• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    平面和橢球面相截所得的橢圓的參數(shù)方程及其應(yīng)用

    2018-05-14 13:47黃亦虹許慶祥
    關(guān)鍵詞:橢球面交線半軸

    黃亦虹 許慶祥

    On the ellipsoid and plane intersection equation

    Huang Yihong1, Xu Qingxiang2*

    (1.College of Sciences,Shanghai Institute of Technology,Shanghai 201418,China;

    2.Mathematics and Science College,Shanghai Normal University,Shanghai 200234,China)

    Abstract:

    Let E:x2a2+y2b2+z2c2=1 be an ellipsoid and P:p x+q y+r z=d be a plane.Based on the Householder transformation,it is shown that the intersection E∩P is nonempty if and only if λ≥d,where λ=(ap)2+(bq)2+(cr)2.When λ>d,this paper provides a new proof that the intersection curveof E and P is always an ellipse,and in this case a new parametric equation ofis derived.Based on the obtained parametric equation ofand Stokes formula,we derive a formula for the area of the region bounded by ,and compute its semi-major axis and semi-minor axis.As an application,we get necessary and sufficient conditions forto be a circle.

    Key words:

    ellipsoid; plane; parametric equation; Householder transformation; Stokes formula

    CLC number: O 13; O 172Document code: AArticle ID: 1000-5137(2018)01-0024-07

    摘要:

    設(shè)E:x2a2+y2b2+z2c2=1為一個橢球面,P:px+qy+rz=d為一個平面.利用Householder變換,證明了E和P 相交當且僅當 λ≥d,其中λ=(ap)2+(bq)2+(cr)2.當 λ>d時用新的方法證明了橢球面E和平面P的交線 一定是橢圓,并且給出了該橢圓的參數(shù)方程.利用交線的參數(shù)方程,給出了由所圍成的內(nèi)部區(qū)域的面積公式,進而給出了橢圓的長半軸和短半軸的計算公式.作為應(yīng)用,又給出了交線 成為一個圓的充要條件.

    關(guān)鍵詞:

    橢球面; 平面; 參數(shù)方程; Householder變換; Stokes公式

    Received date: 2017-01-11

    Foundation item: The National Natural Science Foundation of China (11671261)

    Biography: Huang Yihong(1965-),female,lecture,reseach area:Advanced mathematics.E-mail:hyh@sit.edu.cn

    *Corresponding author: Xu Qingxiang(1967-),male,professor,research area:Functional Analysis.E-mail:qxxu@shnu.edu.cn

    引用格式: 黃亦虹,許慶祥.平面和橢球面相截所得的橢圓的參數(shù)方程及其應(yīng)用 [J].上海師范大學(xué)學(xué)報(自然科學(xué)版),2018,47(1):24-30.

    Citation format: Huang Y H,Xu Q X.On the ellipsoid and plane intersection equation [J].Journal of Shanghai Normal University(Natural Sciences),2018,47(1):24-30.

    1Introduction

    Throughout this paper,R,R+ and Rm×n are the sets of the real numbers,the positive numbers and the m×n real matrices,respectively.The notation Rn×1 is simplified to Rn.For any A∈Rm×n,its transpose is denoted by AT.Let In be the identity matrix of order n.

    Much attention is paid to the very popular topic of the intersection curve of an ellipsoid and a plane[1-3].Yet,little has been done in the literatures on the application of the Householder transformation and the Stokes formula to this topic,which is the concern of this paper.

    Let E be an ellipsoid and P be a plane defined respectively by

    E:x2a2+y2b2+z2c2=1,P:px+qy+rz=d,(1)

    where a,b,c∈R+ and p,q,r,d∈R such that p2+q2+r2≠0.

    It is known that the intersection curveof E and P is always an ellipse,and much effort has been made in the study of the semi-axes of .Yet,due to the complexity of computation,it is somehow difficult to derive explicit formulas for the semi-axes of .

    The key point of this paper is the usage of the Householder transformation to derive a new parametric equation of ,together with the application of the Stokes formula to find the area S of the region bounded by ;see Theorem 2.4 and Corollary 2.5.Another point of this paper is the characterization of the parallel tangent lines of ,which is combined with the obtained formula for S to deal with the semi-axes of .As a result,explicit formulas for the semi-major axis and the semi-minor axis ofare derived;see Theorem 2.6.As an application,necessary and sufficient conditions are derived under whichis a circle.

    2The main results

    Let v∈Rn be nonzero.The Householder matrix Hv associated to v is defined by

    Hv=In-2vTv· vvT∈Rn×n.(2)

    It is known[4] that HvT=Hv and HvTHv=In,i.e.,Hv is an orthogonal matrix.Due to the following property, the Householder matrix is of special usefulness.

    Lemma 2.1

    Let x,y∈Rn be such that x≠y and xTx=yTy.Then

    Hv(x)=y,where v=x-y.(3)

    Theorem 2.2

    Let E and P be given by (1).Then =E∩P≠ if and only if λ≥d,where λ is defined by

    λ=(ap)2+(bq)2+(cr)2.(4)

    Proof

    Let λ be defined by (4).Firstly,we consider the case that p2+q2>0. Let w1=(ap,bq,cr)T and w2=(0,0,λ)T.Then clearly,w1≠w2 and w1Tw1=w2Tw2,so by Lemma 2.1 we have

    Hvw1=w2,where v=w1-w2.(5)

    Let

    x

    y

    z=

    a

    b

    c

    Hv

    1a

    1b

    1c

    x1

    y1

    z1

    .(6)

    Then by (1),(5) and (6),we have

    1=xa,yb,zcxa,yb,zcT=x1a,y1b,z1cHvTHvx1a,y1b,z1cT

    =x1a,y1b,z1cx1a,y1b,z1cT=x12a2+y12b2+z12c2,(7)

    d=(p,q,r)(x,y,z)T=(ap,bq,cr)Hvx1a,y1b,z1cT

    =w1THvx1a,y1b,z1cT=w2Tx1a,y1b,z1cT=z1λc.

    (8)

    It follows from (7) and (8) that

    x12a2+y12b2=1-d2λ2.(9)

    This means E∩P is nonempty if and only if λ≥d,where λ is defined by (4).

    Secondly,we consider the case that p=q=0.In this case,we have r≠0.It follows directly from (1) that

    x2a2+y2b2=1-d2λ2,

    thus the conclusion also holds.

    The following result is well-known,yet its proof presented below is somehow new.

    Theorem 2.3

    Let E,P and λ be given by (1) and (4) respectively such that λ>d. Then the intersection curve =E∩P is always an ellipse.

    Proof

    It needs only to consider the case that p2+q2>0.Let w3=(p,q,r)T,w4=(0,0,p2+q2+r2)T,v1=w3-w4 and Hv1 be the Householder matrix defined by (2) which satisfies Hv1w3=w4.Let

    (x,y,z)T=Hv1(x1,y1,z1)T.(10)

    Then

    d=w3T(x,y,x)T=w3T Hv1(x1,y1,z1)T=w4T(x1,y1,z1)T=p2+q2+r2z1.

    Therefore,

    z1=dp2+q2+r2=defk.(11)

    It follows from (1),(10) and (11) that

    1=(x,y,z)

    1a2

    1b2

    1c2

    x

    y

    z

    =(x1,y1,k)A

    x1

    y1

    k

    ,(12)

    where A=Hv1T1a2

    1b2

    1c2 Hv1 is positive definite.Let A be partitioned as A= A1〖|〗A2 〖-〗

    A2T〖|〗a3 ,where A1∈R2×2 is positive definite since A is.Then from (12) we get

    (x1,y1)A1x1

    y1 +λ1 x1+λ2 y1+λ3=0 for some λi∈R,i=1,2,3,

    which represents an ellipse in x1y1- plane since A1 is positive definite.This observation together with (11) yields the fact that in the x1y1z1- coordinate system,the equation of the intersection curverepresents an ellipse.The conclusion then follows from (10) since Hv1 is an orthogonal matrix.

    Theorem 2.4

    Let E,P and λ be given by (1) and (4) such that λ>d.Then a parametric equation of the intersection curve =E∩P can be given for t∈[0,2π] as follows:

    x(t)=aλ2-d2λ2(cr-λ)[(λ(cr-λ)+(ap)2)cos(t)+abpqsint]+a2pdλ2,

    y(t)=bλ2-d2λ2(cr-λ)[abpqcost+(λ(cr-λ)+(bq)2)sint]+b2qdλ2,

    z(t)=cλ2-d2λ2[apcost+bqsint]+c2rdλ2.

    (13)

    Proof

    We only consider the case that p2+q2>0.By (2) and (5) we obtain

    Hv=

    1+(ap)2λ(cr-λ)abpqλ(cr-λ)apλ

    abpqλ(cr-λ)1+(bq)2λ(cr-λ)bqλ

    apλbqλcrλ

    .(14)

    Furthermore,by (8) and (9) we get

    x1=a1-d2λ2cost,

    y1=b1-d2λ2sint,t∈[0,2π],

    z1=cdλ.

    (15)

    Eq.(13) then follows from (6),(14) and (15).

    An application of Theorem 2.4 is as follows.

    Corollary 2.5

    Letbe the intersection curve of the ellipsoid E and the plane P given by (1).Then the area S of the region S bounded bycan be formulated by

    S=abcp2+q2+r2(λ2-d2)πλ3,(16)

    where λ is defined by (4).

    Proof

    Let (cosα,cosβ,cosγ) denote the unit normal vector of the plane P,where

    cosα=pp2+q2+r2,cosβ=qp2+q2+r2,cosγ=rp2+q2+r2.(17)

    We may use the Stokes formula to get

    S=± ∫ zcosβdx+xcosγdy+ycosαdz,(18)

    where ± is chosen to ensure that the right side of (18) is non-negative.Note that

    ∫2π0sintdt=∫2π0costdt=∫2π0sintcostdt=0,(19)

    ∫2π0sin2tdt=∫2π0cos2tdt=π.(20)

    Therefore,by (13),(4),(19) and (20) we obtain

    ∫ zdx=-abcq(λ2-d2)πλ3,(21)

    ∫ xdy=-abcr(λ2-d2)πλ3,(22)

    ∫ ydz=-abcp(λ2-d2)πλ3.(23)

    Formula (16) then follows from (17)-(18) and (21)-(23).

    Consider the calculation of I=∫ x2 ds,whereis the intersection curve of the sphere x2+y2+z2=R2 (R>0) and the plane x+y+z=0.In view of the symmetry,a solution can be carried out simply as

    I=13 ∫ (x2+y2+z2) ds=13 ∫ R2 ds=13 R2· 2π R=2π3R3.

    Obviously,the method employed above only works for the symmetric case.As shown by Example 2.1 below,the parametric equation (13) is a useful tool to deal with the non-symmetric case.

    Example 2.1

    Evaluate I=∫ x2 ds,whereis the intersection curve of the sphere x2+y2+z2=R2 (R>0) and the plane px+qy+rz=d.

    Solution

    We follow the notations as in the proof of Theorem 2.2.Since a=b=c=R,Eq.(6) turns out to be

    (x,y,z)T=Hv (x1,y1,z1)T,

    which is combined with (15) to get

    ds=(x′(t),y′(t),z′(t))(x′(t),y′(t),z′(t))Tdt

    =(x′1(t),y′1(t),z′1(t))HvT Hv(x′1(t),y′1(t),z′1(t))Tdt

    =(x′1(t),y′1(t),z′1(t))g(x′1(t),y′1(t),z′1(t))Tdt

    =(x′1(t))2+(y′1(t))2dt=R1-d2λ2dt.

    In view of the first equation of (13) and (19)-(20),we have

    I=∫ x2 ds=μR1-d2λ2,where λ=Rp2+q2+r2,(24)

    and μ is given by

    μ=R2(λ2-d2)πλ4(Rr-λ)2[(λ(Rr-λ)+(Rp)2)2+(R2pq)2]+2π(R2pd)2λ4.(25)

    Note that

    (λ(Rr-λ)+(Rp)2)2+(R2pq)2

    =λ2(Rr-λ)2+2R2p2λ(Rr-λ)+R2p2· R2(p2+q2)

    =λ2(Rr-λ)2+2R2p2λ(Rr-λ)+R2p2(λ2-R2r2)

    =(Rr-λ)[λ2(Rr-λ)+2R2p2λ-R2p2(λ+Rr)]

    =(Rr-λ)[R2(p2+q2+r2)(Rr-λ)+2R2p2λ-R2p2(λ+Rr)]

    =(Rr-λ)2R2(q2+r2),(26)

    so we may combine (24)-(26) to conclude that

    I=∫ x2 ds=π R5[(λ2-d2)(q2+r2)+2p2d2]λ2-d2λ5,

    where λ is given by (24).

    Now,we turn to study the semi-axes of the ellipsegiven by (13).Let P(t)=(x(t),y(t),z(t)) be a point in .Then we have

    x′(t)=aλ2-d2λ2(cr-λ)[(λ(cr-λ)+(ap)2)(-sint)+abpqcost],

    y′(t)=bλ2-d2λ2(cr-λ)[abpq(-sint)+(λ(cr-λ)+(bq)2)cost],

    z′(t)=cλ2-d2λ2[ap(-sint)+bqcost],

    where λ is given by (4).Suppose that P(t1) and P(t2) are two different points insuch that the tangent lines at these two points are parallel,then there exists a constant μ such that x′(t2)=μx′(t1),y′(t2)=μy′(t1) and z′(t2)=μ z′(t1);or more precisely,

    (λ(cr-λ)+(ap)2)(-sint2)+abpqcost2

    =μ[(λ(cr-λ)+(ap)2)(-sint1)+abpqcost1],(27)

    abpq(-sint2)+(λ(cr-λ)+(bq)2)cost2

    =μ[abpq(-sint1)+(λ(cr-λ)+(bq)2)cost1],(28)

    ap(-sint2)+bqcost2=μ[ap(-sint1)+bqcost1].(29)

    It follows from (27) and (29),(28) and (29) that sint2=μsint1 and cost2=μcost1.Therefore,

    1=sin2t2+cos2t2=μ2 (sin2t1+cos2t1)=μ2,

    hence μ=-1 since P(t1)≠P(t2),and thus P(t2)=P(t1+π).The observation above indicates that

    42max=max{f(t)|t∈[0,2π]},42min=min{f(t)|t∈[0,2π]},(30)

    where max,min denote the semi-major axis and the semi-minor axis of ,respectively,and

    f(t)=[x(t+π)-x(t)]2+[y(t+π)-y(t)]2+[z(t+π)-z(t)]2

    = 4(λ2-d2)λ4 g(t),(31)

    where g(t) is given by

    g(t)=a2(cr-λ)2[(λ(cr-λ)+(ap)2)cos(t)+abpqsin(t)]2

    +b2(cr-λ)2[abpqcos(t)+(λ(cr-λ)+(bq)2)sin(t)]2

    +c2[apcos(t)+bqsin(t)]2=A+Bcos(2t)+Csin(2t).(32)

    as cos2t=1+cos(2t)2,sin2t=1-cos(2t)2 and sintcost=sin(2t)2,where

    A=a22(cr-λ)2[(λ(cr-λ)+(ap)2)2+(abpq)2]

    +b22(cr-λ)2[(abpq)2+(λ(cr-λ)+(bq)2)2]+c22[(ap)2+(bq)2].(33)

    By (4) we have

    [(λ(cr-λ)+(ap)2)2+(abpq)2]=λ2(cr-λ)2+2(ap)2λ(cr-λ)+a2p2[(ap)2+(bq)2]

    =λ2(cr-λ)2+2(ap)2λ(cr-λ)+a2p2[λ2-(cr)2]=(cr-λ)2[λ2-(ap)2].(34)

    Similarly,we have

    [(abpq)2+(λ(cr-λ)+(bq)2)2]=(cr-λ)2[λ2-(bq)2].(35)

    We may combine (4) with (33)-(35) to conclude that

    A=12[(ap)2(b2+c2)+(bq)2(c2+a2)+(cr)2(a2+b2)].(36)

    Theorem 2.6

    Letbe the intersection curve of the ellipsoid E and the plane P given by (1), and max and min be the semi-major axis and the semi-minor axis of .Then

    max=λ2-d2λ2A+A2-λ2 (abc)2(p2+q2+r2),

    min=λ2-d2λ2A-A2-λ2 (abc)2(p2+q2+r2),

    where λ and A are defined by (4) and (36).

    Proof

    It follows from (30)-(32) that

    max=λ2-d2λ2A+B2+C2,(37)

    min=λ2-d2λ2A-B2+C2,(38)

    which means that the area S of the region S bounded byis equal to

    π maxmin=πλ2-d2λ4A2-(B2+C2).

    The above equation together with (16) yields

    B2+C2=A2-λ2 (abc)2(p2+q2+r2).

    The conclusion then follows by substituting the above expression for B2+C2 into (37) and (38).

    A direct application of the preceding theorem is as follows.

    Corollary 2.7

    Suppose that a>b>c>0.Letbe the intersection curve of the ellipsoid E and the plane P given by (1),and n→=(cosα,cosβ,cosγ) be the unit normal vector of P with cosα,cosβ and cosγ given by (17).Thenis a circle if and only if either n→‖n1 or n→‖n2,where

    n1=1b2-1a2,0,1c2-1b2,n2=1b2-1a2,0,-1c2-1b2.

    Proof

    Let λ and A be defined by (4) and (36).By direct computation,we have

    θ=def4A2-4λ2 (abc)2(p2+q2+r2)=[(cr)2(a2-b2)-(ap)2(b2-c2)]2+(bq)4(a2-c2)2

    +2(abpq)2(a2-c2)(b2-c2)+2(bcqr)2(a2-c2)(a2-b2).

    Since a>b>c,by Theorem 2.6 we know thatis a circle if and only if θ=0.Equivalently,is a circle if and only if

    q=0 and cra2-b2=± apb2-c2n→‖ n1 or n→‖ n2.

    The result stated below follows immediately from the proof of Corollary 2.7.

    Corollary 2.8

    Suppose that a,b,c∈R+ such that a=b≠c.Letbe the intersection curve of the ellipsoid E and the plane P given by (1).Thenis a circle if and only if p=q=0.

    References:

    [1]Abramson N,Boman J,Bonnevier B.Plane intersections of rotational elliposids [J].American Mathematical Monthly,2005,113:336-339.

    [2]Ferguson C C.Intersections of ellipsoids and planes of arbitrary orientation and position [J].Mathematical Geology,1979,11:329-336.

    [3]Klein P P.On the ellipsoid and plane intersection equation [J].Applied Mathematics,2012,11:1634-1640.

    [4]Leon S J.Linear Algebra with Applications (Eighth Edition) [M].Beijing:Pearson Education Asia Limited and China Machine Press,2011.

    猜你喜歡
    橢球面交線半軸
    幾種新型異形橢球面方程、幾何特征及其應(yīng)用前景
    法蘭盤半軸鉆鉸錐孔專用夾具設(shè)計
    球面與簡單多面體表面交線問題探究
    大地高代替正常高在低等級公路工程測量中的應(yīng)用
    平面體截交線邊數(shù)和頂點數(shù)的計算模型研究
    汽車半軸用鋼電沉積Ni-SiC復(fù)合鍍層的耐磨性
    某重型車橋半軸斷裂失效分析
    柱錐面交線研究
    橢球面上的等角剖分、共形映射與建筑造型
    汽車半軸的工藝及失效形式探討
    每晚都被弄得嗷嗷叫到高潮| 建设人人有责人人尽责人人享有的| 亚洲国产欧美日韩在线播放| videos熟女内射| 考比视频在线观看| 在线天堂中文资源库| 老司机影院毛片| 久久免费观看电影| 大码成人一级视频| 色播在线永久视频| 老熟女久久久| 宅男免费午夜| 久久中文字幕人妻熟女| 18禁国产床啪视频网站| 1024视频免费在线观看| 日本一区二区免费在线视频| 18禁裸乳无遮挡动漫免费视频| 日本vs欧美在线观看视频| 国产色视频综合| 1024视频免费在线观看| 国产精品偷伦视频观看了| 99热国产这里只有精品6| 亚洲人成电影免费在线| 性色av乱码一区二区三区2| 精品乱码久久久久久99久播| 亚洲精品粉嫩美女一区| 性色av乱码一区二区三区2| 亚洲精品自拍成人| 精品熟女少妇八av免费久了| 两人在一起打扑克的视频| bbb黄色大片| 亚洲人成伊人成综合网2020| 高清av免费在线| 日日爽夜夜爽网站| 欧美日韩av久久| 999久久久国产精品视频| 亚洲国产毛片av蜜桃av| 亚洲第一av免费看| 亚洲自偷自拍图片 自拍| 男男h啪啪无遮挡| 中文亚洲av片在线观看爽 | 色综合欧美亚洲国产小说| 久久青草综合色| 国产视频一区二区在线看| 国产精品久久久av美女十八| 国产午夜精品久久久久久| 亚洲av欧美aⅴ国产| 99热国产这里只有精品6| 国产高清国产精品国产三级| 超碰成人久久| 日本av免费视频播放| 精品福利永久在线观看| av片东京热男人的天堂| av网站在线播放免费| 亚洲国产欧美网| 久久婷婷成人综合色麻豆| 看免费av毛片| 99久久99久久久精品蜜桃| 曰老女人黄片| 激情视频va一区二区三区| 色老头精品视频在线观看| 黑人巨大精品欧美一区二区mp4| 国产精品麻豆人妻色哟哟久久| 天天影视国产精品| 丝袜喷水一区| 巨乳人妻的诱惑在线观看| 深夜精品福利| 国产xxxxx性猛交| 日韩欧美一区视频在线观看| 国产xxxxx性猛交| 18禁国产床啪视频网站| 国产欧美日韩一区二区三| 久久久久视频综合| av一本久久久久| 亚洲国产欧美在线一区| 国产精品久久电影中文字幕 | 亚洲自偷自拍图片 自拍| 亚洲午夜理论影院| 国产精品1区2区在线观看. | 亚洲人成电影观看| 99精品久久久久人妻精品| 久久亚洲真实| 大香蕉久久成人网| 精品免费久久久久久久清纯 | 国产单亲对白刺激| 国精品久久久久久国模美| 热99国产精品久久久久久7| 亚洲一区中文字幕在线| 啦啦啦在线免费观看视频4| 久久国产亚洲av麻豆专区| 国精品久久久久久国模美| 手机成人av网站| 天堂俺去俺来也www色官网| 久久久久久久大尺度免费视频| 亚洲精品国产区一区二| 极品少妇高潮喷水抽搐| 日韩精品免费视频一区二区三区| 人妻 亚洲 视频| 国产主播在线观看一区二区| 99国产精品免费福利视频| 欧美日韩黄片免| 天天躁日日躁夜夜躁夜夜| 国产精品国产高清国产av | 久久久久久久久免费视频了| 两个人看的免费小视频| 精品久久久精品久久久| 精品一区二区三区视频在线观看免费 | 手机成人av网站| 亚洲精品在线美女| 男女午夜视频在线观看| 丝瓜视频免费看黄片| 另类亚洲欧美激情| 人人妻人人爽人人添夜夜欢视频| 大香蕉久久网| cao死你这个sao货| 最黄视频免费看| 午夜精品久久久久久毛片777| 亚洲免费av在线视频| 亚洲欧洲日产国产| 国产成人免费无遮挡视频| 亚洲va日本ⅴa欧美va伊人久久| 少妇粗大呻吟视频| 少妇粗大呻吟视频| 国产日韩欧美在线精品| 男女床上黄色一级片免费看| 国产一区二区三区视频了| 欧美av亚洲av综合av国产av| 国产av一区二区精品久久| 丝瓜视频免费看黄片| 久久久精品免费免费高清| 久久久久久久大尺度免费视频| 国产亚洲精品第一综合不卡| 十八禁网站网址无遮挡| 大陆偷拍与自拍| 国产精品偷伦视频观看了| 精品久久蜜臀av无| 亚洲 欧美一区二区三区| 国产老妇伦熟女老妇高清| 久久婷婷成人综合色麻豆| 国产在线观看jvid| 国产午夜精品久久久久久| 男女免费视频国产| 亚洲人成电影观看| 大片电影免费在线观看免费| 亚洲欧美一区二区三区久久| 久久久久久免费高清国产稀缺| 日本五十路高清| 纯流量卡能插随身wifi吗| 另类精品久久| 国产亚洲一区二区精品| 亚洲av成人不卡在线观看播放网| 午夜福利乱码中文字幕| 国产精品久久久av美女十八| 国产一区二区三区综合在线观看| 91av网站免费观看| 久久久久国内视频| 亚洲国产av影院在线观看| 日韩一卡2卡3卡4卡2021年| 人人妻人人澡人人看| 免费av中文字幕在线| 国产在线精品亚洲第一网站| 亚洲av片天天在线观看| 高清欧美精品videossex| 欧美激情久久久久久爽电影 | 精品福利永久在线观看| 亚洲国产av影院在线观看| 高清av免费在线| 免费一级毛片在线播放高清视频 | 欧美+亚洲+日韩+国产| 美女午夜性视频免费| 亚洲男人天堂网一区| 天天添夜夜摸| 免费人妻精品一区二区三区视频| 日韩大片免费观看网站| 国产高清国产精品国产三级| 自拍欧美九色日韩亚洲蝌蚪91| 亚洲七黄色美女视频| 99riav亚洲国产免费| 国产精品欧美亚洲77777| 脱女人内裤的视频| 国产精品国产高清国产av | 亚洲精品国产精品久久久不卡| 性色av乱码一区二区三区2| 免费看十八禁软件| 一本色道久久久久久精品综合| 精品国内亚洲2022精品成人 | bbb黄色大片| 高清在线国产一区| 午夜日韩欧美国产| 蜜桃国产av成人99| 午夜福利,免费看| 母亲3免费完整高清在线观看| 欧美日韩福利视频一区二区| 777米奇影视久久| 精品卡一卡二卡四卡免费| 12—13女人毛片做爰片一| 亚洲国产中文字幕在线视频| 精品国产国语对白av| 侵犯人妻中文字幕一二三四区| 午夜免费成人在线视频| 久久久久精品人妻al黑| 在线观看免费日韩欧美大片| 亚洲精品国产一区二区精华液| 久久精品国产综合久久久| 超碰97精品在线观看| 老汉色av国产亚洲站长工具| 欧美亚洲 丝袜 人妻 在线| 18禁黄网站禁片午夜丰满| 正在播放国产对白刺激| 激情在线观看视频在线高清 | 午夜激情av网站| 精品卡一卡二卡四卡免费| 啦啦啦在线免费观看视频4| 两个人看的免费小视频| 亚洲色图av天堂| 日韩欧美一区视频在线观看| 欧美日韩亚洲综合一区二区三区_| 国产色视频综合| 中文字幕色久视频| 国产免费视频播放在线视频| 我要看黄色一级片免费的| 自线自在国产av| 欧美黄色片欧美黄色片| 麻豆av在线久日| 中文字幕色久视频| 久久人人爽av亚洲精品天堂| 一区二区三区乱码不卡18| 怎么达到女性高潮| 老司机在亚洲福利影院| 12—13女人毛片做爰片一| 在线观看一区二区三区激情| 80岁老熟妇乱子伦牲交| 亚洲熟妇熟女久久| 亚洲黑人精品在线| 两性夫妻黄色片| 2018国产大陆天天弄谢| 99国产精品一区二区三区| 天天躁夜夜躁狠狠躁躁| 91麻豆精品激情在线观看国产 | 制服人妻中文乱码| 99国产精品99久久久久| 久久久久久久国产电影| 男女床上黄色一级片免费看| 久久99一区二区三区| 久久精品国产亚洲av高清一级| 亚洲第一欧美日韩一区二区三区 | 日本撒尿小便嘘嘘汇集6| 国产成人影院久久av| 亚洲国产欧美在线一区| 国产精品亚洲av一区麻豆| 亚洲色图综合在线观看| 在线观看免费视频日本深夜| 精品亚洲成国产av| 热99久久久久精品小说推荐| 黄色视频,在线免费观看| 国内毛片毛片毛片毛片毛片| 精品福利永久在线观看| 亚洲成a人片在线一区二区| 亚洲av片天天在线观看| 麻豆乱淫一区二区| 在线观看66精品国产| 久久久久久久大尺度免费视频| 12—13女人毛片做爰片一| 日韩视频在线欧美| 日韩熟女老妇一区二区性免费视频| 免费观看人在逋| 后天国语完整版免费观看| 欧美日韩亚洲国产一区二区在线观看 | 超色免费av| 一本色道久久久久久精品综合| 9色porny在线观看| 757午夜福利合集在线观看| 亚洲精品在线美女| 在线观看一区二区三区激情| 另类亚洲欧美激情| 香蕉丝袜av| av福利片在线| 丰满迷人的少妇在线观看| 国产老妇伦熟女老妇高清| 国产不卡一卡二| 露出奶头的视频| 99riav亚洲国产免费| 国产日韩一区二区三区精品不卡| 亚洲va日本ⅴa欧美va伊人久久| 中文字幕制服av| 五月开心婷婷网| 性少妇av在线| 黄片播放在线免费| 免费在线观看影片大全网站| 黄片小视频在线播放| 大陆偷拍与自拍| 日韩人妻精品一区2区三区| 国产男女内射视频| 国产成+人综合+亚洲专区| 无遮挡黄片免费观看| 午夜福利免费观看在线| 国产黄频视频在线观看| 午夜久久久在线观看| 黄色成人免费大全| 色在线成人网| 岛国毛片在线播放| 1024视频免费在线观看| 亚洲国产av新网站| 啦啦啦在线免费观看视频4| 在线观看66精品国产| 美女午夜性视频免费| 母亲3免费完整高清在线观看| 巨乳人妻的诱惑在线观看| 欧美日韩黄片免| 又紧又爽又黄一区二区| 久久精品国产a三级三级三级| 日韩欧美一区视频在线观看| 亚洲中文av在线| 精品福利永久在线观看| 国产日韩一区二区三区精品不卡| 欧美精品亚洲一区二区| a级毛片黄视频| 亚洲 欧美一区二区三区| 欧美日韩av久久| 国产不卡av网站在线观看| 欧美精品一区二区免费开放| 国产1区2区3区精品| 新久久久久国产一级毛片| 欧美日韩中文字幕国产精品一区二区三区 | 人妻久久中文字幕网| 国产精品99久久99久久久不卡| 免费在线观看影片大全网站| 女性生殖器流出的白浆| 一区二区三区精品91| 国产男女内射视频| 午夜91福利影院| 亚洲精品在线观看二区| 国产91精品成人一区二区三区 | 精品第一国产精品| 动漫黄色视频在线观看| 亚洲精品粉嫩美女一区| 欧美日韩成人在线一区二区| 狂野欧美激情性xxxx| 国产免费视频播放在线视频| 乱人伦中国视频| 视频区欧美日本亚洲| 亚洲国产av影院在线观看| 国产激情久久老熟女| 色老头精品视频在线观看| 午夜福利视频在线观看免费| 无遮挡黄片免费观看| 黄色视频不卡| 电影成人av| 性少妇av在线| 欧美大码av| 美国免费a级毛片| 国产精品av久久久久免费| 国产精品秋霞免费鲁丝片| 国产99久久九九免费精品| 亚洲精品中文字幕在线视频| 91精品三级在线观看| 一区二区三区精品91| 亚洲色图综合在线观看| 一区二区三区乱码不卡18| 久久精品国产综合久久久| 色在线成人网| 国产免费福利视频在线观看| 老司机福利观看| 亚洲五月色婷婷综合| 1024香蕉在线观看| 成人手机av| 男男h啪啪无遮挡| 国产又爽黄色视频| 亚洲人成电影观看| 一级毛片精品| 少妇被粗大的猛进出69影院| 香蕉国产在线看| 啦啦啦中文免费视频观看日本| 涩涩av久久男人的天堂| 亚洲七黄色美女视频| 99久久国产精品久久久| 在线观看66精品国产| 亚洲精品美女久久av网站| 成人国语在线视频| 亚洲情色 制服丝袜| 欧美在线一区亚洲| 高清av免费在线| 一区二区三区乱码不卡18| 日韩 欧美 亚洲 中文字幕| 久久99一区二区三区| 久久久精品94久久精品| 欧美国产精品一级二级三级| 午夜成年电影在线免费观看| 菩萨蛮人人尽说江南好唐韦庄| 黄色片一级片一级黄色片| 国产一区二区 视频在线| 亚洲专区中文字幕在线| 女性生殖器流出的白浆| 丝袜人妻中文字幕| aaaaa片日本免费| 欧美日韩国产mv在线观看视频| 亚洲国产欧美日韩在线播放| avwww免费| 亚洲精品粉嫩美女一区| 一区二区三区精品91| 欧美中文综合在线视频| 欧美激情久久久久久爽电影 | 最近最新中文字幕大全电影3 | 国产精品99久久99久久久不卡| 国产淫语在线视频| 高清毛片免费观看视频网站 | 看免费av毛片| 中文字幕制服av| 美女高潮到喷水免费观看| 久久九九热精品免费| 丁香六月欧美| 午夜福利视频在线观看免费| 亚洲av第一区精品v没综合| 黑人猛操日本美女一级片| 97在线人人人人妻| 99香蕉大伊视频| 精品国产超薄肉色丝袜足j| 黑丝袜美女国产一区| a级毛片黄视频| 亚洲成av片中文字幕在线观看| 一级片'在线观看视频| 99国产极品粉嫩在线观看| 成人手机av| 手机成人av网站| 大陆偷拍与自拍| 欧美久久黑人一区二区| 日韩成人在线观看一区二区三区| 久久免费观看电影| 精品一区二区三区av网在线观看 | 精品人妻熟女毛片av久久网站| 91大片在线观看| 日韩精品免费视频一区二区三区| 日本vs欧美在线观看视频| 国产精品1区2区在线观看. | 女人高潮潮喷娇喘18禁视频| 国产黄色免费在线视频| 成人精品一区二区免费| 99精品欧美一区二区三区四区| 成年女人毛片免费观看观看9 | 欧美大码av| 久久久精品免费免费高清| 2018国产大陆天天弄谢| 国产真人三级小视频在线观看| 亚洲国产av影院在线观看| 亚洲欧美激情在线| 狠狠狠狠99中文字幕| 日日夜夜操网爽| 国产精品免费一区二区三区在线 | 两性夫妻黄色片| 国产成人精品久久二区二区免费| 国产xxxxx性猛交| 久久99一区二区三区| 国产精品电影一区二区三区 | 国产免费视频播放在线视频| 亚洲av成人不卡在线观看播放网| cao死你这个sao货| 9色porny在线观看| 十八禁高潮呻吟视频| 精品国产一区二区三区久久久樱花| 日韩中文字幕视频在线看片| 国产视频一区二区在线看| 91精品三级在线观看| av片东京热男人的天堂| 变态另类成人亚洲欧美熟女 | av有码第一页| 母亲3免费完整高清在线观看| xxxhd国产人妻xxx| 国产成+人综合+亚洲专区| 午夜福利影视在线免费观看| 亚洲美女黄片视频| 国产福利在线免费观看视频| 国产片内射在线| 女人被躁到高潮嗷嗷叫费观| 亚洲人成77777在线视频| 精品午夜福利视频在线观看一区 | 侵犯人妻中文字幕一二三四区| 亚洲精品粉嫩美女一区| 国产区一区二久久| 欧美日韩精品网址| 免费少妇av软件| 一边摸一边抽搐一进一小说 | 欧美日韩视频精品一区| 国产成人免费无遮挡视频| 极品少妇高潮喷水抽搐| 天天操日日干夜夜撸| 怎么达到女性高潮| 在线观看人妻少妇| 亚洲av电影在线进入| 狂野欧美激情性xxxx| 精品国产超薄肉色丝袜足j| 91成年电影在线观看| 亚洲第一欧美日韩一区二区三区 | 国产日韩欧美视频二区| 99精国产麻豆久久婷婷| 黄色怎么调成土黄色| tube8黄色片| 久久午夜亚洲精品久久| 国产精品98久久久久久宅男小说| 90打野战视频偷拍视频| 怎么达到女性高潮| 热99久久久久精品小说推荐| 久久精品国产99精品国产亚洲性色 | 露出奶头的视频| 人人澡人人妻人| 午夜福利欧美成人| 一进一出抽搐动态| 侵犯人妻中文字幕一二三四区| 国产精品自产拍在线观看55亚洲 | 黄色怎么调成土黄色| 蜜桃在线观看..| 熟女少妇亚洲综合色aaa.| 亚洲少妇的诱惑av| 国产熟女午夜一区二区三区| 成年版毛片免费区| av视频免费观看在线观看| 两性夫妻黄色片| 9191精品国产免费久久| 亚洲,欧美精品.| 国产成人啪精品午夜网站| 亚洲av成人不卡在线观看播放网| 亚洲一卡2卡3卡4卡5卡精品中文| 欧美成人午夜精品| 狠狠婷婷综合久久久久久88av| 高清av免费在线| 18禁观看日本| 亚洲精品自拍成人| 日日爽夜夜爽网站| 亚洲精品美女久久久久99蜜臀| 中文字幕最新亚洲高清| 美女午夜性视频免费| 成年女人毛片免费观看观看9 | 一进一出抽搐动态| 国产精品一区二区精品视频观看| 国产有黄有色有爽视频| 国产成人免费无遮挡视频| 久久狼人影院| 国产熟女午夜一区二区三区| 欧美激情久久久久久爽电影 | 三级毛片av免费| 91九色精品人成在线观看| 国产欧美日韩一区二区三| 亚洲成国产人片在线观看| 欧美日韩黄片免| 大陆偷拍与自拍| 国产97色在线日韩免费| 亚洲欧美激情在线| 国产欧美日韩精品亚洲av| 视频区图区小说| 美女国产高潮福利片在线看| 精品人妻熟女毛片av久久网站| 桃花免费在线播放| 少妇 在线观看| 视频区欧美日本亚洲| 精品欧美一区二区三区在线| 免费在线观看影片大全网站| 国产成人精品无人区| 啦啦啦在线免费观看视频4| 欧美av亚洲av综合av国产av| 久久九九热精品免费| 无限看片的www在线观看| 99精品欧美一区二区三区四区| 国产成人一区二区三区免费视频网站| 国产精品98久久久久久宅男小说| 国内毛片毛片毛片毛片毛片| 久久影院123| 欧美在线黄色| 别揉我奶头~嗯~啊~动态视频| 激情在线观看视频在线高清 | 最近最新中文字幕大全电影3 | 国产精品熟女久久久久浪| av有码第一页| 久久久久精品国产欧美久久久| 悠悠久久av| 亚洲av国产av综合av卡| 成年人午夜在线观看视频| 日韩视频一区二区在线观看| 精品国产乱子伦一区二区三区| 亚洲精品一二三| 欧美国产精品一级二级三级| 精品一区二区三卡| bbb黄色大片| 国产欧美日韩一区二区三区在线| 免费女性裸体啪啪无遮挡网站| 黄片播放在线免费| 久久亚洲精品不卡| 首页视频小说图片口味搜索| 好男人电影高清在线观看| bbb黄色大片| 老司机靠b影院| 两人在一起打扑克的视频| 午夜免费成人在线视频| 女人精品久久久久毛片| 韩国精品一区二区三区| 久久精品91无色码中文字幕| 欧美性长视频在线观看| 露出奶头的视频| 午夜福利视频精品| 欧美日本中文国产一区发布| 超色免费av| 午夜成年电影在线免费观看| 啦啦啦免费观看视频1| 首页视频小说图片口味搜索| 咕卡用的链子| 97在线人人人人妻| av福利片在线| 一级黄色大片毛片| 久久人妻福利社区极品人妻图片| 99久久99久久久精品蜜桃| 日本黄色日本黄色录像| 国产精品一区二区免费欧美| 国产av一区二区精品久久| 亚洲成a人片在线一区二区| 老司机亚洲免费影院| 亚洲精品粉嫩美女一区| 国产日韩一区二区三区精品不卡|