• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    平面和橢球面相截所得的橢圓的參數(shù)方程及其應(yīng)用

    2018-05-14 13:47黃亦虹許慶祥
    關(guān)鍵詞:橢球面交線半軸

    黃亦虹 許慶祥

    On the ellipsoid and plane intersection equation

    Huang Yihong1, Xu Qingxiang2*

    (1.College of Sciences,Shanghai Institute of Technology,Shanghai 201418,China;

    2.Mathematics and Science College,Shanghai Normal University,Shanghai 200234,China)

    Abstract:

    Let E:x2a2+y2b2+z2c2=1 be an ellipsoid and P:p x+q y+r z=d be a plane.Based on the Householder transformation,it is shown that the intersection E∩P is nonempty if and only if λ≥d,where λ=(ap)2+(bq)2+(cr)2.When λ>d,this paper provides a new proof that the intersection curveof E and P is always an ellipse,and in this case a new parametric equation ofis derived.Based on the obtained parametric equation ofand Stokes formula,we derive a formula for the area of the region bounded by ,and compute its semi-major axis and semi-minor axis.As an application,we get necessary and sufficient conditions forto be a circle.

    Key words:

    ellipsoid; plane; parametric equation; Householder transformation; Stokes formula

    CLC number: O 13; O 172Document code: AArticle ID: 1000-5137(2018)01-0024-07

    摘要:

    設(shè)E:x2a2+y2b2+z2c2=1為一個橢球面,P:px+qy+rz=d為一個平面.利用Householder變換,證明了E和P 相交當且僅當 λ≥d,其中λ=(ap)2+(bq)2+(cr)2.當 λ>d時用新的方法證明了橢球面E和平面P的交線 一定是橢圓,并且給出了該橢圓的參數(shù)方程.利用交線的參數(shù)方程,給出了由所圍成的內(nèi)部區(qū)域的面積公式,進而給出了橢圓的長半軸和短半軸的計算公式.作為應(yīng)用,又給出了交線 成為一個圓的充要條件.

    關(guān)鍵詞:

    橢球面; 平面; 參數(shù)方程; Householder變換; Stokes公式

    Received date: 2017-01-11

    Foundation item: The National Natural Science Foundation of China (11671261)

    Biography: Huang Yihong(1965-),female,lecture,reseach area:Advanced mathematics.E-mail:hyh@sit.edu.cn

    *Corresponding author: Xu Qingxiang(1967-),male,professor,research area:Functional Analysis.E-mail:qxxu@shnu.edu.cn

    引用格式: 黃亦虹,許慶祥.平面和橢球面相截所得的橢圓的參數(shù)方程及其應(yīng)用 [J].上海師范大學(xué)學(xué)報(自然科學(xué)版),2018,47(1):24-30.

    Citation format: Huang Y H,Xu Q X.On the ellipsoid and plane intersection equation [J].Journal of Shanghai Normal University(Natural Sciences),2018,47(1):24-30.

    1Introduction

    Throughout this paper,R,R+ and Rm×n are the sets of the real numbers,the positive numbers and the m×n real matrices,respectively.The notation Rn×1 is simplified to Rn.For any A∈Rm×n,its transpose is denoted by AT.Let In be the identity matrix of order n.

    Much attention is paid to the very popular topic of the intersection curve of an ellipsoid and a plane[1-3].Yet,little has been done in the literatures on the application of the Householder transformation and the Stokes formula to this topic,which is the concern of this paper.

    Let E be an ellipsoid and P be a plane defined respectively by

    E:x2a2+y2b2+z2c2=1,P:px+qy+rz=d,(1)

    where a,b,c∈R+ and p,q,r,d∈R such that p2+q2+r2≠0.

    It is known that the intersection curveof E and P is always an ellipse,and much effort has been made in the study of the semi-axes of .Yet,due to the complexity of computation,it is somehow difficult to derive explicit formulas for the semi-axes of .

    The key point of this paper is the usage of the Householder transformation to derive a new parametric equation of ,together with the application of the Stokes formula to find the area S of the region bounded by ;see Theorem 2.4 and Corollary 2.5.Another point of this paper is the characterization of the parallel tangent lines of ,which is combined with the obtained formula for S to deal with the semi-axes of .As a result,explicit formulas for the semi-major axis and the semi-minor axis ofare derived;see Theorem 2.6.As an application,necessary and sufficient conditions are derived under whichis a circle.

    2The main results

    Let v∈Rn be nonzero.The Householder matrix Hv associated to v is defined by

    Hv=In-2vTv· vvT∈Rn×n.(2)

    It is known[4] that HvT=Hv and HvTHv=In,i.e.,Hv is an orthogonal matrix.Due to the following property, the Householder matrix is of special usefulness.

    Lemma 2.1

    Let x,y∈Rn be such that x≠y and xTx=yTy.Then

    Hv(x)=y,where v=x-y.(3)

    Theorem 2.2

    Let E and P be given by (1).Then =E∩P≠ if and only if λ≥d,where λ is defined by

    λ=(ap)2+(bq)2+(cr)2.(4)

    Proof

    Let λ be defined by (4).Firstly,we consider the case that p2+q2>0. Let w1=(ap,bq,cr)T and w2=(0,0,λ)T.Then clearly,w1≠w2 and w1Tw1=w2Tw2,so by Lemma 2.1 we have

    Hvw1=w2,where v=w1-w2.(5)

    Let

    x

    y

    z=

    a

    b

    c

    Hv

    1a

    1b

    1c

    x1

    y1

    z1

    .(6)

    Then by (1),(5) and (6),we have

    1=xa,yb,zcxa,yb,zcT=x1a,y1b,z1cHvTHvx1a,y1b,z1cT

    =x1a,y1b,z1cx1a,y1b,z1cT=x12a2+y12b2+z12c2,(7)

    d=(p,q,r)(x,y,z)T=(ap,bq,cr)Hvx1a,y1b,z1cT

    =w1THvx1a,y1b,z1cT=w2Tx1a,y1b,z1cT=z1λc.

    (8)

    It follows from (7) and (8) that

    x12a2+y12b2=1-d2λ2.(9)

    This means E∩P is nonempty if and only if λ≥d,where λ is defined by (4).

    Secondly,we consider the case that p=q=0.In this case,we have r≠0.It follows directly from (1) that

    x2a2+y2b2=1-d2λ2,

    thus the conclusion also holds.

    The following result is well-known,yet its proof presented below is somehow new.

    Theorem 2.3

    Let E,P and λ be given by (1) and (4) respectively such that λ>d. Then the intersection curve =E∩P is always an ellipse.

    Proof

    It needs only to consider the case that p2+q2>0.Let w3=(p,q,r)T,w4=(0,0,p2+q2+r2)T,v1=w3-w4 and Hv1 be the Householder matrix defined by (2) which satisfies Hv1w3=w4.Let

    (x,y,z)T=Hv1(x1,y1,z1)T.(10)

    Then

    d=w3T(x,y,x)T=w3T Hv1(x1,y1,z1)T=w4T(x1,y1,z1)T=p2+q2+r2z1.

    Therefore,

    z1=dp2+q2+r2=defk.(11)

    It follows from (1),(10) and (11) that

    1=(x,y,z)

    1a2

    1b2

    1c2

    x

    y

    z

    =(x1,y1,k)A

    x1

    y1

    k

    ,(12)

    where A=Hv1T1a2

    1b2

    1c2 Hv1 is positive definite.Let A be partitioned as A= A1〖|〗A2 〖-〗

    A2T〖|〗a3 ,where A1∈R2×2 is positive definite since A is.Then from (12) we get

    (x1,y1)A1x1

    y1 +λ1 x1+λ2 y1+λ3=0 for some λi∈R,i=1,2,3,

    which represents an ellipse in x1y1- plane since A1 is positive definite.This observation together with (11) yields the fact that in the x1y1z1- coordinate system,the equation of the intersection curverepresents an ellipse.The conclusion then follows from (10) since Hv1 is an orthogonal matrix.

    Theorem 2.4

    Let E,P and λ be given by (1) and (4) such that λ>d.Then a parametric equation of the intersection curve =E∩P can be given for t∈[0,2π] as follows:

    x(t)=aλ2-d2λ2(cr-λ)[(λ(cr-λ)+(ap)2)cos(t)+abpqsint]+a2pdλ2,

    y(t)=bλ2-d2λ2(cr-λ)[abpqcost+(λ(cr-λ)+(bq)2)sint]+b2qdλ2,

    z(t)=cλ2-d2λ2[apcost+bqsint]+c2rdλ2.

    (13)

    Proof

    We only consider the case that p2+q2>0.By (2) and (5) we obtain

    Hv=

    1+(ap)2λ(cr-λ)abpqλ(cr-λ)apλ

    abpqλ(cr-λ)1+(bq)2λ(cr-λ)bqλ

    apλbqλcrλ

    .(14)

    Furthermore,by (8) and (9) we get

    x1=a1-d2λ2cost,

    y1=b1-d2λ2sint,t∈[0,2π],

    z1=cdλ.

    (15)

    Eq.(13) then follows from (6),(14) and (15).

    An application of Theorem 2.4 is as follows.

    Corollary 2.5

    Letbe the intersection curve of the ellipsoid E and the plane P given by (1).Then the area S of the region S bounded bycan be formulated by

    S=abcp2+q2+r2(λ2-d2)πλ3,(16)

    where λ is defined by (4).

    Proof

    Let (cosα,cosβ,cosγ) denote the unit normal vector of the plane P,where

    cosα=pp2+q2+r2,cosβ=qp2+q2+r2,cosγ=rp2+q2+r2.(17)

    We may use the Stokes formula to get

    S=± ∫ zcosβdx+xcosγdy+ycosαdz,(18)

    where ± is chosen to ensure that the right side of (18) is non-negative.Note that

    ∫2π0sintdt=∫2π0costdt=∫2π0sintcostdt=0,(19)

    ∫2π0sin2tdt=∫2π0cos2tdt=π.(20)

    Therefore,by (13),(4),(19) and (20) we obtain

    ∫ zdx=-abcq(λ2-d2)πλ3,(21)

    ∫ xdy=-abcr(λ2-d2)πλ3,(22)

    ∫ ydz=-abcp(λ2-d2)πλ3.(23)

    Formula (16) then follows from (17)-(18) and (21)-(23).

    Consider the calculation of I=∫ x2 ds,whereis the intersection curve of the sphere x2+y2+z2=R2 (R>0) and the plane x+y+z=0.In view of the symmetry,a solution can be carried out simply as

    I=13 ∫ (x2+y2+z2) ds=13 ∫ R2 ds=13 R2· 2π R=2π3R3.

    Obviously,the method employed above only works for the symmetric case.As shown by Example 2.1 below,the parametric equation (13) is a useful tool to deal with the non-symmetric case.

    Example 2.1

    Evaluate I=∫ x2 ds,whereis the intersection curve of the sphere x2+y2+z2=R2 (R>0) and the plane px+qy+rz=d.

    Solution

    We follow the notations as in the proof of Theorem 2.2.Since a=b=c=R,Eq.(6) turns out to be

    (x,y,z)T=Hv (x1,y1,z1)T,

    which is combined with (15) to get

    ds=(x′(t),y′(t),z′(t))(x′(t),y′(t),z′(t))Tdt

    =(x′1(t),y′1(t),z′1(t))HvT Hv(x′1(t),y′1(t),z′1(t))Tdt

    =(x′1(t),y′1(t),z′1(t))g(x′1(t),y′1(t),z′1(t))Tdt

    =(x′1(t))2+(y′1(t))2dt=R1-d2λ2dt.

    In view of the first equation of (13) and (19)-(20),we have

    I=∫ x2 ds=μR1-d2λ2,where λ=Rp2+q2+r2,(24)

    and μ is given by

    μ=R2(λ2-d2)πλ4(Rr-λ)2[(λ(Rr-λ)+(Rp)2)2+(R2pq)2]+2π(R2pd)2λ4.(25)

    Note that

    (λ(Rr-λ)+(Rp)2)2+(R2pq)2

    =λ2(Rr-λ)2+2R2p2λ(Rr-λ)+R2p2· R2(p2+q2)

    =λ2(Rr-λ)2+2R2p2λ(Rr-λ)+R2p2(λ2-R2r2)

    =(Rr-λ)[λ2(Rr-λ)+2R2p2λ-R2p2(λ+Rr)]

    =(Rr-λ)[R2(p2+q2+r2)(Rr-λ)+2R2p2λ-R2p2(λ+Rr)]

    =(Rr-λ)2R2(q2+r2),(26)

    so we may combine (24)-(26) to conclude that

    I=∫ x2 ds=π R5[(λ2-d2)(q2+r2)+2p2d2]λ2-d2λ5,

    where λ is given by (24).

    Now,we turn to study the semi-axes of the ellipsegiven by (13).Let P(t)=(x(t),y(t),z(t)) be a point in .Then we have

    x′(t)=aλ2-d2λ2(cr-λ)[(λ(cr-λ)+(ap)2)(-sint)+abpqcost],

    y′(t)=bλ2-d2λ2(cr-λ)[abpq(-sint)+(λ(cr-λ)+(bq)2)cost],

    z′(t)=cλ2-d2λ2[ap(-sint)+bqcost],

    where λ is given by (4).Suppose that P(t1) and P(t2) are two different points insuch that the tangent lines at these two points are parallel,then there exists a constant μ such that x′(t2)=μx′(t1),y′(t2)=μy′(t1) and z′(t2)=μ z′(t1);or more precisely,

    (λ(cr-λ)+(ap)2)(-sint2)+abpqcost2

    =μ[(λ(cr-λ)+(ap)2)(-sint1)+abpqcost1],(27)

    abpq(-sint2)+(λ(cr-λ)+(bq)2)cost2

    =μ[abpq(-sint1)+(λ(cr-λ)+(bq)2)cost1],(28)

    ap(-sint2)+bqcost2=μ[ap(-sint1)+bqcost1].(29)

    It follows from (27) and (29),(28) and (29) that sint2=μsint1 and cost2=μcost1.Therefore,

    1=sin2t2+cos2t2=μ2 (sin2t1+cos2t1)=μ2,

    hence μ=-1 since P(t1)≠P(t2),and thus P(t2)=P(t1+π).The observation above indicates that

    42max=max{f(t)|t∈[0,2π]},42min=min{f(t)|t∈[0,2π]},(30)

    where max,min denote the semi-major axis and the semi-minor axis of ,respectively,and

    f(t)=[x(t+π)-x(t)]2+[y(t+π)-y(t)]2+[z(t+π)-z(t)]2

    = 4(λ2-d2)λ4 g(t),(31)

    where g(t) is given by

    g(t)=a2(cr-λ)2[(λ(cr-λ)+(ap)2)cos(t)+abpqsin(t)]2

    +b2(cr-λ)2[abpqcos(t)+(λ(cr-λ)+(bq)2)sin(t)]2

    +c2[apcos(t)+bqsin(t)]2=A+Bcos(2t)+Csin(2t).(32)

    as cos2t=1+cos(2t)2,sin2t=1-cos(2t)2 and sintcost=sin(2t)2,where

    A=a22(cr-λ)2[(λ(cr-λ)+(ap)2)2+(abpq)2]

    +b22(cr-λ)2[(abpq)2+(λ(cr-λ)+(bq)2)2]+c22[(ap)2+(bq)2].(33)

    By (4) we have

    [(λ(cr-λ)+(ap)2)2+(abpq)2]=λ2(cr-λ)2+2(ap)2λ(cr-λ)+a2p2[(ap)2+(bq)2]

    =λ2(cr-λ)2+2(ap)2λ(cr-λ)+a2p2[λ2-(cr)2]=(cr-λ)2[λ2-(ap)2].(34)

    Similarly,we have

    [(abpq)2+(λ(cr-λ)+(bq)2)2]=(cr-λ)2[λ2-(bq)2].(35)

    We may combine (4) with (33)-(35) to conclude that

    A=12[(ap)2(b2+c2)+(bq)2(c2+a2)+(cr)2(a2+b2)].(36)

    Theorem 2.6

    Letbe the intersection curve of the ellipsoid E and the plane P given by (1), and max and min be the semi-major axis and the semi-minor axis of .Then

    max=λ2-d2λ2A+A2-λ2 (abc)2(p2+q2+r2),

    min=λ2-d2λ2A-A2-λ2 (abc)2(p2+q2+r2),

    where λ and A are defined by (4) and (36).

    Proof

    It follows from (30)-(32) that

    max=λ2-d2λ2A+B2+C2,(37)

    min=λ2-d2λ2A-B2+C2,(38)

    which means that the area S of the region S bounded byis equal to

    π maxmin=πλ2-d2λ4A2-(B2+C2).

    The above equation together with (16) yields

    B2+C2=A2-λ2 (abc)2(p2+q2+r2).

    The conclusion then follows by substituting the above expression for B2+C2 into (37) and (38).

    A direct application of the preceding theorem is as follows.

    Corollary 2.7

    Suppose that a>b>c>0.Letbe the intersection curve of the ellipsoid E and the plane P given by (1),and n→=(cosα,cosβ,cosγ) be the unit normal vector of P with cosα,cosβ and cosγ given by (17).Thenis a circle if and only if either n→‖n1 or n→‖n2,where

    n1=1b2-1a2,0,1c2-1b2,n2=1b2-1a2,0,-1c2-1b2.

    Proof

    Let λ and A be defined by (4) and (36).By direct computation,we have

    θ=def4A2-4λ2 (abc)2(p2+q2+r2)=[(cr)2(a2-b2)-(ap)2(b2-c2)]2+(bq)4(a2-c2)2

    +2(abpq)2(a2-c2)(b2-c2)+2(bcqr)2(a2-c2)(a2-b2).

    Since a>b>c,by Theorem 2.6 we know thatis a circle if and only if θ=0.Equivalently,is a circle if and only if

    q=0 and cra2-b2=± apb2-c2n→‖ n1 or n→‖ n2.

    The result stated below follows immediately from the proof of Corollary 2.7.

    Corollary 2.8

    Suppose that a,b,c∈R+ such that a=b≠c.Letbe the intersection curve of the ellipsoid E and the plane P given by (1).Thenis a circle if and only if p=q=0.

    References:

    [1]Abramson N,Boman J,Bonnevier B.Plane intersections of rotational elliposids [J].American Mathematical Monthly,2005,113:336-339.

    [2]Ferguson C C.Intersections of ellipsoids and planes of arbitrary orientation and position [J].Mathematical Geology,1979,11:329-336.

    [3]Klein P P.On the ellipsoid and plane intersection equation [J].Applied Mathematics,2012,11:1634-1640.

    [4]Leon S J.Linear Algebra with Applications (Eighth Edition) [M].Beijing:Pearson Education Asia Limited and China Machine Press,2011.

    猜你喜歡
    橢球面交線半軸
    幾種新型異形橢球面方程、幾何特征及其應(yīng)用前景
    法蘭盤半軸鉆鉸錐孔專用夾具設(shè)計
    球面與簡單多面體表面交線問題探究
    大地高代替正常高在低等級公路工程測量中的應(yīng)用
    平面體截交線邊數(shù)和頂點數(shù)的計算模型研究
    汽車半軸用鋼電沉積Ni-SiC復(fù)合鍍層的耐磨性
    某重型車橋半軸斷裂失效分析
    柱錐面交線研究
    橢球面上的等角剖分、共形映射與建筑造型
    汽車半軸的工藝及失效形式探討
    色视频在线一区二区三区| 黄网站色视频无遮挡免费观看| 99久久人妻综合| 国产精品国产av在线观看| 色网站视频免费| 制服诱惑二区| 91在线精品国自产拍蜜月| 九色亚洲精品在线播放| 久久国产精品男人的天堂亚洲 | av一本久久久久| 国产亚洲精品久久久com| 黑人巨大精品欧美一区二区蜜桃 | 丰满少妇做爰视频| videos熟女内射| 精品人妻熟女毛片av久久网站| 久久免费观看电影| 伦理电影免费视频| 丝袜脚勾引网站| av在线app专区| 国产毛片在线视频| 大香蕉久久成人网| 看免费av毛片| 午夜精品国产一区二区电影| 亚洲经典国产精华液单| 国产成人91sexporn| 中文字幕av电影在线播放| 亚洲成人一二三区av| 国产成人午夜福利电影在线观看| 国产黄频视频在线观看| 一区二区三区四区激情视频| 自线自在国产av| 久久亚洲国产成人精品v| 母亲3免费完整高清在线观看 | 免费av中文字幕在线| 老司机亚洲免费影院| 久久久国产欧美日韩av| 高清黄色对白视频在线免费看| 亚洲精品乱久久久久久| 国产精品熟女久久久久浪| 极品少妇高潮喷水抽搐| 99国产综合亚洲精品| 精品国产乱码久久久久久小说| 男女国产视频网站| 免费久久久久久久精品成人欧美视频 | 这个男人来自地球电影免费观看 | 黄色 视频免费看| 国产乱人偷精品视频| 一区二区日韩欧美中文字幕 | 日韩制服骚丝袜av| 色哟哟·www| 精品少妇内射三级| 97精品久久久久久久久久精品| 高清毛片免费看| 久久精品国产a三级三级三级| 午夜福利,免费看| 一级毛片黄色毛片免费观看视频| 日产精品乱码卡一卡2卡三| 精品久久蜜臀av无| 久久青草综合色| a 毛片基地| av在线app专区| 欧美+日韩+精品| 亚洲国产精品一区二区三区在线| 天天躁夜夜躁狠狠久久av| av播播在线观看一区| 日韩大片免费观看网站| 人人妻人人添人人爽欧美一区卜| 国内精品宾馆在线| 欧美亚洲日本最大视频资源| 男人添女人高潮全过程视频| 久久久久久久久久成人| 国产av精品麻豆| 色94色欧美一区二区| 亚洲一区二区三区欧美精品| 视频区图区小说| 久久人人爽人人爽人人片va| 男女国产视频网站| 亚洲色图综合在线观看| 日韩伦理黄色片| 少妇人妻久久综合中文| 国产亚洲午夜精品一区二区久久| 亚洲色图综合在线观看| 一区二区三区乱码不卡18| 欧美日韩av久久| 九色亚洲精品在线播放| 内地一区二区视频在线| 亚洲三级黄色毛片| 亚洲性久久影院| 国产一区二区三区综合在线观看 | 久久青草综合色| 久久久久精品性色| 午夜精品国产一区二区电影| 青春草视频在线免费观看| 精品人妻熟女毛片av久久网站| 中文字幕人妻丝袜制服| 日本vs欧美在线观看视频| 一本久久精品| 97超碰精品成人国产| 只有这里有精品99| 99九九在线精品视频| 极品少妇高潮喷水抽搐| 午夜日本视频在线| 久久青草综合色| 自线自在国产av| 最近中文字幕2019免费版| 爱豆传媒免费全集在线观看| 久久久精品区二区三区| 久久国产精品大桥未久av| 中国三级夫妇交换| 亚洲欧美日韩另类电影网站| 亚洲经典国产精华液单| 精品久久国产蜜桃| 国产欧美日韩一区二区三区在线| 免费观看av网站的网址| 亚洲情色 制服丝袜| 亚洲精品456在线播放app| 岛国毛片在线播放| 日韩三级伦理在线观看| 国产 精品1| 免费在线观看完整版高清| 亚洲色图 男人天堂 中文字幕 | 免费看不卡的av| av播播在线观看一区| 高清不卡的av网站| 免费黄频网站在线观看国产| 亚洲一区二区三区欧美精品| 国产免费一区二区三区四区乱码| 日韩一区二区视频免费看| 日产精品乱码卡一卡2卡三| 久久青草综合色| 亚洲av在线观看美女高潮| 国产有黄有色有爽视频| av一本久久久久| 飞空精品影院首页| 在线看a的网站| 国产高清国产精品国产三级| 亚洲国产欧美日韩在线播放| 国产成人精品久久久久久| 亚洲精品国产色婷婷电影| 国产无遮挡羞羞视频在线观看| 国产白丝娇喘喷水9色精品| 久久久久久伊人网av| 亚洲国产精品成人久久小说| 不卡视频在线观看欧美| 精品午夜福利在线看| 51国产日韩欧美| 亚洲久久久国产精品| 搡女人真爽免费视频火全软件| 久久国内精品自在自线图片| 久久av网站| 精品国产一区二区久久| 黄色视频在线播放观看不卡| 免费大片黄手机在线观看| 亚洲国产精品专区欧美| 成年人午夜在线观看视频| 中国美白少妇内射xxxbb| 又大又黄又爽视频免费| 人妻少妇偷人精品九色| av有码第一页| av一本久久久久| 中文字幕亚洲精品专区| 久久久久久久久久久久大奶| 久久国产亚洲av麻豆专区| 日本91视频免费播放| 国产永久视频网站| av卡一久久| 国产日韩欧美在线精品| 少妇被粗大猛烈的视频| 女性被躁到高潮视频| 尾随美女入室| 少妇的丰满在线观看| 少妇 在线观看| 亚洲中文av在线| 又粗又硬又长又爽又黄的视频| 久久99热6这里只有精品| 国产精品.久久久| 免费不卡的大黄色大毛片视频在线观看| 国产精品99久久99久久久不卡 | 少妇的逼水好多| 婷婷色综合大香蕉| 国产精品一区www在线观看| 十八禁网站网址无遮挡| 午夜激情久久久久久久| 老熟女久久久| 欧美日韩成人在线一区二区| 欧美日韩国产mv在线观看视频| 亚洲国产看品久久| 日韩制服骚丝袜av| 啦啦啦啦在线视频资源| 大陆偷拍与自拍| 伦理电影免费视频| 涩涩av久久男人的天堂| 欧美精品一区二区免费开放| 男人爽女人下面视频在线观看| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 国产麻豆69| 国产精品久久久久久精品电影小说| 久久久久精品人妻al黑| 夫妻午夜视频| av在线老鸭窝| 国产欧美日韩综合在线一区二区| 国产成人aa在线观看| 国产欧美亚洲国产| 国产精品欧美亚洲77777| 三上悠亚av全集在线观看| 边亲边吃奶的免费视频| 啦啦啦中文免费视频观看日本| 一个人免费看片子| 26uuu在线亚洲综合色| 老司机亚洲免费影院| 精品人妻熟女毛片av久久网站| 国产欧美另类精品又又久久亚洲欧美| 久久久久久人妻| 永久免费av网站大全| av在线播放精品| 天天影视国产精品| 婷婷色综合大香蕉| 99热6这里只有精品| 欧美日韩综合久久久久久| 在线观看国产h片| 日产精品乱码卡一卡2卡三| 国产成人免费无遮挡视频| 男人添女人高潮全过程视频| 亚洲综合色惰| 婷婷色av中文字幕| 久久免费观看电影| 在现免费观看毛片| 最近中文字幕2019免费版| 欧美性感艳星| 日韩欧美一区视频在线观看| av免费在线看不卡| 纯流量卡能插随身wifi吗| 午夜福利网站1000一区二区三区| 一二三四中文在线观看免费高清| 国产精品人妻久久久久久| 亚洲伊人久久精品综合| 人妻系列 视频| 熟女电影av网| 国产成人免费无遮挡视频| av视频免费观看在线观看| 日韩不卡一区二区三区视频在线| 啦啦啦啦在线视频资源| 日韩av在线免费看完整版不卡| 亚洲国产最新在线播放| 免费看不卡的av| 亚洲一级一片aⅴ在线观看| 黄色 视频免费看| 亚洲av欧美aⅴ国产| 国产精品久久久久久av不卡| 国产在线视频一区二区| 少妇的逼好多水| 久久人人97超碰香蕉20202| 国产精品 国内视频| 嫩草影院入口| 捣出白浆h1v1| 两个人看的免费小视频| 另类亚洲欧美激情| 在线观看三级黄色| 在线观看人妻少妇| 搡女人真爽免费视频火全软件| 人妻系列 视频| 寂寞人妻少妇视频99o| 啦啦啦中文免费视频观看日本| 成人午夜精彩视频在线观看| 国产一区亚洲一区在线观看| 精品人妻一区二区三区麻豆| 观看av在线不卡| 久久久久网色| 中文字幕人妻丝袜制服| 高清不卡的av网站| 捣出白浆h1v1| 国产成人av激情在线播放| 亚洲精品久久成人aⅴ小说| www.色视频.com| 在线观看www视频免费| 男女免费视频国产| 午夜福利影视在线免费观看| 免费高清在线观看日韩| 少妇猛男粗大的猛烈进出视频| 亚洲精品一二三| 午夜激情久久久久久久| 国产日韩欧美在线精品| 免费不卡的大黄色大毛片视频在线观看| 欧美成人精品欧美一级黄| 亚洲激情五月婷婷啪啪| 亚洲国产精品成人久久小说| 熟女电影av网| 日日摸夜夜添夜夜爱| 亚洲精品久久成人aⅴ小说| 99久久中文字幕三级久久日本| 超碰97精品在线观看| 91午夜精品亚洲一区二区三区| 亚洲精品国产av成人精品| 国产在线免费精品| 校园人妻丝袜中文字幕| 久久久精品免费免费高清| 日日撸夜夜添| 国产在线一区二区三区精| 黄片无遮挡物在线观看| 啦啦啦啦在线视频资源| 成人手机av| 欧美日韩av久久| 精品熟女少妇av免费看| 精品卡一卡二卡四卡免费| 捣出白浆h1v1| 黄片播放在线免费| 欧美人与善性xxx| 91久久精品国产一区二区三区| 免费黄频网站在线观看国产| 日韩大片免费观看网站| 丝袜喷水一区| 中国三级夫妇交换| av在线老鸭窝| 黑人高潮一二区| 十八禁高潮呻吟视频| 日韩伦理黄色片| 999精品在线视频| 蜜臀久久99精品久久宅男| 国产片特级美女逼逼视频| 99国产综合亚洲精品| 国产成人免费无遮挡视频| 99re6热这里在线精品视频| 久久久久人妻精品一区果冻| 97超碰精品成人国产| 亚洲欧洲日产国产| 亚洲丝袜综合中文字幕| 国产精品免费大片| 免费人成在线观看视频色| 国产精品国产三级国产av玫瑰| 久久人人97超碰香蕉20202| 国产熟女午夜一区二区三区| 婷婷成人精品国产| 日本av免费视频播放| 亚洲精品成人av观看孕妇| 亚洲精品aⅴ在线观看| 国内精品宾馆在线| 午夜福利网站1000一区二区三区| 下体分泌物呈黄色| 日韩av不卡免费在线播放| 国产精品熟女久久久久浪| 人妻少妇偷人精品九色| a级毛片在线看网站| 免费日韩欧美在线观看| 日本黄大片高清| 2021少妇久久久久久久久久久| 99国产综合亚洲精品| 亚洲高清免费不卡视频| 成人亚洲精品一区在线观看| 国产成人a∨麻豆精品| 看免费成人av毛片| 天美传媒精品一区二区| 九草在线视频观看| 国产1区2区3区精品| 国产探花极品一区二区| 最近中文字幕高清免费大全6| 亚洲在久久综合| 亚洲av电影在线观看一区二区三区| 免费看不卡的av| 男女国产视频网站| 久久av网站| 9色porny在线观看| 国产成人一区二区在线| 亚洲 欧美一区二区三区| 久久久久精品人妻al黑| 国产免费视频播放在线视频| 老司机影院毛片| 99久久综合免费| 波野结衣二区三区在线| 午夜福利影视在线免费观看| 大话2 男鬼变身卡| 日韩 亚洲 欧美在线| 精品福利永久在线观看| 欧美精品亚洲一区二区| 最新的欧美精品一区二区| 少妇熟女欧美另类| 亚洲熟女精品中文字幕| 18禁动态无遮挡网站| 久久精品国产自在天天线| 亚洲精品国产av蜜桃| 日韩精品有码人妻一区| 亚洲伊人色综图| 色婷婷av一区二区三区视频| 精品亚洲乱码少妇综合久久| 色吧在线观看| 丝袜喷水一区| 一边亲一边摸免费视频| 国产精品人妻久久久久久| 在线观看国产h片| 久久av网站| 观看美女的网站| 亚洲久久久国产精品| xxxhd国产人妻xxx| 黄色一级大片看看| 性色avwww在线观看| 肉色欧美久久久久久久蜜桃| 国产精品久久久久成人av| 狠狠婷婷综合久久久久久88av| 亚洲欧美清纯卡通| 中文天堂在线官网| 亚洲精品第二区| 婷婷色麻豆天堂久久| 少妇熟女欧美另类| 观看av在线不卡| 熟妇人妻不卡中文字幕| 18禁裸乳无遮挡动漫免费视频| 免费少妇av软件| 午夜激情久久久久久久| 日韩在线高清观看一区二区三区| 免费观看性生交大片5| 看免费成人av毛片| 亚洲精品自拍成人| 青春草国产在线视频| 91国产中文字幕| 亚洲精品456在线播放app| 欧美bdsm另类| 精品亚洲乱码少妇综合久久| 亚洲综合色网址| 人妻 亚洲 视频| 国产亚洲最大av| 日韩成人伦理影院| 久久 成人 亚洲| 国产男女超爽视频在线观看| 亚洲av免费高清在线观看| 男的添女的下面高潮视频| 韩国av在线不卡| 香蕉国产在线看| 男人舔女人的私密视频| 黑人高潮一二区| h视频一区二区三区| 久久ye,这里只有精品| 人人妻人人爽人人添夜夜欢视频| 毛片一级片免费看久久久久| 亚洲欧美精品自产自拍| 韩国av在线不卡| av免费观看日本| 亚洲国产精品国产精品| 大码成人一级视频| 日韩一区二区视频免费看| 成人漫画全彩无遮挡| 国产一区二区三区综合在线观看 | 国产福利在线免费观看视频| 秋霞在线观看毛片| 久久精品久久久久久噜噜老黄| av在线app专区| 大片电影免费在线观看免费| 人妻一区二区av| 美女福利国产在线| 永久网站在线| 国产精品国产三级国产专区5o| 五月伊人婷婷丁香| 97在线人人人人妻| √禁漫天堂资源中文www| 欧美老熟妇乱子伦牲交| 9色porny在线观看| 国产精品一区二区在线观看99| 99久国产av精品国产电影| 天天躁夜夜躁狠狠久久av| 另类精品久久| 亚洲av男天堂| h视频一区二区三区| 免费大片18禁| 人人妻人人澡人人爽人人夜夜| 国产精品熟女久久久久浪| 国产黄色免费在线视频| 精品99又大又爽又粗少妇毛片| 亚洲av男天堂| 赤兔流量卡办理| av国产精品久久久久影院| 精品国产一区二区三区久久久樱花| 国产极品粉嫩免费观看在线| 伊人久久国产一区二区| 中文精品一卡2卡3卡4更新| 久久毛片免费看一区二区三区| 黄色怎么调成土黄色| 亚洲成色77777| 中文乱码字字幕精品一区二区三区| 18在线观看网站| 女的被弄到高潮叫床怎么办| 日韩大片免费观看网站| 日韩在线高清观看一区二区三区| av卡一久久| 纵有疾风起免费观看全集完整版| 韩国高清视频一区二区三区| 色婷婷av一区二区三区视频| 赤兔流量卡办理| 亚洲精品av麻豆狂野| 免费女性裸体啪啪无遮挡网站| 亚洲五月色婷婷综合| 欧美bdsm另类| 久久狼人影院| 91在线精品国自产拍蜜月| 国产精品久久久久久久电影| 免费黄色在线免费观看| 一区在线观看完整版| 久久久国产欧美日韩av| 亚洲av电影在线观看一区二区三区| 日韩熟女老妇一区二区性免费视频| 日本欧美国产在线视频| 香蕉国产在线看| 国产亚洲av片在线观看秒播厂| 男女边吃奶边做爰视频| av有码第一页| 黄色视频在线播放观看不卡| 99热国产这里只有精品6| 国产免费又黄又爽又色| 精品少妇久久久久久888优播| 色网站视频免费| 少妇 在线观看| 亚洲欧洲国产日韩| 久久精品aⅴ一区二区三区四区 | 在线 av 中文字幕| 国产黄频视频在线观看| 午夜福利视频在线观看免费| 丰满迷人的少妇在线观看| 成人亚洲欧美一区二区av| 久久久久精品性色| 99热国产这里只有精品6| 青春草视频在线免费观看| 精品少妇久久久久久888优播| av.在线天堂| 性色av一级| 久久久久久伊人网av| 国产不卡av网站在线观看| 18禁在线无遮挡免费观看视频| 天天躁夜夜躁狠狠久久av| 国产爽快片一区二区三区| 九色成人免费人妻av| 91精品三级在线观看| 国产亚洲精品久久久com| 街头女战士在线观看网站| av黄色大香蕉| 制服人妻中文乱码| 久久久久久久久久人人人人人人| 免费黄色在线免费观看| 亚洲伊人久久精品综合| 欧美老熟妇乱子伦牲交| 亚洲欧美清纯卡通| 亚洲色图 男人天堂 中文字幕 | 精品一区二区三区四区五区乱码 | 黑人高潮一二区| 在线精品无人区一区二区三| 免费日韩欧美在线观看| 最黄视频免费看| 夜夜爽夜夜爽视频| 国国产精品蜜臀av免费| 赤兔流量卡办理| 人人澡人人妻人| 精品卡一卡二卡四卡免费| 国产色爽女视频免费观看| 久久久久视频综合| 亚洲丝袜综合中文字幕| 一级片'在线观看视频| 青春草国产在线视频| 免费播放大片免费观看视频在线观看| 丝袜喷水一区| 午夜激情久久久久久久| 久久毛片免费看一区二区三区| 亚洲欧洲精品一区二区精品久久久 | 老女人水多毛片| 精品一区二区三区四区五区乱码 | 亚洲五月色婷婷综合| freevideosex欧美| 99热这里只有是精品在线观看| 成人手机av| 成年av动漫网址| 久久久久久伊人网av| 精品国产一区二区三区四区第35| 欧美少妇被猛烈插入视频| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 国产欧美日韩综合在线一区二区| 亚洲国产精品国产精品| 国产欧美另类精品又又久久亚洲欧美| h视频一区二区三区| 视频中文字幕在线观看| 久久久久久久久久久免费av| 亚洲精品国产av成人精品| 男的添女的下面高潮视频| 黄网站色视频无遮挡免费观看| 美女主播在线视频| 久久久精品免费免费高清| 丰满少妇做爰视频| 午夜av观看不卡| 日韩视频在线欧美| 国产1区2区3区精品| 18在线观看网站| 午夜影院在线不卡| av在线播放精品| 午夜日本视频在线| 国产一区有黄有色的免费视频| 日本av手机在线免费观看| 国产免费一级a男人的天堂| 日韩制服丝袜自拍偷拍| 两个人看的免费小视频| 成人毛片60女人毛片免费| 老熟女久久久| 欧美日韩视频高清一区二区三区二| 久久久久久久久久人人人人人人| 国产无遮挡羞羞视频在线观看| 亚洲内射少妇av| 亚洲成人av在线免费| 国产一级毛片在线| 男女边吃奶边做爰视频| 国产熟女欧美一区二区| 国产成人欧美| av一本久久久久| 午夜福利在线观看免费完整高清在| 久久久久久久国产电影| 在线观看国产h片| 成人毛片60女人毛片免费| 亚洲av在线观看美女高潮| 黄色怎么调成土黄色| 久久久亚洲精品成人影院| tube8黄色片| 毛片一级片免费看久久久久| 街头女战士在线观看网站|