• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    二維磁性系統(tǒng)和準(zhǔn)一維磁性納米管的內(nèi)能

    2015-11-30 11:53:25米斌周馮翠菊祁云平薛永紅華北科技學(xué)院基礎(chǔ)部北京060西北師范大學(xué)物電學(xué)院甘肅蘭州730070
    計算物理 2015年1期
    關(guān)鍵詞:內(nèi)能納米管鐵磁

    米斌周,馮翠菊,祁云平,丁 東,薛永紅(.華北科技學(xué)院基礎(chǔ)部,北京 060;.西北師范大學(xué)物電學(xué)院,甘肅蘭州 730070)

    文章編號:1001?246X(2015)01?0086?07

    二維磁性系統(tǒng)和準(zhǔn)一維磁性納米管的內(nèi)能

    米斌周1,馮翠菊1,祁云平2,丁 東1,薛永紅1
    (1.華北科技學(xué)院基礎(chǔ)部,北京 101601;2.西北師范大學(xué)物電學(xué)院,甘肅蘭州 730070)

    采用量子統(tǒng)計理論的多體格林函數(shù)法計算二維單離子各向異性海森伯鐵磁體、反鐵磁體以及單壁鐵磁納米管的內(nèi)能,對比鐵磁體和反鐵磁體的結(jié)果.在相同的參量下,反鐵磁能量總是低于相應(yīng)的鐵磁能量(相變點(diǎn)除外).由于反鐵磁能量隨溫度上升的速度較鐵磁能量快,當(dāng)溫度升高到居里點(diǎn)TC和奈爾點(diǎn)TN時(TC=TN),鐵磁能量和反鐵磁能量相等.橫向關(guān)聯(lián)效應(yīng)對系統(tǒng)內(nèi)能的影響較大,不能忽略.

    海森伯模型;二維系統(tǒng);磁性納米管;內(nèi)能;多體格林函數(shù)法

    0 引言

    近年來,在納米科技蓬勃發(fā)展的背景下,低維磁性材料研究引起了科學(xué)家們的極大興趣.為了研究二維和一維磁性系統(tǒng)的磁化行為和物理機(jī)制,人們發(fā)展了不同的理論技術(shù)方法.文獻(xiàn)[1]采用自旋動力學(xué)方法研究了磁偶極相互作用表現(xiàn)的邊界效應(yīng)對小尺寸正方形鐵磁薄膜的磁化翻轉(zhuǎn)過程的影響,文獻(xiàn)[2]采用Monte Carlo模擬對自旋為1/2的一維鉆石鏈反鐵磁Ising系統(tǒng)的磁化進(jìn)行研究,文獻(xiàn)[3]采用變分法研究了具有反鐵磁界面交換耦合的鐵磁/反鐵磁雙層膜系統(tǒng)中交換偏置場和矯頑力場隨冷卻場的變化等.在眾多的理論方法中,涉及多體格林函數(shù)法的研究相對較少.由于多體格林函數(shù)法考慮了量子漲落效應(yīng)[4-12]并且可以從低溫到高溫統(tǒng)一地處理鐵磁理論問題,此方法運(yùn)用于處理海森伯磁性系統(tǒng)被證明是非常成功的[6-9,12-19],因而具有更加誘人的吸引力.對于一個海森伯磁性系統(tǒng),人們成功地運(yùn)用量子統(tǒng)計理論的多體格林函數(shù)方法求出磁化強(qiáng)度隨溫度的變化,有一個對于任意自旋量子數(shù)S都適用的普遍公式[4-6].內(nèi)能是熱力學(xué)系統(tǒng)的基本物理量.在量子統(tǒng)計力學(xué)中,內(nèi)能就是哈密頓量的系綜平均值.文獻(xiàn)[7]嚴(yán)格給出了S=1/2,1時鐵磁體的內(nèi)能公式.文獻(xiàn)[8]給出了一個鐵磁系統(tǒng)對于任意自旋量子數(shù)都適用的考慮橫向關(guān)聯(lián)函數(shù)時比較嚴(yán)格的內(nèi)能表達(dá)式.文獻(xiàn)[9]利用多體格林函數(shù)方法計算了單壁鐵磁納米管的內(nèi)能,并與二維平面的情況做了比較.其

    實,文獻(xiàn)[7-9]都是將海森伯交換相互作用項中的縱向和橫向部分放在一起處理的,計算過程較復(fù)雜,而且只適用于鐵磁系統(tǒng).文獻(xiàn)[7]的近似更嚴(yán)格,只給出了S=1/2,1時鐵磁體的內(nèi)能,對于大的自旋量子數(shù)則會涉及到更高階的格林函數(shù),而且不同自旋量子數(shù)的內(nèi)能公式不統(tǒng)一.本文的做法是將海森伯交換相互作用項中的縱向和橫向部分分開成兩項分別計算.對于縱向部分(1/2)J,采用無規(guī)相近似:≈,(i≠j)[4-5],相應(yīng)的能量稱為縱向平均場能;對于橫向部分(1/2)J,利用譜定理[5-6]做嚴(yán)格的計算,相應(yīng)的能量稱為橫向關(guān)聯(lián)能.對于簡單格子和復(fù)式格子都可以計算.既適用于鐵磁系統(tǒng),也適用于反鐵磁系統(tǒng)和亞鐵磁系統(tǒng),還適用于單壁磁性納米管.本文數(shù)值計算二維單離子各向異性海森伯鐵磁體和反鐵磁體的內(nèi)能.對于鐵磁體,包括準(zhǔn)一維的單壁鐵磁納米管,將數(shù)值結(jié)果與文獻(xiàn)[8-9]的結(jié)果做了比較.自旋量子數(shù)較小時(S=1,3/2),接近零溫時,文獻(xiàn)[8-9]的內(nèi)能曲線更低.當(dāng)溫度升高時,本文的內(nèi)能曲線更低.自旋量子數(shù)較大時(S=2,5/2,3),在接近零溫的低溫區(qū),本文與文獻(xiàn)[8-9]的計算結(jié)果較為一致;溫度升高時,文獻(xiàn)[8-9]的內(nèi)能曲線較低.在接近居里點(diǎn)的高溫區(qū),本文的內(nèi)能曲線較低.

    1 模型、方法和計算公式

    描述一個海森伯磁性體的哈密頓量為

    其中,第一項是海森伯交換相互作用項,下標(biāo)i、j表示格點(diǎn),Jij表示格點(diǎn)i、j之間的交換積分.本文只考慮最近鄰交換作用,求和遍及所有最近鄰格點(diǎn),設(shè)最近鄰格點(diǎn)間的交換積分Jij=J.J<0表示鐵磁交換,J>0則表示反鐵磁交換.最近鄰格點(diǎn)間的距離設(shè)為a.第二項是單離子各向異性項,D是各向異性強(qiáng)度,也稱為各向異性場.由于各向同性的海森伯模型在二維和一維情況下是沒有自發(fā)磁化的[10-11],要加上各向異性項才會出現(xiàn)自發(fā)磁化,即低于三維情形時(1)式中的D必須不為零.一般認(rèn)為D比 |J| 小兩個數(shù)量級.第三項是有外磁場時的能量.本文設(shè)玻爾茲曼常數(shù)kB=1,則交換強(qiáng)度J、各向異性強(qiáng)度D、外磁場Bz和溫度T等參量都是無量綱的量.本文的數(shù)值計算中?。簗J |=100,D=1,2,5.

    采用多體格林函數(shù)法計算二維正方格子單離子各向異性海森伯鐵磁體(FM)、反鐵磁體(AFM)和單壁鐵磁納米管的內(nèi)能.要計算該磁性系統(tǒng)的內(nèi)能,需要先計算出磁化強(qiáng)度.計算磁化強(qiáng)度時,要對高階格林函數(shù)做分解近似,對于海森伯交換相互作用項和單離子各向異性項分別采用了無規(guī)項近似[5,15-16](RPA)和Anderson?Callen(AC)分解近似[14,20-21].內(nèi)能是哈密頓量的系綜平均值.整個晶體有N個格點(diǎn).考慮到晶格的平移周期性和對稱性,只需要計算出平均每個自旋的能量,以下簡稱鐵磁(或反鐵磁)能量,記為E,即

    式(2)中的能量包含了四項,其中前兩項分別是縱向平均場能EMF和橫向關(guān)聯(lián)能ETC,后兩項分別是各向異性能EA和外磁場能EB.為了簡單起見,本文只計算不加外磁場(Bz=0)時的內(nèi)能,令EB≡0.為了討論方便,我們在后面的數(shù)值計算中將縱向平均場能、各向異性能之和稱為經(jīng)典能量,計為EC=EMF+EA.用S表示自旋量子數(shù),〈Sz〉表示鐵磁體的z分量磁化強(qiáng)度,〈Szμ〉(μ=1,2)分別表示反鐵磁體兩個子晶格的z分量磁化強(qiáng)度.下面分別給出鐵磁、反鐵磁能量的計算公式.

    1.1 鐵磁能量的計算公式

    對于鐵磁系統(tǒng),(2)式中的縱向平均場能為

    其中,

    式(2)中的橫向關(guān)聯(lián)能為

    其中,

    式(6)、(8)中的自旋波能譜為

    這里波矢k=(p,q),晶格常數(shù)為a.在方程(9)中,

    式(2)中的各向異性能為

    其中

    1.2 反鐵磁能量的計算公式

    對于反鐵磁系統(tǒng),晶格分成了兩個子晶格(復(fù)式格子).整個晶體有N個格點(diǎn),其中兩個子晶格各有N/2個格點(diǎn).無外磁場時,兩個子晶格的自發(fā)磁化強(qiáng)度大小相等,方向相反,〈〉=-〈〉=-〈Sz〉.式(2)中的縱向平均場能為

    其中

    式(17)、(18)中的自旋波能譜分為兩支

    其中

    晶格常數(shù)b1=b2=2a.式(2)中的橫向關(guān)聯(lián)能為

    其中

    式(2)中的各向異性能為

    其中

    當(dāng)S=1/2時,(Sz)2=1/4,即使加上式(1)等號右邊的第二項,即單離子各向異性項,也不顯現(xiàn)各向異性[8-9,12].因此,計算S=1,3/2,2,5/2,3時的情況.

    2 數(shù)值結(jié)果和討論

    不加外磁場時,將鐵磁(或反鐵磁)能量分成了兩部分:經(jīng)典能量EC=EMF+EA和橫向關(guān)聯(lián)能ETC.圖1 (a)、(b)、(c)給出了幾個不同自旋量子數(shù)(S=1,3/2,2,5/2,3)時鐵磁體、反鐵磁體的內(nèi)能隨溫度的變化,并將二者做了比較.其中,圖1(a)是鐵磁能量,圖1(b)是反鐵磁能量,圖1(c)將二者對比.可以看出,若自旋量子數(shù)一定,在零溫時,鐵磁能量高于反鐵磁能量.溫度升高,鐵磁能量和反鐵磁能量都上升.反鐵磁能量隨溫度上升的速度較鐵磁能量更快,當(dāng)溫度升高到居里點(diǎn)TC和奈爾點(diǎn)TN時(這里TC=TN),鐵磁能量和反鐵磁能量相等.在零溫和相變點(diǎn)之間,包括零溫,反鐵磁能量總是低于鐵磁能量.

    圖1 不同自旋量子數(shù)(S=1,3/2,2,5/2,3)時:(a)鐵磁體(FM)、(b)反鐵磁體(AFM)的內(nèi)能隨溫度的變化;(c)鐵磁能量和反鐵磁能量;(d)本文和文獻(xiàn)[8](原文圖4)的鐵磁能量Fig.1 Intrinsic energy versus temperature:(a)FM energy,(b)AFM energy,(c)FM and AFM energies,and(d)FM energies(Spin quantum number S=1,3/2,2,5/2,3.)

    此外,我們利用本文的近似方法計算了幾個不同自旋量子數(shù)(S=1,3/2,2,5/2,3)和管徑[9]m=20時鐵磁納米管(FM?nanotube)的內(nèi)能隨溫度的變化,并與文獻(xiàn)[9]的近似作了比較,如圖2所示.本文與文獻(xiàn)[9]結(jié)果差別的主要原因在于能量表達(dá)式中近似項的多少,本文的近似項數(shù)較少,得到的內(nèi)能數(shù)值更準(zhǔn)確一些.在這里需要指出和強(qiáng)調(diào)的一點(diǎn)是,本文計算內(nèi)能的近似方法對于簡單格子和復(fù)式格子都適用.既適用于鐵磁系統(tǒng),也適用于反鐵磁系統(tǒng)和亞鐵磁系統(tǒng),還適用于準(zhǔn)一維單壁磁性納米管.關(guān)于亞鐵磁體的內(nèi)能,將會在后續(xù)工作中做詳細(xì)計算.

    圖3給出了自旋量子數(shù)S=2時,鐵磁體和反鐵磁體的經(jīng)典能量、橫向關(guān)聯(lián)能和內(nèi)能隨溫度的變化.其中,圖3(a)是鐵磁體,圖3(b)是反鐵磁體.可以看出,經(jīng)典能量EC和內(nèi)能E都隨溫度的升高而升高,橫向關(guān)聯(lián)能ETC隨溫度的升高而降低.三者之間的關(guān)系是E=EC+ETC.在某一有限溫度處,橫向關(guān)聯(lián)能等于經(jīng)典能量.對于鐵磁體,零溫時,橫向關(guān)聯(lián)能為零,鐵磁能量和經(jīng)典能量相同.這是因為,在零溫時,不存在熱力學(xué)漲落,對于鐵磁系統(tǒng),也不存在量子漲落.對于反鐵磁系統(tǒng),情況大不一樣,零溫時,橫向關(guān)聯(lián)能不為零,鐵磁能量低于經(jīng)典能量.這是因為,在零溫時,反鐵磁系統(tǒng)存在量子漲落.溫度升高,量子漲落和熱力學(xué)漲落效應(yīng)出現(xiàn)并逐漸增強(qiáng),磁化強(qiáng)度減小,鐵磁能量和反鐵磁能量上升.溫度升高到相變點(diǎn)時,對于鐵磁系統(tǒng)和反鐵磁系統(tǒng),經(jīng)典能量都非常接近零,鐵磁能量和反鐵磁能量分別等于相應(yīng)的橫向關(guān)聯(lián)能.在零溫和相變點(diǎn)之間,鐵磁能量、反鐵磁能量總是低于相應(yīng)的經(jīng)典能量,這表明橫向關(guān)聯(lián)效應(yīng)是很重要的,不能忽略.此外,圖3表明,在居里點(diǎn)TC和奈爾點(diǎn)TN,鐵磁能量和反鐵磁能量的數(shù)值都不為零.這是因為,在鐵磁系統(tǒng)和反鐵磁系統(tǒng)中,由于橫向關(guān)聯(lián)效應(yīng),體系具有某種程度的短程序,這樣,在居里點(diǎn)TC和奈爾點(diǎn)TN,即使磁化強(qiáng)度為零,鐵磁能量和反鐵磁能量也是非零的.

    圖2 不同自旋量子數(shù)(S=1,3/2,2,5/2,3)時鐵磁納米管的內(nèi)能隨溫度的變化Fig.2 Intrinsic energy of FM nannotubes versustemperature at several S

    圖3 (a)鐵磁體(FM)、(b)反鐵磁體(AFM)的經(jīng)典能量、橫向關(guān)聯(lián)能和內(nèi)能隨溫度的變化Fig.3 Longitudinalmean?field energy,transverse correlation energy,and intrinsic energy versus temperature:(a)FM,(b)AFM

    圖4 不同自旋量子數(shù)(S=1,3/2,2,5/2,3)時:(a)鐵磁體(FM)、(b)反鐵磁體(AFM)的橫向關(guān)聯(lián)能隨溫度的變化Fig.4 Transverse correlation energy versus temperature at several S:(a)FM and(b)AFM

    圖5 不同各向異性強(qiáng)度(D=1,2,5)時鐵磁體(FM)、反鐵磁體(AFM)的橫向關(guān)聯(lián)能隨溫度的變化Fig.5 Transverse correlation energy versus temperature (a)FM,(b)AFM

    圖5給出了幾個不同各向異性強(qiáng)度(D=1,2,5)時鐵磁體和反鐵磁體的橫向關(guān)聯(lián)能隨溫度的變化.參量都相同時,在零溫和相變點(diǎn)之間,包括零溫,反鐵磁體比鐵磁體的橫向關(guān)聯(lián)能更低.在相同的參量下,鐵磁體的橫向關(guān)聯(lián)能隨溫度減小的更快,這樣到達(dá)相變點(diǎn)(TC=TN)時,鐵磁體和反鐵磁體的橫向關(guān)聯(lián)能相同.可以看出,對于鐵磁體在有限溫度下和反鐵磁體在全溫區(qū),橫向關(guān)聯(lián)能的絕對值隨著各向異性強(qiáng)度D的增大而減小.

    本文雖然沒有計算加外磁場時的內(nèi)能,從哈密頓量可以看出,加上外磁場后能量會降低.我們可以推測出,對于鐵磁體在有限溫度下和反鐵磁體在全溫區(qū),橫向關(guān)聯(lián)能的絕對值隨著外磁場Bz的增大而減小.

    3 結(jié)論

    采用量子統(tǒng)計理論的多體格林函數(shù)法計算了二維單離子各向異性海森伯磁性體的經(jīng)典能量、橫向關(guān)聯(lián)能和內(nèi)能,將鐵磁體和反鐵磁體的結(jié)果作了比較.對于鐵磁體的內(nèi)能,包括準(zhǔn)一維的單壁鐵磁納米管,將本文的計算結(jié)果與文獻(xiàn)[8-9]的結(jié)果做了比較.主要結(jié)論如下:

    1)溫度升高,鐵磁能量和反鐵磁能量都上升.參量相同時,在零溫和相變點(diǎn)之間,包括零溫,反鐵磁能量總是低于鐵磁能量.由于反鐵磁能量隨溫度上升的速度較鐵磁能量更快,當(dāng)溫度升高到居里點(diǎn)TC和奈爾點(diǎn)TN時(TC=TN),鐵磁能量和反鐵磁能量相等.

    2)對于鐵磁體的內(nèi)能,包括單壁鐵磁納米管,我們將本文的數(shù)值結(jié)果與之前文獻(xiàn)的結(jié)果做了比較.本文與文獻(xiàn)[8-9]結(jié)果差別的主要原因在于能量表達(dá)式中近似項的多少.由于本文的近似項數(shù)較少,因此得到的內(nèi)能數(shù)值更準(zhǔn)確.

    3)橫向關(guān)聯(lián)效應(yīng)對系統(tǒng)內(nèi)能的影響較大,不能忽略.對于鐵磁體在有限溫下和反鐵磁體在全溫區(qū),橫向關(guān)聯(lián)能(數(shù)值為負(fù))的絕對值隨著自旋量子數(shù)S、各向異性場D和外磁場Bz的增大而減小.

    [1] Li M,Su Y C,Hu JG.Boundary effects in magnetization reversal ofmicro?square ferromagnetic thin films[J].Chinese J Comput Phys,2012,29(2):285-290.

    [2] Feng L Y,Xin ZH,WangW T.Magnetic properties of one?dimensional antiferromagnetic Ising diamond chain[J].Chinese JComput Phys,2010,27(4):613-618.

    [3] Xu X Y,Gu J Y,Meng R N,Li T,Hu J G.Thickness dependence of positive exchange bias in ferromagnetic/antiferromagnetic bilayers[J].Chinese JComput Phys,2011,28(5):786-790.

    [4] Callen H B.Green function theory of ferromagnetism[J].Phys Rev,1963,130:890-898.

    [5] Tyablikov S T.Methods in the quantum theory ofmagnetism[M].New York:Plenum,1967.

    [6] Wang H Y.Green's function in condensedmatter physics[M].Beijing:Science Press and Alpha Science International Ltd,2012. [7] Fr?brich P,Kuntz P J.Many?body Green′s function theory of Heisenberg films[J].Phys Rep,2006,432:294-297.

    [8] Wang H Y,Xia Q.The total energy of Heisenberg ferromagnetic systems[J].Acta Phys Sin,2007,56(9):5466-5470.

    [9] Mi B Z,Wang H Y,Zhou Y S.Theoretical investigations ofmagnetic properties of ferromagnetic single?walled nanotubes[J]. JMagn Magn Mater,2010,322(8):952-958.

    [10] Mermin N M,Wagner H.Absence of ferromagnetism or antiferromagnetism in one?or two?dimensional isotropic Heisenberg models[J].Phys Rev Lett,1966,17:1133-1136.

    [11] Tao R B,Pu F C.On the absence of the phase transition in a low?dimensionalmagnetic system withmulti?quadratic exchange interactions[J].Acta Phys Sin,1980,29(5):658-660.

    [12] Mi B Z,Wang H Y,Zhou Y S.Theoretical investigations ofmagnetic properties of ferromagnetic single?layered nanobelts[J]. Phys Status Solidi B,2011,248(5):1280-1286.

    [13] Zheng Q Q,Pu FC.Application of the Green's fuctionmethod to the theory of antiferromagnetism for S≥1/2[J].Acta Phys Sin,1964,20(7):624-635.

    [14] Anderson F B,Callen H B.Statisticalmechanics and field?induced phase transitions of the heisenberg antiferromagnet[J]. Phys Rev,1964,136:A1068-A1087.

    [15] Wang H Y,Zhou Y S,Wang C Y,Lin D L.Investigation of ultra?thin ferromagnetic films with a simple cubic lattice[J]. Chin Phys,2002,11(2):167-173.

    [16] Wang H Y,Zhou Y S,Wang C Y.Magnetization of coupled ultrathin ferromagnetic films[J].Commun Theor Phys,2002,38:107-112.

    [17] Wang H Y,Dai Z H.Quantum statistical calculation of exchange bias[J].Commun Theor Phys,2004,42:141-145.

    [18] Xiong Z J,Wang H Y,Ding Z J.Theoretical investigation of exchange bias[J].Chinese Phys,2007,16(7):2123-2130. [19] Xiong Z J,Wang H Y,Ding Z J.Theoretical investigation of exchange bias in compensated cases[J].Commun Theor Phys,2008,50:1241-1244.

    [20] Schwieger S,Kienert J,NoltingW.Theory of field?induced spin reorientation transition in thin Heisenberg films[J].Phys Rev B,2005,71:024428.

    [21] PiniM G,Politi P,Stamps R L.Anisotropy effects on themagnetic excitations of a ferromagnetic monolayer below and above the Curie temperature[J].Phys Rev B,2005,72:014454.

    Article ID:1001?246X(2015)01?0093?08

    Abstract: Magnetic properties of single?wall ZnSnanotubes(NTs)doped with Fe atoms are studied with first?principles calculations. Formation energies of doped NTs are smaller than that of pristine one,which indicating that doping is an exothermic reaction. Monodoped NTs has atom?likemagnetic momentsmainly due to 3d componentof Fe atoms.It indicates that Fe?doped ZnSNTs tend to adopt antiferromagnetic(AFM)configurations.To obtain room temperature ferromagnetism,we replaced an S atom by a C atom and found that C atom prefers to substitute Satom connecting two Fe atoms.Ferromagnetic(FM)state energy is lower than that of AFM state by 164 meV.It implies that room temperature ferromagnetism is expected in these systems.

    Key words: codoping;nanotube;magnetic properties;density functional theory

    0 Introduction

    ZnS is an important II?VIcompound semiconductorwith potentialapplications in electronics and optoelectronics due to itswide direct band gaps,3.77 eV for the wurtzite structure[1]and 3.72 eV for the zinc?blende structure[2].Nanodimensional ZnS is found to exhibit excellent optical and optoelectronic properties that are remarkably different from the bulk[3-5],making it a versatile building block for nanoscale electronic and photonic devices.

    Over the past few years,considerable efforts have been placed on the synthesis of ZnS tubular structures[6-10].Magnetic NTs are interesting and technologically important objects of physical researches with many promising applications of future generations of nanoelectronic devices[11-13]. Previous computations have made on magnetic properties of Mn?doped ZnO NTs[14]and transition atom(TM)doped GaN NTs[15].Several theoretical researches have made on the magnetic properties of Mn?doped ZnS surfaces[16-17],TM doped ZnSbulk materials[18-20]and ZnSNWs[21]. Our previous work on ZnS NTs focused on the magnetic property of monodoped ZnS NTs[22].To obtained room temperature ferromagnetism,interaction between two TM atomsmust be considered.

    In thiswork,we carried outa systematic computational study on Fe?doped ZnSNTs.The paper is organized as follows.We first describe computational details in Sec.1 and then present results and discussions in Sec.2.Finally,conclusions are given in Sec.3.

    1 Theoreticalmethod and com putational details

    The calculations were performed by using spin?polarized density functional theory(DFT)asimplemented in the DMOL package[23-24].All electron treatments and double numerical basis set including d?polarization functions(DND)were chosen when thismethod was used.The exchange?correlation interaction was treated using generalized gradient approximation(GGA)with the functional parameterized by Perdew?Burke?Ernzerhof correction(PBE)[25].SCF calculations were performed with a convergence criterion of 10-6hartree on total energy.All structures were fully optimized with no symmetry constraint,with a convergence criterion of0.002 hartree·?-1for forces and 0.005?for displacement.Mulliken population analysis[26]was performed to determine charge transfer and magneticmoment on each atomic site.

    2 Results and discussions

    2.1 Pristine ZnS tube

    The pristine ZnSnanotube(P?ZnS)with a 1.00 nm diameter is cut from a bulk ZnSalong the [0001]direction.The relaxed structures are shown in Fig.1.Distinct surface relaxation occurred on the facets after geometry optimization.Zn atoms move inward whereas S atoms move outward,forming a buckle of Zn?S dimer.

    Fig.1 (a)Top?view and(b)side view of P?ZnSNT(The small and big balls represent Zn and Satoms,respectively.)

    2.2 Femonodoped ZnS tube

    Since Fe atoms adopt divalent ionic states,they substitute readily for divalent cations. Therefore,only substitutional doping was considered.This scenario has been confirmed by previous experiments[27-28].To achieve realistic experimental doping concentrations(approximately 2% -3%),a super cell that consisted of 36 Zn and 36 S atoms was used,in which one Zn atom is replaced by a Fe atom,named M?ZnS.This corresponds to a doping concentration of 2.8%.A structural optimization was subsequently performed for P?ZnS.The electronic properties of P?ZnS had been calculated in our previous work[22].It has been shown that P?ZnS is a direct band gap semiconductor with a band gap(3.52 eV)larger than that of the bulk ZnS(2.23 eV)due to quantum confinement effects.M?ZnS was further optimized in this investigation.The optimized structures are plotted in Fig.2(a).We observedminor changes in lattice constants and bond lengths after structural optimization due to the different ionic radii of Zn and Fe atoms.This indicates that Fe atom doping does not change the crystal structure of ZnS NTs,which is in agreement with experimental results[27-28].

    Fig.2 (a)Side?view of Femonodoped and(b)to(d)bidoped ZnSNTs(Small,middle,and big balls represent Zn,S,and Fe atom,respectively.)

    To compare energy stability of doped ZnSNTs,the formation energy Efwas calculated Ef=Etot-EP-ZnS-n1EFe-n2EC+n3EZn+n4ES,where Etot,EP-ZnS,EFe,EC,EZn,and ESare the total energy of doped NT,the energy of P?ZnS,the energy of Fe,C,Zn,and Satom,respectively.n1,n2,n3and n4are numbers of Fe,C,Zn,and S atoms in the doped NTs,respectively.It is known that themore negative the Efis,themore stable a NTwould be.The calculated results are shown in Table 1.The formation energy of doped NT is lower than thatof P?ZnSNT,which indicated that the Fe?doped NT is exothermic.

    Table 1 Formation energy Ef,band gap Ep,local charge QFeand localmagnetic momentμFeof Fe atom,and total magnetic m omentμtotof M?ZnS,magnetic moments contributed by the nearest neighboring S and Zn atom sμS,μZn

    Electronic properties of M?ZnSwere calculated.The band gap is shown in Table 1.Clearly,the band gap of M?ZnS is smaller than that of P?ZnS(3.52 eV).The band structures of M?ZnS alongΓ?Z direction are shown in Fig.3.It can be seen that certain localized states existed near Fermi levels,which would make the band gap narrower than that of P?ZnS.In addition,M?ZnS shows semiconducting characteristic with indirect band gap.These indicate that Fe?doping changes significantly electronic properties of P?ZnS.

    Fig.3 Band structures ofmonodoped ZnSNTs

    We performed Mulliken population analysis to determine charge transfer and magnetic moment on each atomic site.Themagnetic properties of doped NT are presented in Table 1.3d electrons of Fe atom followed Hund's rule and maximized the magnetic moment.Our results indicate that the magneticmoment is very close to those of free atom,which suggesting that the defect behaved like an isolated Fe atom at this doping level.This aspect of DMS has been observed previously and explained alongwith the large ferromagnetic exchange splitting of the impurity's defectband[29-30].

    An important quantity characterizing the delocalization ofmagnetic moments around Fe atom is induced magnetic moments in surrounding atoms of the host semiconductor.The hybridization between Fe and S atoms plays an important role in the formation of induced magnetic moments. Their magnetic moments have same direction,indicating that Fe atom induces FM interactions between surrounding S atoms(Table 1).Substitutionally doping a Fe atom at a Zn site in ZnSNT changes the number of spin?majority or spin?minority states in the valence band of ZnS NT.The spin?majority states of Fe atom are occupied,and the spin?minority states are partially occupied. Thus,the spin?majority states in S atoms becomemore occupied than the spin?minority states,and the induced magneticmoments in them are parallel to those in Fe atom.Zn atoms interacte with S atoms in the same way as Fe atoms.

    2.3 Fe bidoped ZnS tube

    In this section,two Zn atoms in a super cell substituted by two Fe atoms is studied formagnetic interaction.We considered three possible configurationswith different spatial positioning of Fe atoms (B1,B2,and B3),respectively.Each was fully relaxed before the magnetic moments were calculated.The optimized structures are plotted in Figs.2(b)-2(d).The distances between two Fe atoms are listed in Table 2.The formation energy and the relative energyΔEr=EFM(AFM)-Egroundstatebetween the AFM (FM)states and the ground state are presented in Table 2.Energy differencesΔE=(EFM-EAFM)between AFM and FM states are also listed in Table 2.

    Magnetic properties of all bidoped structures were computed and presented in Table 3.Again,F(xiàn)e atoms induced FM interactions between surrounding Satoms.

    For isomers B3 with a large distance over 5?,AFM and FM states are degenerate in energy,and have same geometry,local charge,and magnetic moment except that the AFM state has a slightly larger band gap.It means that magnetic coupling between two Fe atoms is short?ranged,which has been confirmed by previous researches[31-34].

    Table 2 Distances between two Fe atom s dFe,formation energy Ef,band gap Ep,relative stabilityΔEr,and relative energiesΔE=(EFM-EAFM)of Fe?bidoped ZnSNTs

    Table 3 Local charge QFe1and QFe2and magnetic mom entμFe1andμFe2of two Fe atom s,magneticmoment of thenearest neighboring S atomsμS,and totalmagnetic momentμtot,of Fe?bidoped ZnSNTs

    The lowest energy configuration B1 is an AFM state where Fe atoms replace two nearest Zn atoms,which implies that Fe atoms have a tendency to form clusters around Ssites.For isomers B1 and B2,the states with AFM coupling are lower in energy than the states with FM coupling.It indicates that Fe?doped ZnS NTs tends to adopt AFM configuration.How can we obtain FM coulping?

    2.4 Fe/C codoped ZnS tube

    Additional hole doping may further promote ferromagnetism.A similar idea was proposed by Huang et al[35]who showed that an acceptor like N codoping in Mn doped ZnSe nanocrystal can induce ferromagnetism.This is because the holesmediate Mn?Mn spins.Sharma et al[36]found that C codoping in Mn doped ZnO has room temperature ferromagnetism due to carriers introduced by oxygen vacancies and the substitution of C atO sites.Here,we replaced a Satom by a C atom in Fe doped ZnSNTs.We only considered the configuration that C atom replace a S atom between Fe atoms,named CB1 and CB2.The optimized structures are plotted in Fig.4.After relaxation,the local structure around C dopant shrinks slightly,with Fe atomsmoving closer to C atom.

    Fig.4 Side?view of Fe/C codoped ZnSNTs(The small,middle,big,and huge balls represent S,Zn,F(xiàn)e,and C atom,respectively.)

    Calculated formation energies,relative energies,and energy differences between AFM and FM states are listed in Table 4.After C codoping,all doped NTs show FM coupling.For CB1 configuration,the formation energy of FM state is lower than that of AFM state by 164 meV.Such energy differences imply that room temperature ferromagnetism may be expected in these systems.

    Table 4 Totalmagnetic momentsμtot,local charges QFe1,QFe2and localmagnetic momentsμFe1,μFe2andμCof Fe and C atoms,formation energies Ef,relative energiesΔEr,energy differencesΔE of Fe/C codoped ZnSNTs

    Mulliken population analysis for charge transfer and magnetic moment on each atomic site of Fe/C codoped ZnS NTs are presented in Table 4.Due to hybridization with C atom,the local magnetic moments of Fe atoms decrease.For CB1 and CB2 configurations,totalmagnetic moments are only 4μBfor FM states.The localmagnetic moment of C atom is always antiparallel to those of neighboring Fe atoms.

    3 Conclusions

    Structural,electronic,and magnetic properties of ZnS NTs doped with Fe atoms were systematically studied by using first?principles calculations.The formation energies of doped NTs are smaller than that of P?ZnSNT,which indicating that the process for forming the Fe?doped NTs is exothermic.Mulliken population analysis shows that all monodoped ZnS NTs have atom?like magnetic moments,which ismainly contributed to the 3d component of Fe atoms.The hybridization between Fe atoms and S atoms playes an important role in the formation of induced magnetic moments.Fe atoms induced FM interactions between surrounding S atoms of the host semiconductor.To obtain ferromagnetism,we replaced a Satom by a C atom.The FM state energies are lower than those of AFM states by 0.164 eV.Such energy differences imply that room temperature ferromagnetism could be expected in these systems.

    [1] Ong H C,Chang R P H.Optical constants of wurtzite ZnS thin films determined by spectroscopic ellipsometry[J].Appl Phys Lett,2011,79(22):3612-3614.

    [2] Tran T K,Park W,Tong W,et al.Photoluminescence properties of ZnS epilayers[J].JAppl Phys,1997,81(6):2803-2809.

    [3] Wang Y W,Zhang L D,Liang C H,et al.Catalytic growth and photoluminescence properties of semiconductor single?crystal ZnS nanowires[J].Chem Phys Lett,2002,357(3-4):314-318.

    [4] Dinsmore A D,Hsu D S,Gray H F,et al.Mn?doped ZnS nanoparticles as efficient low?voltage cathodoluminescent phosphors[J].Appl Phys Lett,1999,75(6):802(1-3).

    [5] Denzler D,Olschewski M,Sattler K.Luminescence studies of localized gap states in colloidal ZnS nanocrystals[J].JAppl Phys,1998,84(5):2841-2845.

    [6] Wang X D,Gao P X,Li J,et al.Rectangular porous ZnO?ZnS nanocables and nanotubes[J].AdvMater,2002,14(23):1732-1735.

    [7] Zhou T Y,Xin X Q.Room temperature solid?state reaction—A convenient novel route to nanotubes of zinc sulfide[J].Nanotechnology,2004,15(5):534-536.

    [8] Shen X P,Han M,Hong JM,et al.Template?based CVD synthesis of ZnS nanotube arrays[J].Chem Vapor Depos,2005,11(5):250-253.

    [9] Yin LW,Bando Y,Zhan J H,et al.Self?assemble highly faceted wurtzite?type ZnS single?crystalline nanotubeswith hexagonal cross?sections[J].Adv Mater,2005,17(14):1972-1977.

    [10] Zhai T Y,Gu Z J,Ma Y,et al.Synthesis of ordered ZnS nanotubes by MOCVD?template method[J]. Mater Chem Phys,2006,100(2-3):281-284.

    [11] Zutic I,F(xiàn)abian J,Sarma SD.Spintronics:Fundamentals and applications[J].Rev Mod Phys,2004,76 (2):323-410.

    [12] Fu L,Cao L C,Zhu D B.Molecular and nanoscalematerials and devices in electronics[J].Adv Colloid Interface Sci,2004,111(3):133-157.

    [13] Lu J G,Chang P C,F(xiàn)an Z Y.Quasi?one?dimensional metal oxide materials?Synthesis,properties and applications[J].Mater Sci Eng R,2006,52(1-3):49-91.

    [14] He A L,Wang X Q,F(xiàn)an Y Q,et al.Electronic structure and magnetic properties of Mn?doped ZnO nanotubes:An ab initio study[J].JAppl Phys,2010,108(8):084308(1-5).

    [15] Chen G X,Zhang Y,Wang D D,et al.Structural,electronic and magnetic properties of the 3d transition metal?doped GaN nanotubes[J].Solid State Communications,2011,151(2):139-143.

    [16] Li L,LiD,Liu SY,et al.Electronic properties of Mn doping ZnS(001)surfaces[J].Chinese JComput Phys,2010,27(2):293-298.

    [17] Song DW,Niu Y,Xiao L,et al.Structural,electronic,and magnetic properties of Mn?doped ZnS(110)surfaces:First?principles study[J].Chinese JComput Phys,2012,29(2):277-284.

    [18] Stern R A,Schuler T M,MacLaren JM,et al.Calculated half?metallic behavior in dilute magnetically doped ZnS[J].JAppl Phys,2004,95(11):7468-7470.

    [19] Tablero C.Electronic and magnetic properties of ZnS doped with Cr[J].Phys Rev B,2006,74(19):195203(1-9).

    [20] McNorton R D,Schuler T M,MacLaren JM,et al.Systematic trends of first?principles electronic structure computations of Zn1-xAxB diluted magnetic semiconductors[J].Phys Rev B,2008,78(7):075209(1-11).

    [21] Chen H X,Shi D N,Qi J S.Comparative studies on magnetic properties of ZnS nanowires doped with transition?metal atoms[J].JAppl Phys,2011,109(8):084338(1-9).

    [22] Chen H X,Liu C L.Stability,electronic and magnetic properties of ZnS nanotubes:A comparative study [J].Chinese JComput Phys,2013,30(1):148-158.

    [23] Delley B.An all?electron numericalmethod for solving the local density functional for polyatomic molecules [J].JChem Phys,1990,92(1):508-517.

    [24] Delley B.From molecules to solids with the DMol3approach[J].JChem Phys,2000,113(18):7756-7764.

    [25] Perdew JP,Burke K,ErnzerhofM.Generalized gradient approximationmade simple[J].Phys Rev Lett,1996,77(18):3865-3868.

    [26] Mulliken R S.Electronic population analysis on LCAO?MO molecular wave functions.II.Overlap populations,bond orders,and covalent bond energies[J].JChem Phys,1955,23(10):1841-1846.

    [27] Yuan H J,Yan X Q,Zhang Z X,et al.Synthesis,optical,and magnetic properties of Zn1-xMnxS nanowires grown by thermal evaporation[J].JCryst Growth,2004,271(3-4):403-408.

    [28] Kang T,Sung J,Shim W,et al.Synthesis and magnetic properties of single?crystalline Mn/Fe?doped andco?doped ZnS nanowires and nanobelts[J].JPhys Chem C,2009,113(14):5352-5357.

    [29] Himpsel F J.Exchange splitting of epitaxial fcc Fe/Cu(100)versus bcc Fe/Ag(100)[J].Phys Rev Lett,1991,67(17):2363-2366.

    [30] Orteg JE,Himpsel F J.Inverse Photoemission from V,Cr,Mn,F(xiàn)e,and Co monolayers on Ag(100)[J].Phys Rev B,1993,47(24)16441-16446.

    [31] Wang Q,SunQ,Jena P.Ferromagnetism in Mn?doped GaN nanowires[J].Phys Rev Lett,2005,95 (16):167202(1-4).

    [32] Schmidt T M,Venezuela M P,Arantes J T,et al.Electronic and magnetic properties of Mn?doped InP nanowires from first principles[J].Phys Rev B,2006,73(23):235330(1-5).

    [33] Schmidt T M.Surface effects on the energetic and spintronic properties of InP nanowires diluted with Mn:First?principles calculations[J].Phys Rev B,2008,77(8):085325(1-6).

    [34] Ghost S,Wang Q,Das G P,et al.Magnetism in ZnO nanowire with Fe/Co codoping:First?principles density functional calculations[J].Phys Rev B,2010,81(23):235215(1-10).

    [35] Huang X,Makmal A,Chelikowsky J R,et al.Size?dependent spintronic properties of dilute magnetic semiconductor nanocrystals[J].Phys Rev Lett,2005,94(23)236801(1-4).

    [36] Sharma V K,Najim M,Varma G D.Effect of carbon co?doping on the magnetic properties of bulk Mn doped ZnO[J].JMagn Magn Mater,2011,323(24)3198-3201.

    Intrinsic Energies of Two?dimensional Heisenberg M agnets and Ferromagnetic Single?walled Nanotubes

    MIBinzhou1,F(xiàn)ENG Cuiju1,QIYunping2,DING Dong1,XUE Yonghong1
    (1.Department of Basic Curriculum,North China Institute ofScience and Technology,Beijing 101601,China;2.College of Physics and Electronic Engineering,Northwest Normal University,Lanzhou 730070,China)

    Intrinsic energy of two?dimensional square lattice single?ion anisotropic Heisenberg ferromagnets,antiferromagnets,and ferromagnetic single?walled nanotubes are calculated withmany?body Green's functionmethod in quantum statistical theory.Calculated results of ferromagnets and antiferromagnets are compared.Between zero temperature and phase transition point,including zero temperature,anti?ferromagnetic energy is always lower than that of ferromagnetic energy.Calculationmethod of intrinsic energy in this paper is applicable not only to ferromagnetic system,butalso suitable for antiferromagnetic system and ferrimagnetic system,aswellas ferromagnetic single?walled nanotubes.Intrinsic energies are greatly lower than classical energies,which shows that transverse correlation effect is important.

    Heisenbergmodel;two?dimensional systems;magnetic nanotubes;intrinsic energy;many?body Green's functionmethod

    M agnetic Properties of Single?wall ZnS Nanotubes Doped w ith Fe Atom s

    XIE Jianming,CHEN Hongxia

    (College of Physical Science and Electronic Techniques,Yancheng Teachers University,Yancheng 224002,China)

    O469 Document code:A

    O469

    A

    2013-12-28;

    2014-06-03

    收稿日期:2014-01-06;修回日期:2014-06-17

    中央高?;究蒲袠I(yè)務(wù)費(fèi)專項資金(3142012017)、河北省教育廳科技基金(A2013024)和河北省高等學(xué)??茖W(xué)技術(shù)研究項目(QN2014330)資助項目

    米斌周(1980-),男,碩士,講師,博士生,主要利用多體格林函數(shù)法進(jìn)行磁性材料的理論計算,E?mail:mbzfjerry2008@126.com

    Received date: 2014-01-06;Revised date: 2014-06-17

    Received date:2013-12-28;Revised date:2014-06-03

    Foundation item s:Supported by Natural Science Foundation of China(11247235,11404279)and Qinglan Project of Jiangsu Province

    Biography:Xie Jianming(1976-),male,major in first?principles calculations of structure and property ofmaterials,E?mail:dtxiejianming@sina.com

    猜你喜歡
    內(nèi)能納米管鐵磁
    “內(nèi)能”“內(nèi)能的利用”綜合測試題
    關(guān)于兩類多分量海森堡鐵磁鏈模型的研究
    最近鄰弱交換相互作用對spin-1納米管磁化強(qiáng)度的影響
    “內(nèi)能”“內(nèi)能的利用”綜合測試題
    “內(nèi)能和內(nèi)能的利用”易錯點(diǎn)剖析
    “內(nèi)能”“內(nèi)能的利用”綜合測試題
    你好,鐵磁
    你好,鐵磁
    二氧化鈦納米管的制備及其應(yīng)用進(jìn)展
    一維交替鐵磁-反鐵磁耦合的海森堡鏈[Mn(N3)2(pybox)]n
    80岁老熟妇乱子伦牲交| 国产精品一区二区在线观看99| 亚洲精品久久久久久婷婷小说| 大码成人一级视频| 午夜老司机福利剧场| 如何舔出高潮| 亚洲国产日韩一区二区| 久久99蜜桃精品久久| 激情五月婷婷亚洲| 97精品久久久久久久久久精品| 日韩视频在线欧美| 午夜福利在线观看免费完整高清在| 国产精品秋霞免费鲁丝片| 两个人看的免费小视频| 亚洲三区欧美一区| 赤兔流量卡办理| 精品福利永久在线观看| 大片电影免费在线观看免费| 亚洲精品日本国产第一区| 午夜福利视频在线观看免费| av.在线天堂| 亚洲国产av新网站| 欧美日韩国产mv在线观看视频| 天天躁夜夜躁狠狠躁躁| 日韩熟女老妇一区二区性免费视频| 哪个播放器可以免费观看大片| 国产日韩一区二区三区精品不卡| 麻豆乱淫一区二区| 熟女av电影| 国产精品国产三级专区第一集| 熟女少妇亚洲综合色aaa.| 亚洲四区av| 久久久国产欧美日韩av| 中文字幕人妻丝袜制服| 精品久久蜜臀av无| 美女国产高潮福利片在线看| 国产免费又黄又爽又色| 国产成人精品无人区| 国产一区亚洲一区在线观看| 亚洲精品日本国产第一区| 欧美在线黄色| 精品福利永久在线观看| 国产视频首页在线观看| 一区二区三区激情视频| 久久久久精品人妻al黑| 26uuu在线亚洲综合色| 国产av国产精品国产| 国产成人欧美| 黄色一级大片看看| 精品国产一区二区久久| 咕卡用的链子| 一级爰片在线观看| 交换朋友夫妻互换小说| 欧美另类一区| 天堂俺去俺来也www色官网| 宅男免费午夜| 青草久久国产| 9色porny在线观看| 如何舔出高潮| 看十八女毛片水多多多| 视频区图区小说| 美女福利国产在线| 黑人巨大精品欧美一区二区蜜桃| 99精国产麻豆久久婷婷| 中文精品一卡2卡3卡4更新| 99久久精品国产国产毛片| 亚洲国产毛片av蜜桃av| 电影成人av| 黑人猛操日本美女一级片| 亚洲欧美精品综合一区二区三区 | 国产欧美日韩综合在线一区二区| 王馨瑶露胸无遮挡在线观看| 亚洲欧美色中文字幕在线| 久久人妻熟女aⅴ| 亚洲成国产人片在线观看| 欧美人与性动交α欧美软件| 精品一品国产午夜福利视频| 免费高清在线观看视频在线观看| xxxhd国产人妻xxx| 久久精品国产鲁丝片午夜精品| 尾随美女入室| 看非洲黑人一级黄片| 国产1区2区3区精品| 久久久久久人妻| 免费高清在线观看日韩| 在线观看三级黄色| 秋霞在线观看毛片| 午夜福利,免费看| 欧美精品人与动牲交sv欧美| 一区在线观看完整版| 日韩中文字幕欧美一区二区 | 在线观看美女被高潮喷水网站| 男男h啪啪无遮挡| 超碰97精品在线观看| 秋霞伦理黄片| 中文字幕人妻丝袜制服| 成人国产麻豆网| 青青草视频在线视频观看| 精品少妇一区二区三区视频日本电影 | 99国产综合亚洲精品| 日韩人妻精品一区2区三区| 久久精品久久久久久噜噜老黄| 日韩av免费高清视频| 亚洲,一卡二卡三卡| 亚洲欧美中文字幕日韩二区| 亚洲精品一区蜜桃| 成年人免费黄色播放视频| 99香蕉大伊视频| 亚洲一级一片aⅴ在线观看| 国产精品女同一区二区软件| 亚洲综合精品二区| 亚洲成人一二三区av| 精品一区二区三卡| 国产在线免费精品| 老鸭窝网址在线观看| 亚洲国产av新网站| 国产综合精华液| 热re99久久精品国产66热6| 久久鲁丝午夜福利片| 精品久久久久久电影网| 下体分泌物呈黄色| 人妻一区二区av| 99热国产这里只有精品6| 精品久久久精品久久久| 午夜福利乱码中文字幕| 一区在线观看完整版| 王馨瑶露胸无遮挡在线观看| h视频一区二区三区| 久久99精品国语久久久| 好男人视频免费观看在线| 午夜影院在线不卡| 国产精品成人在线| 9191精品国产免费久久| 一区福利在线观看| 观看av在线不卡| 亚洲欧美一区二区三区久久| 亚洲精品久久成人aⅴ小说| 超色免费av| 日日摸夜夜添夜夜爱| 国产亚洲av片在线观看秒播厂| 国产成人精品无人区| 青春草亚洲视频在线观看| 女人被躁到高潮嗷嗷叫费观| 亚洲第一区二区三区不卡| 多毛熟女@视频| 黄色 视频免费看| 99国产综合亚洲精品| 午夜久久久在线观看| 性色av一级| 看十八女毛片水多多多| 欧美中文综合在线视频| 三上悠亚av全集在线观看| 国产有黄有色有爽视频| 美女xxoo啪啪120秒动态图| 999久久久国产精品视频| 日本-黄色视频高清免费观看| 欧美另类一区| 亚洲伊人色综图| 午夜福利网站1000一区二区三区| 久久久久久久精品精品| 新久久久久国产一级毛片| 男的添女的下面高潮视频| 久久久久久久久免费视频了| 丝袜喷水一区| 欧美精品一区二区免费开放| 国产在视频线精品| 午夜福利,免费看| 美女国产视频在线观看| 秋霞在线观看毛片| 丝袜美腿诱惑在线| 亚洲精品国产色婷婷电影| 美女视频免费永久观看网站| 久久精品国产亚洲av高清一级| 男女高潮啪啪啪动态图| 热re99久久精品国产66热6| 国产成人精品在线电影| 亚洲精品国产色婷婷电影| 精品99又大又爽又粗少妇毛片| 久久女婷五月综合色啪小说| 一边亲一边摸免费视频| 丝袜在线中文字幕| 亚洲av欧美aⅴ国产| 免费观看性生交大片5| 国产精品麻豆人妻色哟哟久久| 亚洲精品,欧美精品| 国产免费一区二区三区四区乱码| av视频免费观看在线观看| 2022亚洲国产成人精品| 婷婷色综合www| 宅男免费午夜| 久久久久国产一级毛片高清牌| 青春草国产在线视频| 老司机影院毛片| 欧美精品av麻豆av| 国产亚洲av片在线观看秒播厂| 2022亚洲国产成人精品| 一本大道久久a久久精品| 18禁国产床啪视频网站| 国产精品亚洲av一区麻豆 | 亚洲精品一二三| 人人妻人人澡人人看| 亚洲欧美中文字幕日韩二区| 夫妻性生交免费视频一级片| 亚洲国产精品一区三区| 天天影视国产精品| 如日韩欧美国产精品一区二区三区| videossex国产| 午夜福利一区二区在线看| 亚洲欧洲国产日韩| 三级国产精品片| 亚洲人成77777在线视频| 男女高潮啪啪啪动态图| 亚洲少妇的诱惑av| 不卡视频在线观看欧美| 日本vs欧美在线观看视频| 一二三四在线观看免费中文在| 久久精品人人爽人人爽视色| 久久综合国产亚洲精品| 欧美97在线视频| 婷婷色综合大香蕉| 久久久久国产精品人妻一区二区| 精品国产乱码久久久久久男人| 久久久久久久久免费视频了| 成年女人在线观看亚洲视频| 日韩精品有码人妻一区| 建设人人有责人人尽责人人享有的| 大陆偷拍与自拍| 久久午夜综合久久蜜桃| 亚洲国产看品久久| 性少妇av在线| 国产亚洲一区二区精品| 交换朋友夫妻互换小说| 午夜91福利影院| 亚洲视频免费观看视频| 亚洲av男天堂| 18禁观看日本| 日韩一本色道免费dvd| 欧美日韩国产mv在线观看视频| 亚洲第一青青草原| 亚洲av福利一区| 国产欧美日韩一区二区三区在线| 日产精品乱码卡一卡2卡三| 最近手机中文字幕大全| 欧美日本中文国产一区发布| 黑人猛操日本美女一级片| 极品少妇高潮喷水抽搐| 亚洲天堂av无毛| 日韩 亚洲 欧美在线| 99国产综合亚洲精品| 日本av手机在线免费观看| 午夜福利乱码中文字幕| 日韩中文字幕视频在线看片| 妹子高潮喷水视频| 日韩av在线免费看完整版不卡| 性色avwww在线观看| 亚洲精品美女久久久久99蜜臀 | 亚洲av.av天堂| 国产无遮挡羞羞视频在线观看| 满18在线观看网站| 美国免费a级毛片| 十八禁网站网址无遮挡| 亚洲欧洲精品一区二区精品久久久 | 三级国产精品片| 亚洲av日韩在线播放| 美女福利国产在线| 久久久久国产网址| 亚洲精品国产色婷婷电影| 亚洲欧美色中文字幕在线| 国产极品粉嫩免费观看在线| 亚洲精品中文字幕在线视频| 午夜日本视频在线| 亚洲欧美中文字幕日韩二区| 精品国产一区二区三区久久久樱花| 国产成人av激情在线播放| 久久这里有精品视频免费| 国产97色在线日韩免费| 乱人伦中国视频| 日本av免费视频播放| a 毛片基地| 日本免费在线观看一区| 日日爽夜夜爽网站| 80岁老熟妇乱子伦牲交| 亚洲综合色网址| 三级国产精品片| 最近中文字幕2019免费版| 亚洲综合色网址| 国产老妇伦熟女老妇高清| 国产成人精品一,二区| 伊人亚洲综合成人网| 久久午夜综合久久蜜桃| 建设人人有责人人尽责人人享有的| 人人妻人人爽人人添夜夜欢视频| 国产精品一国产av| 大片免费播放器 马上看| 男人添女人高潮全过程视频| 日韩av不卡免费在线播放| 亚洲国产精品一区三区| 丝袜在线中文字幕| 最近中文字幕2019免费版| 啦啦啦在线观看免费高清www| 精品少妇一区二区三区视频日本电影 | 只有这里有精品99| 国产精品女同一区二区软件| 午夜精品国产一区二区电影| 国产精品av久久久久免费| 亚洲欧洲日产国产| 飞空精品影院首页| 在线天堂最新版资源| 高清av免费在线| 久久久久久免费高清国产稀缺| 国产成人精品在线电影| 一边亲一边摸免费视频| 晚上一个人看的免费电影| 熟女电影av网| 国产精品 欧美亚洲| 国产一级毛片在线| 90打野战视频偷拍视频| 日韩av免费高清视频| 纯流量卡能插随身wifi吗| 亚洲精品aⅴ在线观看| 久久综合国产亚洲精品| 老女人水多毛片| 欧美精品人与动牲交sv欧美| 国产亚洲最大av| 麻豆精品久久久久久蜜桃| 欧美+日韩+精品| 亚洲伊人久久精品综合| 曰老女人黄片| 99国产精品免费福利视频| 亚洲成国产人片在线观看| 黄网站色视频无遮挡免费观看| 免费高清在线观看日韩| 激情五月婷婷亚洲| 精品亚洲成a人片在线观看| 18在线观看网站| 人成视频在线观看免费观看| 成人亚洲欧美一区二区av| 亚洲国产精品一区三区| 欧美日韩亚洲高清精品| 不卡视频在线观看欧美| 日韩三级伦理在线观看| 亚洲av综合色区一区| 欧美最新免费一区二区三区| 欧美少妇被猛烈插入视频| 国产亚洲精品第一综合不卡| 91国产中文字幕| 亚洲欧美中文字幕日韩二区| 亚洲成色77777| 可以免费在线观看a视频的电影网站 | 如日韩欧美国产精品一区二区三区| 亚洲精品国产av成人精品| 亚洲欧美成人精品一区二区| 99久久中文字幕三级久久日本| 亚洲精品成人av观看孕妇| 大陆偷拍与自拍| 9色porny在线观看| tube8黄色片| av免费观看日本| 欧美日韩精品网址| 国产免费视频播放在线视频| 青春草视频在线免费观看| av免费观看日本| 美女国产高潮福利片在线看| 日本黄色日本黄色录像| 午夜激情久久久久久久| 久久久久久久国产电影| 老鸭窝网址在线观看| 久久国内精品自在自线图片| 女人久久www免费人成看片| 国产精品一区二区在线不卡| 亚洲av在线观看美女高潮| av.在线天堂| 久久人人爽av亚洲精品天堂| 91成人精品电影| 欧美亚洲 丝袜 人妻 在线| av卡一久久| 人妻 亚洲 视频| 国产 一区精品| 亚洲欧美一区二区三区久久| 熟女av电影| 99热网站在线观看| 啦啦啦啦在线视频资源| 亚洲国产精品一区二区三区在线| 青春草亚洲视频在线观看| tube8黄色片| 久久久久精品久久久久真实原创| 久久精品夜色国产| 香蕉丝袜av| 色视频在线一区二区三区| 日韩视频在线欧美| 日本wwww免费看| 婷婷色av中文字幕| 国产精品 国内视频| av电影中文网址| 美女高潮到喷水免费观看| 国产亚洲最大av| 久久狼人影院| 伦理电影免费视频| 不卡视频在线观看欧美| 丝袜美足系列| 免费观看av网站的网址| 亚洲国产精品成人久久小说| 亚洲av中文av极速乱| 国产精品一二三区在线看| 欧美日韩成人在线一区二区| 日韩 亚洲 欧美在线| 久久精品国产亚洲av高清一级| 咕卡用的链子| 人妻人人澡人人爽人人| 一区二区日韩欧美中文字幕| 国产成人91sexporn| 狠狠精品人妻久久久久久综合| 黄频高清免费视频| 国产免费视频播放在线视频| 伦精品一区二区三区| 有码 亚洲区| 自线自在国产av| 欧美人与性动交α欧美精品济南到 | 日本爱情动作片www.在线观看| 久热这里只有精品99| 一区二区av电影网| 久久久久久久国产电影| 亚洲熟女精品中文字幕| 香蕉精品网在线| 日本色播在线视频| 如何舔出高潮| 男人操女人黄网站| 亚洲精品中文字幕在线视频| 老鸭窝网址在线观看| 美女国产高潮福利片在线看| 国产成人精品无人区| 亚洲精品日本国产第一区| 永久免费av网站大全| 在现免费观看毛片| 永久网站在线| 日韩免费高清中文字幕av| 久久久久久久久久人人人人人人| 亚洲情色 制服丝袜| 在线观看一区二区三区激情| 精品国产一区二区久久| 麻豆精品久久久久久蜜桃| 国产午夜精品一二区理论片| 国产伦理片在线播放av一区| 99久久中文字幕三级久久日本| 成人二区视频| 纵有疾风起免费观看全集完整版| 午夜日韩欧美国产| 久久久国产精品麻豆| 男男h啪啪无遮挡| 少妇的逼水好多| 久久久久视频综合| 亚洲图色成人| 波多野结衣一区麻豆| 国产成人aa在线观看| 亚洲第一区二区三区不卡| 国产成人免费无遮挡视频| 久久这里只有精品19| 免费看不卡的av| 高清不卡的av网站| 亚洲第一av免费看| 极品人妻少妇av视频| 黑人猛操日本美女一级片| 成年女人在线观看亚洲视频| 中国三级夫妇交换| 伊人久久国产一区二区| 免费播放大片免费观看视频在线观看| 天堂俺去俺来也www色官网| 久久精品亚洲av国产电影网| 亚洲美女搞黄在线观看| 中文精品一卡2卡3卡4更新| 国产午夜精品一二区理论片| 啦啦啦在线免费观看视频4| 在线天堂最新版资源| 国产黄色视频一区二区在线观看| 五月伊人婷婷丁香| 国产一区有黄有色的免费视频| 亚洲欧洲精品一区二区精品久久久 | 99九九在线精品视频| 人成视频在线观看免费观看| 婷婷色av中文字幕| 99久久中文字幕三级久久日本| 80岁老熟妇乱子伦牲交| 啦啦啦中文免费视频观看日本| 中文字幕另类日韩欧美亚洲嫩草| 久久人人爽人人片av| 日韩伦理黄色片| 国产又爽黄色视频| 天堂8中文在线网| 国产av精品麻豆| 一二三四在线观看免费中文在| 日韩中字成人| 精品一区二区三卡| 日本爱情动作片www.在线观看| 欧美激情高清一区二区三区 | a级片在线免费高清观看视频| 免费观看无遮挡的男女| 永久免费av网站大全| 亚洲精品中文字幕在线视频| 亚洲成国产人片在线观看| 1024香蕉在线观看| av国产久精品久网站免费入址| 精品福利永久在线观看| 中文字幕亚洲精品专区| 欧美日韩亚洲国产一区二区在线观看 | 亚洲av成人精品一二三区| 天美传媒精品一区二区| 国产精品久久久av美女十八| 久久久精品国产亚洲av高清涩受| 国产精品一二三区在线看| 日韩一本色道免费dvd| 国产黄色视频一区二区在线观看| 亚洲av欧美aⅴ国产| 亚洲国产精品成人久久小说| av网站免费在线观看视频| 免费在线观看视频国产中文字幕亚洲 | 蜜桃在线观看..| 久久ye,这里只有精品| 亚洲,欧美精品.| 我的亚洲天堂| 在线精品无人区一区二区三| 久久久久久久精品精品| 精品酒店卫生间| 91精品伊人久久大香线蕉| 老司机影院毛片| 亚洲精品国产av成人精品| 在线看a的网站| 国产 精品1| 电影成人av| 少妇熟女欧美另类| 香蕉国产在线看| 中文字幕制服av| 亚洲欧美成人综合另类久久久| 亚洲国产精品国产精品| 18禁裸乳无遮挡动漫免费视频| 男人添女人高潮全过程视频| 激情五月婷婷亚洲| 国产精品不卡视频一区二区| 亚洲av福利一区| 亚洲精品久久成人aⅴ小说| 国产精品一区二区在线不卡| 亚洲,欧美,日韩| 国产在视频线精品| 国产精品一国产av| 美女中出高潮动态图| 一区二区三区四区激情视频| 久久久久久久久久久久大奶| 亚洲图色成人| 久久影院123| 国产成人精品在线电影| 国产乱来视频区| 七月丁香在线播放| 人人妻人人爽人人添夜夜欢视频| 免费日韩欧美在线观看| av免费观看日本| 一区福利在线观看| 王馨瑶露胸无遮挡在线观看| 在线观看免费日韩欧美大片| 国产一区有黄有色的免费视频| 午夜免费鲁丝| 中文天堂在线官网| 免费黄网站久久成人精品| 亚洲精品国产色婷婷电影| 丝袜美腿诱惑在线| 另类精品久久| 免费久久久久久久精品成人欧美视频| 性高湖久久久久久久久免费观看| 亚洲五月色婷婷综合| 成人国语在线视频| 久久久久精品人妻al黑| 水蜜桃什么品种好| 女人精品久久久久毛片| 亚洲,欧美,日韩| 亚洲国产精品成人久久小说| 国产精品秋霞免费鲁丝片| 欧美激情 高清一区二区三区| 免费在线观看视频国产中文字幕亚洲 | 国产精品一国产av| www.熟女人妻精品国产| 亚洲成av片中文字幕在线观看 | 卡戴珊不雅视频在线播放| 亚洲国产日韩一区二区| 黄色怎么调成土黄色| 亚洲伊人色综图| 中文字幕色久视频| 日韩一区二区视频免费看| av天堂久久9| 十八禁网站网址无遮挡| 午夜日韩欧美国产| 精品国产乱码久久久久久男人| 国产 精品1| 亚洲天堂av无毛| 91成人精品电影| 亚洲欧洲日产国产| 免费在线观看完整版高清| 午夜福利视频精品| 永久网站在线| 麻豆精品久久久久久蜜桃| 69精品国产乱码久久久| 免费黄频网站在线观看国产| 免费av中文字幕在线| 亚洲精品美女久久久久99蜜臀 | 成人毛片a级毛片在线播放| 亚洲精品在线美女| av片东京热男人的天堂| 国产一区有黄有色的免费视频| 大码成人一级视频| 久热这里只有精品99| 免费观看性生交大片5| 欧美日韩一区二区视频在线观看视频在线| 亚洲一区中文字幕在线| 超色免费av| 亚洲图色成人| 日韩av免费高清视频| 亚洲第一青青草原| 久久久久久久精品精品|