Ω as a function of ρs/ρegiven a constant ρs/ρ∞=6.Notably,the physical significance ofis the ratio between the energy absorption rate by chemistry and the input rate of free stream kinetic energy.5For small,no chemical reaction occurs in the flow and thus the scaled SSD remains constant.However,asincreases,the amount of energy absorbed by vibrational excitations and chemical reactions also increases.As a result,the average density increases,while~Δ decreases.As expected for the non-equilibrium regime,using exponential density approach gives a higher value of SSD than Wen and Hornung’s correlation5using linear density approach.

    As described above,the scaled SSD is dependent on ρs/ρ∞and ρs/ρe.For an ideal dissociating gas with no frees tream dissociation,ρs/ρ∞is equal to 7.For CO2withis equal to 7.67.Fig.3 plotsandversusfor different values of ρs/ρ∞.It is seen that whilehas a very weak dependence on ρs/ρ∞,has a strong dependence on ρs/ρ∞.For a constant~Ω,when ρs/ρ∞increases,decrease significantly,but~Δ almost remains the same.In other words,is a more universal dimensionless parameter thanin estimating the SSD.

    4.Analytic solution for stand-off distance of nitrogen flows using ideal dissociating gas model

    4.1.Basic equations

    The analytic solutions derived in the previous section are not restricted to any specific gas model,and show thatdetermined by both ρs/ρ∞and ρs/ρe.However,in experimental and simulation studies,the free stream condition is usually expressed in terms of free stream values of ρ∞,u∞,T∞and α∞(T∞is the free stream temperature).Wen and Hornung5qualitatively described the effect of free stream kinetic energy on the scaled SSD~Δ.However,no quantitative relation was derived.Thus,in the present study,the simple IDG model is used to quantify the effects of the main flow parameters on the scaled SSD analytically,for the illustrative case of nitrogen flows.The analysis is also suitable for other pure dissociating diatomic gases and can be extended to multi-component gases by using the approach proposed by Olivier and Gartz.16

    The boundary conditions on the shock wave can be determined by enforcing the conservation of energy,momentum,mass and dissociation fraction across the shock,i.e.,

    where his the specific enthalpy.In general,the equation of state for a mixture of molecular and atomic nitrogen is given as

    where Mis the molecular weight of N2,Tis the temperature and Ruis the universal gas constant.Meanwhile,the specific enthalpy for an IDG is given by

    where θdis the characteristic dissociating temperature for nitrogen and has a value of 113200 K.The boundary condition for h at the shock is then expressed as follows:

    where the velocity component normal to the shock is neglected in the shock layer.

    Utilizing the state equation and the definition of enthalpy,the temperature immediately behind the shock can be obtained from Eq.(27)with αs=α∞as

    From equilibrium theory of Lighthill,14the equilibrium dissociation fraction αecan be determined as

    Here,ρdis the characteristic dissociation density,and was reported by Lighthill14to have a value of 1.3×105kg/m3for nitrogen.

    To solve αe,ρeand Tefrom Eq.(30),two more equations are required.The first equation can be derived by enforcing the conservation of the total enthalpy,i.e.,

    Meanwhile,the second equation can be derived directly from the state equation,i.e.,

    From Eqs.(30)–(32), αe, ρeand Tecan all be solved.Although explicit solutions are impossible,they nevertheless demonstrate the roles of the dimensionless parameters T∞/θd,ρd/ρ∞,μ and α∞in determining the shock stand-off position.Notably,T∞and α∞can be very different from the real flight conditions in a free-piston shock tunnels.

    4.2.Effects of μ and α∞on SSD

    In the following discussions,ρs/ρ∞and ρs/ρeare derived from(29)and(30)–(32),respectively.Then they are used as the inputs of the correlation ofand

    Fig.4 shows the variation ofwithas a function of μ givenand α∞=0.It is seen that the scaled SSDdepends very weakly on μ on the frozen side(~Ω?1).However,reduces significantly with increasing μ on the equilibrium side(~Ω?1).When μ=0.15(u∞=3175 m/s),~Δ on the frozen side and equilibrium side are almost equal.It indicates that when the free stream velocity of nitrogen flow is smaller than 3175 m/s,the dissociating reactions in the flow can be neglected.Notably,although when the freestream velocity decreases to around 3.2 km/s,the dissociation is very weak,the vibrational excitation may decrease a few percentages of(see Houwing et al.17).When μ increases to 1 and beyond,the correspondingcurves are approximately superimposed.From the physics perspective,for nearly frozen flow,no chemical reaction occurs to increase the average density.As a consequence,~Δ is effectively independent of~Ω and remains almost constant.For non-equilibrium and nearly equilibrium flows,the amount of energy absorbed by chemical dissociation increases with increasing the freestream kinetic energy parameter μ.As a result,ρe/ρsincreases and~Δ decreases.For the particular case of μ=1.0,the freestream kinetic energy is equal to the specific dissociation energy of the gas and the amount of energy absorbed by chemical dissociation reaches to the upper limit.Consequently, ρe/ρsno longer increases even when μ increases,and~Δ reaches its minimum value.Overall,Fig.4 infers that the change in the scaled SSDis due primarily to the energy absorption caused by chemical reactions.

    The solution shown in Fig.4 is based on α∞=0 which is the case for the ballistic range experiment.18However,in the high enthalpy free-piston shock tunnel tests,19,20the freestream dissociation level is not zero anymore.Using the IDG model,we can quantitatively estimate the in fluence of freestream dissociation level on the SSD.Belouaggadia et al.12investigated the effect of the freestream dissociation level,α∞,on the shock stand-off distance for the cases of frozen flows and fully equilibrium flows.In the present study,the effect of α∞onis investigated over the entire non-equilibrium flow regime.As shown in Fig.5,α∞has only a weak effect onfor the case of nearly frozen flows,which is the case presented by Belouaggadia,et al..12In addition,it is seenincreases significantly with increasing α∞for moderate values of μ,but is insensitive to α∞at larger values of μ.When α∞=0.3 and μ =0.4,the SSD is even larger than that of α∞=0 and μ=0.3.It means the two opposite acting effects,decrease of the SSD by high freestream kinetic effects and increase of the SSD by free stream dissociation,may even cancel each other.2This finding is reasonable since in higher α∞flows,dissociating chemical reactions occur less readily due to the absence of educts,and hence the density change is less obvious than that in the case of flows with low α∞.When μ is sufficiently large(e.g.,μ=1),dissociation anyway takes place easily,for α∞ranging from 0 to 0.3,and hence no change ofcurve occurs.In general,the curves presented in Fig.5 imply that the effects of possible freestream dissociation in high-enthalpy wind tunnels must be considered,particularly for the case of moderate μ.

    5.Conclusions

    A comprehensive analytical solution has been derived to calculate the SSD and to correlate the SSD of hypervelocity nonequilibrium flows with the average density between the shock and the body without the need for any specific gas model or empirical parameters.Furthermore,using an exponential function to approach the density distribution between the shock and the body,the scaled SSD~Δ has been correlated with the reaction rate parameterIn general,the results have shown that:

    (1)the correlation curve is strongly dependent on ρs/ρe,but is only weakly dependent on ρs/ρ∞.

    Acknowledgements

    This study was co-supported by the Research Grants Council of Hong Kong,China(No.C5010-14E)and the National Natural Science Foundation of China(No.11372265).

    References

    1.Hornung HG.Non-equilibrium dissociating nitrogen flow over spheres and circular cylinders.J Fluid Mech 1972;53:149–76.

    2.Olivier H,Walpot L,Merri field J,Molina R.On the phenomenon of the shock stand-off distance in hypersonic,high enthalpy facilities.In:Jiang Z,editor.Proceedings of the first international conference on high temperature gas dynamics;2012 Oct 15–17;Beijing,China.Beijing:Institute of Mechanics,Chinese Academy of Sciences;2012.p.92–100.

    3.Hashimoto T,Komuro T,Sato K,Itoh K.Experimental investigation of shock stand-off distance on spheres in hypersonic nozzle flows.In:Hannemann K,Seiler F,editors.Shock waves.Heidelberg:Springer;2009.p.961–6.

    4.Lobb RK.Experimental measurement of shock detachment distance on spheres fired in air at hypervelocities.In:Nelson WC,editor.The high temperature aspects ofhypersonic lf ow.Oxford:Pergamon Press;1964.p.519–27.

    5.Wen CY,Hornung HG.Non-equilibrium dissociating flow over spheres.J Fluid Mech 1995;299:389–405.

    6.Nonaka S,Mizuno H,Takayama K,Park C.Measurement of shock standoff distance for sphere in ballistic range.J Thermophys Heat Transf 2000;14(2):225–9.

    7.Sarma GSR.Physico-chemical modelling in hypersonic flow simulation.Prog Aerosp Sci 2000;36(3–4):281–349.

    8.Gerdroodbary MB,Hosseinalipour SM.Numerical simulation of hypersonic flow over highly blunted cones with spike.Acta Astronaut 2010;67(1–2):180–93.

    9.Shen H,Wen CY,Massimi HS.Application of CE/SE method to study hypersonic non-equilibrium flows over spheres.Reston:AIAA;2014.Report No.:AIAA-2014-2509.

    10.Chen S,Sun Q.A quasi-one-dimensional model for hypersonic reactive flow along the stagnation streamline.Chin J Aeronaut 2016;29(6):1517–26.

    11.Olivier H.A theoretical model for the shock stand-off distance in frozen and equilibrium flow.J Fluid Mech 2000;413:345–53.

    12.Belouaggadia N,Olivier H,Brun R.Numerical and theoretical study of the shock stand-off distance in non-equilibrium flows.J Fluid Mech 2008;607:167–97.

    13.Freeman NC.Non-equilibrium flow of an ideal dissociating gas.J Fluid Mech 1958;4(4):407–25.

    14.Lighthill MJ.Dynamics of a dissociating gas—Part I:Equilibrium flow.J Fluid Mech 1957;2(1):1–32.

    15.Anderson JD.Hypersonic and high-temperature gas dynamics.2nd ed.Reston:AIAA;2006.p.311.

    16.Olivier H,Gartz R.Extension of Lighthill’s gas model for multicomponent air.5th European conference for aeronautics and space sciences;2013.p.1–8.

    17.Houwing AFP,Nonaka S,Mizuno H,Takayama K.Effects of vibrational relaxation on now shock standoff distance for nonequilibrium flows.AIAA J 2000;38(9):1760–3.

    18.Nonaka S,Mizuno H,Takayama K.Ballistic range measurement of shock shapes in intermediate hypersonic range.Reston:AIAA;1999.Report No.:AIAA-1999-1025.

    19.Wen CY.Hypervelocity flow over spheres[dissertation].Pasadena:California Institute of Technology;1994.142–58.

    20.Belouaggadia N,Hashimoto T,Nonaka S,Takayama K,Brun R.Shock detachment distance on blunt bodies in nonequilibrium flow.AIAA J 2007;45(6):1424–9.

    免费日韩欧美在线观看| 高清不卡的av网站| 欧美在线一区亚洲| 精品视频人人做人人爽| 久久精品久久久久久久性| av不卡在线播放| 久久影院123| 亚洲av男天堂| 夫妻性生交免费视频一级片| 99国产精品免费福利视频| 亚洲成色77777| 肉色欧美久久久久久久蜜桃| 久久天躁狠狠躁夜夜2o2o | 五月天丁香电影| 人人澡人人妻人| 中国三级夫妇交换| 欧美精品一区二区免费开放| 香蕉丝袜av| 亚洲欧美成人精品一区二区| 在现免费观看毛片| 热re99久久国产66热| 国产一区二区在线观看av| 亚洲第一区二区三区不卡| 国产探花极品一区二区| 日韩一区二区视频免费看| 男女午夜视频在线观看| 国产精品国产三级国产专区5o| 99久久综合免费| 国产视频首页在线观看| 各种免费的搞黄视频| 如日韩欧美国产精品一区二区三区| 天天躁夜夜躁狠狠久久av| 免费观看av网站的网址| videosex国产| 黄片小视频在线播放| 亚洲视频免费观看视频| 久久久欧美国产精品| 国产免费又黄又爽又色| 免费人妻精品一区二区三区视频| 成人免费观看视频高清| 国产精品国产av在线观看| 国产成人欧美| 久久久久久免费高清国产稀缺| 一二三四在线观看免费中文在| 女人爽到高潮嗷嗷叫在线视频| 国产1区2区3区精品| xxxhd国产人妻xxx| 国产av国产精品国产| av福利片在线| 日韩av在线免费看完整版不卡| 一级片免费观看大全| 亚洲第一青青草原| 十八禁高潮呻吟视频| 国产免费一区二区三区四区乱码| 亚洲色图综合在线观看| 午夜免费鲁丝| 人人澡人人妻人| 久久97久久精品| 中文字幕色久视频| av片东京热男人的天堂| 最新在线观看一区二区三区 | 老汉色av国产亚洲站长工具| 亚洲精品一二三| 高清视频免费观看一区二区| 国产在线视频一区二区| 美女高潮到喷水免费观看| 99国产精品免费福利视频| 永久免费av网站大全| 欧美老熟妇乱子伦牲交| 亚洲,欧美精品.| 另类亚洲欧美激情| 日韩精品免费视频一区二区三区| 久久国产精品男人的天堂亚洲| 国产精品久久久av美女十八| 国产色婷婷99| 久久国产精品男人的天堂亚洲| 搡老岳熟女国产| 男人添女人高潮全过程视频| 在线观看人妻少妇| 免费少妇av软件| 久热这里只有精品99| 高清视频免费观看一区二区| 深夜精品福利| www.av在线官网国产| videosex国产| 黑丝袜美女国产一区| 男女之事视频高清在线观看 | 在线观看免费视频网站a站| 亚洲男人天堂网一区| 欧美激情 高清一区二区三区| 国产毛片在线视频| 欧美黑人欧美精品刺激| 亚洲中文av在线| 亚洲成人av在线免费| 日韩av不卡免费在线播放| 一级,二级,三级黄色视频| 国产精品 国内视频| 国产精品一国产av| 日本vs欧美在线观看视频| 精品午夜福利在线看| 2018国产大陆天天弄谢| 亚洲精品国产色婷婷电影| 久久人人爽av亚洲精品天堂| 热re99久久国产66热| 欧美国产精品va在线观看不卡| 在现免费观看毛片| 免费黄色在线免费观看| 丝袜在线中文字幕| 精品亚洲成a人片在线观看| 精品人妻在线不人妻| 精品少妇黑人巨大在线播放| 午夜福利在线免费观看网站| 国产女主播在线喷水免费视频网站| 亚洲人成电影观看| 亚洲人成电影观看| 精品一区二区免费观看| 久久久国产一区二区| 男女国产视频网站| 99久久99久久久精品蜜桃| 免费日韩欧美在线观看| 日韩中文字幕欧美一区二区 | 亚洲三区欧美一区| 在线亚洲精品国产二区图片欧美| 嫩草影视91久久| 成人18禁高潮啪啪吃奶动态图| 欧美另类一区| 日本av手机在线免费观看| 美女福利国产在线| 在线 av 中文字幕| 丰满饥渴人妻一区二区三| 18禁观看日本| 亚洲成人免费av在线播放| 日韩欧美一区视频在线观看| 欧美黑人欧美精品刺激| 久久国产精品大桥未久av| 交换朋友夫妻互换小说| 最新的欧美精品一区二区| 婷婷色综合大香蕉| 国产精品人妻久久久影院| 中国国产av一级| 丝袜美足系列| 午夜福利影视在线免费观看| 国产精品久久久久久精品电影小说| 亚洲精品在线美女| 亚洲图色成人| 国产色婷婷99| 深夜精品福利| 亚洲第一av免费看| 亚洲精品一二三| 亚洲成色77777| 中文天堂在线官网| 男人操女人黄网站| 日韩大片免费观看网站| 青春草亚洲视频在线观看| 99久久99久久久精品蜜桃| 美女国产高潮福利片在线看| 黄色 视频免费看| 极品少妇高潮喷水抽搐| 国产精品国产av在线观看| 国产av精品麻豆| 91国产中文字幕| 亚洲av男天堂| 国产日韩一区二区三区精品不卡| 丰满少妇做爰视频| 日韩一区二区三区影片| 伊人久久大香线蕉亚洲五| 日韩欧美一区视频在线观看| 久久久久久久久久久免费av| 校园人妻丝袜中文字幕| 精品少妇内射三级| 国产精品99久久99久久久不卡 | 中文欧美无线码| 国产男人的电影天堂91| 啦啦啦中文免费视频观看日本| 美国免费a级毛片| 97精品久久久久久久久久精品| 久久人人97超碰香蕉20202| 亚洲人成网站在线观看播放| 亚洲精品美女久久av网站| 欧美精品一区二区大全| 欧美 亚洲 国产 日韩一| www日本在线高清视频| 国产精品久久久久久精品古装| 国产免费又黄又爽又色| 亚洲av日韩精品久久久久久密 | 国产毛片在线视频| 狠狠婷婷综合久久久久久88av| 哪个播放器可以免费观看大片| 成人三级做爰电影| 午夜日韩欧美国产| 热re99久久精品国产66热6| 久久精品熟女亚洲av麻豆精品| 女人久久www免费人成看片| 亚洲国产欧美一区二区综合| 色婷婷av一区二区三区视频| 国产1区2区3区精品| 国产老妇伦熟女老妇高清| 亚洲精品中文字幕在线视频| 精品一品国产午夜福利视频| 波野结衣二区三区在线| 中文欧美无线码| 中文精品一卡2卡3卡4更新| 91精品国产国语对白视频| 在线免费观看不下载黄p国产| 一个人免费看片子| 午夜福利免费观看在线| 街头女战士在线观看网站| 日韩av免费高清视频| 国语对白做爰xxxⅹ性视频网站| 飞空精品影院首页| 亚洲,欧美精品.| 成人毛片60女人毛片免费| 精品一区二区三区四区五区乱码 | 男女边摸边吃奶| 亚洲成国产人片在线观看| av在线播放精品| 麻豆乱淫一区二区| 欧美97在线视频| 欧美日韩综合久久久久久| 婷婷色综合大香蕉| 欧美中文综合在线视频| 精品卡一卡二卡四卡免费| 亚洲av综合色区一区| 亚洲精品久久成人aⅴ小说| 免费观看人在逋| 99热国产这里只有精品6| 男女高潮啪啪啪动态图| 亚洲综合精品二区| 女人高潮潮喷娇喘18禁视频| 成年人免费黄色播放视频| 成人手机av| 国产精品免费大片| 欧美人与性动交α欧美软件| 亚洲av成人不卡在线观看播放网 | 无限看片的www在线观看| 激情视频va一区二区三区| 精品视频人人做人人爽| 国产av精品麻豆| 欧美人与性动交α欧美精品济南到| 男女边吃奶边做爰视频| 9191精品国产免费久久| 亚洲av综合色区一区| 精品人妻在线不人妻| 国产成人精品久久久久久| 日韩中文字幕视频在线看片| 日日摸夜夜添夜夜爱| 丰满饥渴人妻一区二区三| 久久久欧美国产精品| 精品福利永久在线观看| 成人国语在线视频| 中文字幕高清在线视频| 国产欧美日韩一区二区三区在线| 久久毛片免费看一区二区三区| 久久99一区二区三区| 一本—道久久a久久精品蜜桃钙片| 免费日韩欧美在线观看| 另类亚洲欧美激情| 亚洲美女黄色视频免费看| 啦啦啦在线免费观看视频4| 久久精品国产a三级三级三级| 亚洲久久久国产精品| 母亲3免费完整高清在线观看| 爱豆传媒免费全集在线观看| 亚洲国产最新在线播放| 韩国精品一区二区三区| 国产免费现黄频在线看| 亚洲欧美成人综合另类久久久| 日日爽夜夜爽网站| 国产精品久久久久久精品古装| 黄片小视频在线播放| 99精国产麻豆久久婷婷| 人人妻人人澡人人爽人人夜夜| 丰满乱子伦码专区| 亚洲精品一二三| 亚洲久久久国产精品| 亚洲精品日本国产第一区| 自线自在国产av| 成人免费观看视频高清| 99热国产这里只有精品6| 在线观看免费高清a一片| 国产成人欧美| kizo精华| 亚洲av中文av极速乱| 高清av免费在线| 国产精品久久久久久精品电影小说| 美女午夜性视频免费| 在线看a的网站| 熟女少妇亚洲综合色aaa.| 欧美人与性动交α欧美软件| 免费少妇av软件| 亚洲一码二码三码区别大吗| 少妇的丰满在线观看| 欧美人与性动交α欧美软件| av线在线观看网站| 国产欧美亚洲国产| 日本色播在线视频| 日本爱情动作片www.在线观看| 亚洲精品中文字幕在线视频| 久久av网站| 男女边摸边吃奶| 国产片内射在线| 久热爱精品视频在线9| 国产精品国产av在线观看| 又大又爽又粗| 国产人伦9x9x在线观看| 国产乱来视频区| av视频免费观看在线观看| 麻豆av在线久日| 男女国产视频网站| 久久精品久久久久久久性| 热99久久久久精品小说推荐| 这个男人来自地球电影免费观看 | 国产一级毛片在线| 午夜精品国产一区二区电影| 日韩视频在线欧美| 电影成人av| 国产精品人妻久久久影院| 欧美国产精品va在线观看不卡| 青春草视频在线免费观看| 欧美在线一区亚洲| 成人三级做爰电影| 国产黄色视频一区二区在线观看| 一区二区日韩欧美中文字幕| 亚洲一码二码三码区别大吗| svipshipincom国产片| 国产精品国产三级国产专区5o| 欧美老熟妇乱子伦牲交| 国产精品一国产av| 国产免费视频播放在线视频| 国产爽快片一区二区三区| 亚洲人成77777在线视频| 亚洲av男天堂| 丰满少妇做爰视频| 国产成人系列免费观看| 国产女主播在线喷水免费视频网站| 日韩av免费高清视频| 国产精品一区二区精品视频观看| 欧美变态另类bdsm刘玥| 色精品久久人妻99蜜桃| 激情五月婷婷亚洲| 婷婷色av中文字幕| 91精品三级在线观看| 制服诱惑二区| 国产99久久九九免费精品| 亚洲国产成人一精品久久久| 国产成人精品在线电影| 久久这里只有精品19| 一本久久精品| 精品视频人人做人人爽| 男女边摸边吃奶| 青春草亚洲视频在线观看| 亚洲精品中文字幕在线视频| 黄片小视频在线播放| av免费观看日本| 亚洲成人手机| 欧美亚洲日本最大视频资源| 大香蕉久久网| 色婷婷av一区二区三区视频| av不卡在线播放| 80岁老熟妇乱子伦牲交| 国产极品天堂在线| 日本av手机在线免费观看| 免费黄网站久久成人精品| 欧美日韩一区二区视频在线观看视频在线| 一本—道久久a久久精品蜜桃钙片| 中文乱码字字幕精品一区二区三区| 国产淫语在线视频| 久久久久久久久久久久大奶| 综合色丁香网| 午夜精品国产一区二区电影| 看十八女毛片水多多多| 一本色道久久久久久精品综合| www日本在线高清视频| 日韩精品免费视频一区二区三区| 日韩人妻精品一区2区三区| 久久人人爽av亚洲精品天堂| 久久久久久人妻| 最近中文字幕2019免费版| 大码成人一级视频| 97人妻天天添夜夜摸| 深夜精品福利| 亚洲美女视频黄频| 欧美 亚洲 国产 日韩一| 一区福利在线观看| 中文欧美无线码| 国产1区2区3区精品| 精品亚洲成国产av| 色精品久久人妻99蜜桃| 国产免费视频播放在线视频| 国产xxxxx性猛交| 久久99精品国语久久久| 99久久99久久久精品蜜桃| 午夜免费观看性视频| 国产 一区精品| 日本欧美国产在线视频| 久久久欧美国产精品| 日韩伦理黄色片| 在现免费观看毛片| 99国产精品免费福利视频| 中国三级夫妇交换| 97精品久久久久久久久久精品| 亚洲精品美女久久av网站| 成年女人毛片免费观看观看9 | 成人亚洲欧美一区二区av| 国产精品欧美亚洲77777| 性色av一级| 一级毛片黄色毛片免费观看视频| 夫妻午夜视频| 蜜桃国产av成人99| 捣出白浆h1v1| 中文欧美无线码| 又黄又粗又硬又大视频| 亚洲成av片中文字幕在线观看| 亚洲欧洲国产日韩| 9热在线视频观看99| www.av在线官网国产| 成年女人毛片免费观看观看9 | 香蕉丝袜av| 亚洲欧洲日产国产| 熟妇人妻不卡中文字幕| 欧美xxⅹ黑人| 成人18禁高潮啪啪吃奶动态图| 欧美成人精品欧美一级黄| 精品免费久久久久久久清纯 | av不卡在线播放| 国产精品国产av在线观看| 欧美日韩一级在线毛片| 欧美日韩视频高清一区二区三区二| 天天躁夜夜躁狠狠躁躁| 亚洲av日韩在线播放| 久久久久人妻精品一区果冻| 伊人久久大香线蕉亚洲五| 男女下面插进去视频免费观看| 久久综合国产亚洲精品| 精品亚洲乱码少妇综合久久| 日韩人妻精品一区2区三区| 日本爱情动作片www.在线观看| 日韩视频在线欧美| 亚洲色图 男人天堂 中文字幕| 亚洲婷婷狠狠爱综合网| 国产精品久久久人人做人人爽| 中文字幕人妻熟女乱码| 美女国产高潮福利片在线看| 欧美人与善性xxx| 中文字幕色久视频| 亚洲av综合色区一区| 亚洲精品aⅴ在线观看| 天堂8中文在线网| 日本欧美视频一区| 国产精品无大码| 免费在线观看视频国产中文字幕亚洲 | 午夜日韩欧美国产| h视频一区二区三区| av免费观看日本| 老司机亚洲免费影院| 亚洲在久久综合| 狂野欧美激情性xxxx| 久久精品久久久久久久性| 免费女性裸体啪啪无遮挡网站| 成人18禁高潮啪啪吃奶动态图| 韩国精品一区二区三区| 美女视频免费永久观看网站| 人体艺术视频欧美日本| 男女国产视频网站| 日日啪夜夜爽| 只有这里有精品99| 久久精品亚洲熟妇少妇任你| 性高湖久久久久久久久免费观看| 久久久精品94久久精品| 精品亚洲乱码少妇综合久久| 国产一区二区三区av在线| 下体分泌物呈黄色| 99精国产麻豆久久婷婷| 人人妻人人添人人爽欧美一区卜| 国产免费又黄又爽又色| 日韩一卡2卡3卡4卡2021年| 建设人人有责人人尽责人人享有的| 免费观看av网站的网址| 91精品国产国语对白视频| 蜜桃在线观看..| 少妇的丰满在线观看| 欧美日本中文国产一区发布| 男女国产视频网站| av在线老鸭窝| 少妇被粗大猛烈的视频| 亚洲欧美日韩另类电影网站| 免费女性裸体啪啪无遮挡网站| 久久精品久久精品一区二区三区| 国产午夜精品一二区理论片| xxx大片免费视频| 韩国精品一区二区三区| 男人操女人黄网站| 亚洲欧美日韩另类电影网站| 亚洲一码二码三码区别大吗| 好男人视频免费观看在线| www.av在线官网国产| 黄片播放在线免费| 成年动漫av网址| 亚洲成国产人片在线观看| www.自偷自拍.com| 欧美人与性动交α欧美精品济南到| 麻豆精品久久久久久蜜桃| 欧美精品一区二区大全| av不卡在线播放| 亚洲av电影在线进入| 久久精品久久精品一区二区三区| 久久亚洲国产成人精品v| 国产精品免费大片| 无遮挡黄片免费观看| 一区二区av电影网| 午夜精品国产一区二区电影| 男人操女人黄网站| 日韩中文字幕欧美一区二区 | 黄频高清免费视频| 亚洲国产欧美网| 国产一卡二卡三卡精品 | 国产精品一区二区精品视频观看| 久久人妻熟女aⅴ| 国产成人免费无遮挡视频| 国产不卡av网站在线观看| 国产亚洲午夜精品一区二区久久| 精品国产一区二区三区四区第35| 国产精品亚洲av一区麻豆 | 国产极品粉嫩免费观看在线| 老汉色∧v一级毛片| 成人手机av| 韩国高清视频一区二区三区| 亚洲一区二区三区欧美精品| 在线 av 中文字幕| 欧美日韩一区二区视频在线观看视频在线| 午夜91福利影院| 岛国毛片在线播放| 最近中文字幕高清免费大全6| 免费在线观看完整版高清| 精品一区在线观看国产| 久久久国产欧美日韩av| 精品久久久久久电影网| 亚洲美女搞黄在线观看| 日本一区二区免费在线视频| 亚洲av综合色区一区| 大香蕉久久成人网| 国产黄色视频一区二区在线观看| 少妇人妻精品综合一区二区| 国产精品一区二区在线观看99| 丁香六月欧美| 性高湖久久久久久久久免费观看| 亚洲色图综合在线观看| 精品酒店卫生间| 亚洲 欧美一区二区三区| 亚洲在久久综合| 亚洲精品久久午夜乱码| 男女床上黄色一级片免费看| 91老司机精品| 尾随美女入室| 两个人看的免费小视频| 亚洲,欧美,日韩| 色视频在线一区二区三区| 亚洲男人天堂网一区| 人人澡人人妻人| 国产成人一区二区在线| 人人妻人人添人人爽欧美一区卜| 高清视频免费观看一区二区| 黄片播放在线免费| 久久鲁丝午夜福利片| 亚洲,一卡二卡三卡| 美女高潮到喷水免费观看| 日本av手机在线免费观看| 成年人免费黄色播放视频| 日日摸夜夜添夜夜爱| 国产成人精品福利久久| 日韩成人av中文字幕在线观看| 日韩,欧美,国产一区二区三区| 黄片播放在线免费| 欧美人与善性xxx| 亚洲精品久久午夜乱码| 男女床上黄色一级片免费看| 久久97久久精品| 女性生殖器流出的白浆| 中文字幕高清在线视频| 大陆偷拍与自拍| 精品久久久精品久久久| 肉色欧美久久久久久久蜜桃| 国产精品熟女久久久久浪| av免费观看日本| 999久久久国产精品视频| 别揉我奶头~嗯~啊~动态视频 | 哪个播放器可以免费观看大片| 亚洲精品在线美女| av免费观看日本| 亚洲图色成人| 桃花免费在线播放| 亚洲国产毛片av蜜桃av| 午夜久久久在线观看| 秋霞伦理黄片| 国产激情久久老熟女| 久久狼人影院| 美女扒开内裤让男人捅视频| 国产精品国产av在线观看| 成人漫画全彩无遮挡| 日韩,欧美,国产一区二区三区| 毛片一级片免费看久久久久| 丝袜美腿诱惑在线| 在现免费观看毛片| 亚洲精品视频女| 一区二区三区激情视频| 99香蕉大伊视频| 中文字幕亚洲精品专区| 操出白浆在线播放| 国产亚洲av片在线观看秒播厂| 各种免费的搞黄视频| 考比视频在线观看| 青青草视频在线视频观看| 19禁男女啪啪无遮挡网站| 一级毛片我不卡| 一级毛片黄色毛片免费观看视频|