• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Impact of seawater carbonate variables on post-larval bivalve calcification*

    2018-05-07 06:07:31LIJiaqi李加琦MAOYuze毛玉澤JIANGZengjie蔣增杰ZHANGJihong張繼紅BIANDapeng卞大鵬FANGJianguang方建光
    Journal of Oceanology and Limnology 2018年2期
    關(guān)鍵詞:大鵬

    LI Jiaqi (李加琦) , MAO Yuze ( 毛玉澤) , JIANG Zengjie ( 蔣增杰) ,ZHANG Jihong ( 張繼紅) , BIAN Dapeng ( 卞大鵬) , FANG Jianguang ( 方建光) ,

    1 Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China

    2 Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology,Qingdao 266071, China

    3 Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China

    4 National Engineering and Research Center of Marine Shellfish, Weihai 264316, China

    1 INTRODUCTION

    Marine calcifiers, such as corals, coralline algae,and shellfish that produce calcium carbonate are vulnerable to ocean acidification (OA) (Anthony et al., 2008; Kuff ner et al., 2008; Pandolfiet al., 2011).The calcification rate of coral reefs (Maier et al.,2009; Jokiel, 2013; Maier et al., 2016) and coralline algae (Kuff ner et al., 2008; Semesi et al., 2009b) will decrease under acidified conditions based on the carbon dioxide partial pressure (pCO2) levels predicted at the end of this century. Larval shell growth and hardness of eastern oysters (Crassostrea virginica) decreases under highpCO2conditions(Anthony et al., 2008). Larval shells in several species of shellfish, such as mussels (Kurihara et al., 2009;Gazeau et al., 2010; Kelly et al., 2016), oysters(Kurihara et al., 2007; Parker et al., 2010; Waldbusser et al., 2016), abalone (Byrne et al., 2011; Crim et al.,2011; Li et al., 2013), and scallops (Talmage and Gobler, 2009; White et al., 2013; Wang et al., 2016)are malformed by OA. Larval (Miller et al., 2009;Talmage and Gobler, 2010) and adult bivalves(Gazeau et al., 2007; Pfister et al., 2016; Ries et al.,2016) will also suff er reduced calcification under the pH conditions predicted for the end of this century.The calcification response by these marine calcifiers to acidified environments is a main issue for OA-related studies to explore. However, the variables regulating calcification rate are controversial.

    It is well known that marine calcifiers useto deposit their calcareous skeleton by the following reaction:(Frankignoulle et al., 1995). Therefore, a decline in calcification rates of calcifiers under acidified conditions might be attributed to increased [H+] or a decrease ofor dissolved inorganic carbon (DIC). Some researchers have proposed that calcification rate of coral (Madracisauretenra)responds to variations in bicarbonate concentration rather than carbonate concentration or pH (Jury et al.,2010). They observed a normal or even elevated calcification rate of corals at pH 7.6–7.8 when bicarbonate concentration was >1 800 μmol/L, but the calcification rate decreased if the bicarbonate concentration was lower under a normal pH condition.Other researchers believe that coral calcification is determined by the availability of therather than pH orˉ (Kleypas et al., 1999; Silverman et al.,2007; Marubini et al., 2008). Gazeau et al. (2007)reported that the calcification rates of mussels (Mytilus edulis) and Pacific oysters (Crassostreagigas) decline linearly with increasingpCO2, but they did not differentiate the roles of pH, bicarbonate, carbonate,or DIC concentration when determining the calcification rate.

    To identify the key factors involved in biomineralization, calcification rates of calcifiers have been measured in manipulated CO2-carbonate systems. Gattuso et al. (1998) manipulated calcium concentration under constant pH and carbonate conditions to adjust the aragonite saturation level of seawater and found that the coral calcification rate increased if the aragonite saturation level was also increased. Langdon et al. (2000) manipulated both calcium and carbonate concentrations to obtain the required aragonite saturation level of seawater and found consistent regulated changes in calcification rate of coral to the manipulated aragonite saturation.Waldbusser et al. (2015) manipulated seawater DIC with mineral acids and bases and reported that shell development of two bivalve larvae,C.gigas, andMytilusgalloprovincialis, are dependent on carbonate saturation state, and not onpCO2or pH. Another study reported that limiting DIC strongly reduced calcification, despite a high(Thomsen et al.,2015). They believed that mussels utilizerather thanas the inorganic carbon source for biomineralization. To distinguish the key factors determining calcification rate of post-larval shellfish,conditions with decreased pH or lowered DIC were created by bubbling CO2-enriched air or adding a hydrochloride solution to natural seawater.Calcification rates of juvenile blue mussels (M.edulis)and Zhikong scallops (Chlamysfarreri) were measured in these different carbonate systems.Significant correlations were observed between calcification rate and DIC/[H+] andin both species. We also found that calcification rate of these two bivalve species increased under elevated pH conditions.

    2 MATERIAL AND METHOD

    2.1 Animal collection and cultivation

    All animals used in the experiment were collected from Sangou Bay, Weihai, China. The shell heights of the Zhikong scallops and blue mussels sampled from the local aquaculture populations were 3.53±0.25 cm and 3.55±0.41 cm, respectively. Individuals were acclimated to experimental conditions for 2 weeks before being used to measure calcification rate.Animals were reared together withUlvapertusaKjellman in 1-L beakers placed in an illumination incubator. The incubation temperature was 20°C and the light-dark photoperiod was 6 min light: 3 min dark. The pH of the experimental seawater was maintained at 8.20±0.10 by adjusting the amount ofU.pertusain the beaker. No aeration was used, as the mollusks obtained sufficient oxygen from the photosynthetic activity ofU.pertusa(dissolved oxygen [DO]>6.5 mg/L). Animals in each beaker were fed about a 50 mL suspension ofPlatymonassp.(about 2×106/mL seawater) twice daily.

    2.2 Manipulation of the seawater carbonate system

    The pH level or DIC was adjusted in the seawater carbonate system. The seawater was bubbled with CO2-enriched air, and pH was adjusted down to the required level.U.pertusawas added and incubated in the illumination incubator to increase seawater pH. A two-step method was applied to decrease DIC of seawater while the pH remained constant. In the first step, seawater pH was increased by incubating withU.pertusain the illumination incubator. Then, a mixture of seawater and concentrated hydrochloric acid (1:1) was added to the experimental seawater to reduce pH down to pH 8.2 in the second step. After repeating these steps twice, we acquired experimental seawater with an extremely low DIC level and normal pH (8.2). Experimental seawater with the requiredDIC level was prepared by mixing seawater with a low level of DIC and natural seawater.

    Table 1 Initial water temperature, salinity, total alkalinity (TA), dissolved inorganic carbon (DIC), pH, and carbonate saturation state (Ω Cal) of the experimental seawater

    Water temperature and salinity were measured using a combined electrode (YSI ProPlus; YSI,Yellow Springs, OH, USA), and pH was measured using a pH electrode (Thermo Scientific 3-Star,ORION; Waltham, MA, USA). The pH electrode was calibrated daily with buff ers traceable to the NIST(NBS) standard. The DO concentration in the experimental seawater was measured using a DO electrode (Multi 3420; WTW, Weilheim, Germany).Total alkalinity (TA) was measured within hours after sampling using an automatic titrator (848 Titrino plus;Metrohm, Riverview, FL, USA).

    2.3 Calcification rate measurement

    We used the following equation to calculate the calcification rate (Gazeau et al., 2007):

    whereGis calcification rate (μmol/(g·h)), TAiis initial TA of the experimental seawater (μmol/L), TAfis the final TA of the experimental seawater (μmol/L),Tis the experimental duration (h),Mis whole wet weight of the experimental animals (g), andVis the volume of the experimental seawater (L).

    Four to six animals and about 3 g ofU.pertusawere placed in a 500-mL beaker filled with 400 mL of seawater and the required carbonate system. The beaker was placed in the illumination incubator with a light-dark photoperiod of 6 min light: 3 min dark. The animals were incubated in the beaker for 1 hour while the amount ofU.pertusawas adjusted every 15 min to maintain a stable pH. Before measuring the calcification rate, the incubating seawater was replaced with fresh seawater. During the 2 h incubation for the calcification rate measurement, the amount ofU.pertusawas adjusted every 30 min to maintain pH within ±0.1 units. Seawater that was used to measure pH, salinity, and TA was sampled before and immediately after the incubation. Mean pH, TA, water temperature, and salinity were used to calculate thepCO2,DIC, calcite, and aragonite saturation values (Table 1) using CO2SYS (Pierrot et al., 2006). Four replicate groups were employed for the calcification rate measurements of each species.

    2.4 Statistics

    The correlation coefficient between carbonate variables and the calcification rates of blue mussels and Zhikong scallops and its significance was calculated using Pearson’s correlation analysis and SPSS 19.0 software (SPSS Inc., Chicago, IL, USA). A two-tailed procedure was used to test the significance of the correlation coefficient, and aP<0.05 was considered significant for all tests.

    3 RESULT

    Calcification rate of juvenile blue mussels was associated with the seawater carbonate system (Fig.1).However, different results were found between the two different carbonate systems. Positive correlations were observed between calcification rate of juvenile blue mussels and pH, DIC/[H+] orwhereas negative correlations were observed between calcification rate and DIC orduring incubations under high or low pH conditions (Fig.1,column a). Positive correlations were observed between calcification rate and DIC,, DIC/[H+], andduring the incubation with low DIC and normal pH, whereas no correlation was detected between calcification rate and pH (Fig.1, column b).

    Fig.1 Plot of seawater pH,, dissolved inorganic carbon (DIC), DIC/[H+], andvs. calcification rate of blue mussels

    Table 2 Correlation coefficients between carbonate variables and calcification rate of blue mussels and Zhikong scallops

    Table 3 Variations in pH, total alkalinity (TA), and the carbonate system variables in the experimental seawater incubated with Ulva pertusa for 60 min

    It was clear that the calcification rate of juvenile mussels was positively correlated (P<0.05) with and DIC/[H+] andin both carbonate systems (Table 2).

    Similar results were found in Zhikong scallops(Fig.2). Positive correlations were observed between calcification rate of Zhikong scallops and pH, DIC/[H+], andwhereas negative correlations were observed between calcification rate and DIC andunder low and high pH conditions (Fig.1,column a). Positive correlations were detected between calcification rate and DIC,, DIC/[H+], andwhereas no significant correlation was observed between calcification rate and pH in seawater with a low DIC level and normal pH (Fig.1,column b). Only DIC/[H+] andshowed a positive dominant effect (P<0.05) when determining calcification rate of juvenile Zhikong scallops in both carbonate systems (Table 2).

    4 DISCUSSION

    It has been reported that ocean surface seawater pH will drop to about 7.7 (IPCC, 2007) by the end of this century. Marine calcifiers, such as mollusks, may face a stressful future as it will be more difficult for them to generate calcareous shells (Gazeau et al., 2007). It seems that the decrease in calcification rate under acidified conditions is directly attributed to higher[H+]. However, higher [H+] changes the seawater carbonate system, which may play a determining role in biological calcium carbonate deposition. Therefore,it is important to isolate the main factor from acidified seawater that is responsible for the decrease in calcification rate. We measured calcification rate of blue mussels and Zhikong scallops under conditions created in different carbonate systems. The results support that the calcifying ability of post-larval shellfish was correlated withorrather than pH, DIC, or

    Experimental animals continuously released CO2into seawater during the calcification rate measurement. If this CO2is absorbed, experimental seawater pH would decrease. Thus, we introducedU.pertusainto the incubation system to remove the CO2. However, this raised concern about the accuracy of the calcification measurement, as the seawater carbonate system would change in response to the photosynthetic activity ofU.pertusa. The carbonate system variables and pH of the experimental seawater changed in response to the photosynthetic activity ofU.pertusa, but the TA of seawater remained unchanged (Table 3). As a result, addingU.pertusato the incubation system did not affect the calcification rate calculation.

    Fig.2 Plot of seawater pH, ˉ], dissolve inorganic carbon (DIC), DIC/[H+ ], and [ vs. calcification rate of Zhikong scallops

    Several studies have investigated the dominant variables in carbonate systems while calcium carbonate deposition rate was determined in marine calcifiers. Jury et al., (2010) reported that calcification rate of coral (Madracisauretenra) responds to variations in bicarbonate concentration rather than carbonate concentration. In contrast, Jokiel (2013)found that the calcification rates of the coralPorites rusand the crustose coralline algae (CCA)Hydrolithon onkodesare correlated with the DIC/[H+] andMoreover, Gattuso et al. (1998) manipulated a carbonate chemistry system by adjusting calcium concentration and found that calcification rate of the coralStylophorapistillatawas affected by carbonate saturation state. Waldbusser et al. (2015) reported that larval bivalve shell development and growth are dependent on seawater carbonate saturation state, but not onpCO2or pH. They did not discuss the correlation between calcification rate of larval bivalves with DIC/[H+]. Jokiel (2013) reported that calcification of coral reefs is driven by the DIC/[H+] ratio and thathas no physiological relevance. However, the carbonate saturation state orin natural seawater is tightly correlated with the DIC/[H+] ratio, and carbonate saturation state is determined byTherefore, it is difficult to determine whetheror the DIC/[H+] ratio is the key variable when calculating calcification rate. Our findings support that calcification rates of post-larval blue mussels and Zhikong scallops are correlated withand DIC/[H+] ratio rather than DIC,or pH.

    Several biological processes of calcifying organisms are stressed under acidified conditions (Orr et al., 2005). We also found that biological calcification of bivalves is susceptible to seawater acidification.No signs of acclimation to a saturated state by a coral reef have been observed, as no significant difference in calcification rate was observed between short-term and long-term incubation (Pandolfiet al., 2011). This result reminds us that some species of marine calcifiers may lack the capacity to generate a calcium carbonate skeleton under acidified conditions even after longterm acclimation. These calcifying organisms may face severe challenges in the acidified future.However, blue mussels generated a calcareous shell under extremely low levels of carbonate saturation in a long-term incubation experiment (Thomsen and Melzner, 2010). This finding is markedly different from short-term research (White et al., 2013), in which blue mussels nearly lost their calcifying ability under similar conditions to that of the long-term incubation. It seems that some bivalves may possess the mechanisms to acclimate to lowor DIC/[H+] conditions. As a result, more studies are required to understand the response of shellfish calcification to the seawater carbonate system.

    This study may provide some novel insight about the benefit that shellfish can acquire in integrated shellfish-algae aquaculture. Algae are helpful for producing oxygen and absorbing waste in integrated aquaculture systems (Mao et al., 2009; Tang et al.,2011; Chopin et al., 2012). Algae may also be helpful in creating a comfortable carbonate environment for shellfish to calcify. Algae provide oxygen, absorb nutrients, and are capable of adjusting the carbonate system. Seawater pH in a low water exchange bay can increase from 7.9 to 8.9 because of the photosynthetic activity of seaweeds (Semesi et al., 2009a), and a high seaweed biomass can easily elevate the pH of seawater in confined tidal pools (Clements and Chopin, 2016).This higher seawater pH would then increase the level ofor the DIC/[H+] ratio, which is beneficial for biomineralization of shellfish. Therefore, algae can help enhance the calcium carbonate deposition efficiency of shellfish in an integrated aquaculture system.

    5 CONCLUSION

    Our findings show that calcification rates of postlarval blue mussels and Zhikong scallops are correlated withand the DIC/[H+] ratio rather than DIC,or pH. However, the calcification rate differed in short-term and long-term experiments.As a result, more studies are required to understand the response of shellfish calcification to the seawater carbonate system.

    6 ACKNOWLEDGEMENT

    We thank Mr. James Yang Xie from Hong Kong Baptist University (HKBU) for editing our manuscript.

    Anthony K R N, Kline D I, Diaz-Pulido G, Dove S, Hoegh-Guldberg O. 2008. Ocean acidification causes bleaching and productivity loss in coral reef builders.Proceedings oftheNationalAcademyofSciencesoftheUnitedStates ofAmerica,105(45): 17 442-17 446.

    Byrne M, Ho M, Wong E, Soars N A, Selvakumaraswamy P,Shepard-Brennand H, Dworjanyn S A, Davis A R. 2011.Unshelled abalone and corrupted urchins: development of marine calcifiers in a changing ocean.Proceedingsofthe RoyalSocietyB:BiologicalSciences,278(1716): 2 376-2 383.

    Chopin T, Cooper J A, Reid G, Cross S, Moore C. 2012. Openwater integrated multi-trophic aquaculture: environmental biomitigation and economic diversification of fed aquaculture by extractive aquaculture.Reviewsin Aquaculture,4(4): 209-220.

    Clements J C, Chopin T. 2016. Ocean acidification and marine aquaculture in North America: potential impacts and mitigation strategies.ReviewsinAquaculture,56(3): 182-196

    Crim R N, Sunday J M, Harley C D G. 2011. Elevated seawater CO2concentrations impair larval development and reduce larval survival in endangered northern abalone (Haliotis kamtschatkana).JournalofExperimentalMarineBiology andEcology,400(1-2): 272-277.

    de Putron S J, McCorkle D C, Cohen A L, Dillon A B. 2011.The impact of seawater saturation state and bicarbonate ion concentration on calcification by new recruits of two Atlantic corals.CoralReefs,30(2): 321-328.

    Frankignoulle M, Pichon M, Gattuso J P. 1995. Aquatic calcification as a source of carbon dioxide.In: Beran M A ed. Carbon Sequestration in the Biosphere: Processes and Prospects. Springer, Berlin Heidelberg. p.265-271.

    Gattuso J P, Frankignoulle M, Bourge I, Romaine S,Buddemeier R W. 1998. effect of calcium carbonate saturation of seawater on coral calcification.Globaland PlanetaryChange,18(1-2): 37-46.

    Gazeau F, Gattuso J P, Dawber C, Pronker A E, Peene F, Peene J, Heip C H R, Middelburg J J. 2010. effect of ocean acidification on the early life stages of the blue musselMytilusedulis.Biogeosciences,7(7): 2 051-2 060.

    Gazeau F, Quiblier C, Jansen J M, Gattuso J P, Middelburg J J,Heip C H R. 2007. Impact of elevated CO2on shellfish calcification.GeophysicalResearchLetters,34(7):L07603.

    IPCC. 2007. Climate Change 2007: The Physical Science Basis: Working Group I Contribution to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC). Cambridge University Press,Cambridge, UK and New York, USA.

    Jokiel P L. 2013. Coral reef calcification: carbonate,bicarbonate and proton flux under conditions of increasing ocean acidification.ProceedingsoftheRoyalSocietyB:BiologicalSciences,280(1764): 20130031.

    Jury C P, Whitehead R F, Szmant A M. 2010. effects of variations in carbonate chemistry on the calcification rates ofMadracisauretenra(=MadracismirabilissensuWells,1973): bicarbonate concentrations best predict calcification rates.GlobalChangeBiology,16(5): 1 632-1 644.

    Kelly M W, Padilla-Gami?o J L, Hofmann G E. 2016. HighpCO2aff ects body size, but not gene expression in larvae of the California mussel (Mytiluscalifornianus).ICES JournalofMarineScience,73(3): 962-969.

    Kleypas J A, Buddemeier R W, Archer D, Gattuso J P, Langdon C, Opdyke B N. 1999. Geochemical consequences of increased atmospheric carbon dioxide on coral reefs.Science,284(5411): 118-120.

    Kuff ner I B, Andersson A J, Jokiel P L, Rodgers K S, Mackenzie F T. 2008. Decreased abundance of crustose coralline algae due to ocean acidification.NatureGeoscience,1(2):114-117.

    Kurihara H, Asai T, Kato S, Ishimatsu A. 2009. effects of elevatedpCO2on early development in the musselMytilus galloprovincialis.AquaticBiology,4(3): 225-233.

    Kurihara H, Kato S, Ishimatsu A. 2007. effects of increased seawater pCO2on early development of the oysterCrassostreagigas.AquaticBiology,1(1): 91-98.

    Langdon C, Takahashi T, Sweeney C, Chipman D, Goddard J,Marubini F, Aceves H, Barnett H, Atkinson M J. 2000.effect of calcium carbonate saturation state on the calcification rate of an experimental coral reef.Global BiogeochemicalCycles,14(2): 639-654.

    Li J Q, Jiang Z J, Zhang J H, Qiu J W, Du M R, Bian D P, Fang J G. 2013. Detrimental effects of reduced seawater pH on the early development of the Pacific abalone.Marine PollutionBulletin,74(1): 320-324.

    Maier C, Hegeman J, Weinbauer M G, Gattuso J P. 2009.Calcification of the cold-water coralLopheliapertusa,under ambient and reduced pH.Biogeosciences,6(8):1 671-1 680.

    Maier C, Popp P, Sollfrank N, Weinbauer M G, Wild C,Gattuso J P. 2016. effects of elevatedpCO2and feeding on net calcification and energy budget of the Mediterranean cold-water coralMadreporaoculata.TheJournalof ExperimentalBiology,219(20): 3 208-3 217.

    Mao Y Z, Yang H S, Zhou Y, Ye N H, Fang J G. 2009. Potential of the seaweedGracilarialemaneiformisfor integrated multi-trophic aquaculture with scallopChlamysfarreriin North China.JournalofAppliedPhycology,21(6): 649-656.

    Marubini F, Ferrier-Pagès C, Furla P, Allemand D. 2008. Coral calcification responds to seawater acidification: a working hypothesis towards a physiological mechanism.Coral Reefs,27(3): 491-499.

    Miller A W, Reynolds A C, Sobrino C, Riedel G F. 2009.Shellfish face uncertain future in high CO2world:influence of acidification on oyster larvae calcification and growth in estuaries.PLoSOne,4(5): e5661.

    Orr J C, Fabry V J, Aumont O, Bopp L, Doney S C, Feely R A,Gnanadesikan A, Gruber N, Ishida A, Joos F, Key R M,Lindsay K, Maier-Reimer E, Matear R, Monfray P,Mouchet A, Najjar R G, Plattner G K, Rodgers K B,Sabine C L, Sarmiento J L, Schlitzer R, Slater R D,Totterdell I J, Weirig M F, Yamanaka Y, Yool A. 2005.Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms.Nature,437(7059): 681-686.

    PandolfiJ M, Connolly S R, Marshall D J, Cohen A L. 2011.Projecting coral reef futures under global warming and ocean acidification.Science,333(6041): 418-422.

    Parker L M, Ross P M, O’Connor W A. 2010. Comparing the effect of elevatedpCO2and temperature on the fertilization and early development of two species of oysters.Marine Biology,157(11): 2 435-2 452.

    Pfister C A, Roy K, Wootton J T, McCoy S J, Paine R T,Suchanek T H, Sanford E. 2016. Historical baselines and the future of shell calcification for a foundation species in a changing ocean.ProceedingsoftheRoyalSocietyB:BiologicalSciences,283(1832): 20160392.

    Pierrot D, Lewis E, Wallace D W R. 2006. MS Excel program developed for CO2system calculations. ORNL/CDIAC-105. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, TN.

    Ries J B, Ghazaleh M N, Connolly B, Westfield I, Castillo K D. 2016. Impacts of seawater saturation state (ΩA=0.4-4.6) and temperature (10, 25°C) on the dissolution kinetics of whole-shell biogenic carbonates.Geochimicaet CosmochimicaActa,192: 318-337.

    Semesi I S, Beer S, Bj?rk M. 2009a. Seagrass photosynthesis controls rates of calcification and photosynthesis of calcareous macroalgae in a tropical seagrass meadow.MarineEcologyProgressSeries,382: 41-47.

    Semesi I S, Kangwe J, Bj?rk M. 2009b. Alterations in seawater pH and CO2affect calcification and photosynthesis in the tropical coralline alga,Hydrolithonsp. (Rhodophyta).Estuarine,CoastalandShelfScience,84(3): 337-341.

    Silverman J, Lazar B, Erez J. 2007. effect of aragonite saturation, temperature, and nutrients on the community calcification rate of a coral reef.JournalofGeophysical Research:Oceans,112(C5): C05004.

    Talmage S C, Gobler C J. 2009. The effects of elevated carbon dioxide concentrations on the metamorphosis, size, and survival of larval hard clams (Mercenariamercenaria),bay scallops (Argopectenirradians), and Eastern oysters(Crassostreavirginica).LimnologyandOceanography,54(6): 2 072-2 080.

    Talmage S C, Gobler C J. 2010. effects of past, present, and future ocean carbon dioxide concentrations on the growth and survival of larval shellfish.Proceedingsofthe NationalAcademyofSciencesoftheUnitedStatesof America,107(40): 17 246-17 251.

    Tang Q S, Zhang J H, Fang J G. 2011. Shellfish and seaweed mariculture increase atmospheric CO2absorption by coastal ecosystems.MarineEcologyProgressSeries,424: 97-105.

    Thomsen J, Haynert K, Wegner K M, Melzner F. 2015. Impact of seawater carbonate chemistry on the calcification of marine bivalves.Biogeosciences,12(14): 4 209-4 220.

    Thomsen J, Melzner F. 2010. Moderate seawater acidification does not elicit long-term metabolic depression in the blue musselMytilusedulis.MarineBiology,157(12): 2 667-2 676.

    Waldbusser G G, Gray M W, Hales B, Langdon C J, Haley B A, Gimenez I, Smith S R, Brunner E L, Hutchinson G.2016. Slow shell building, a possible trait for resistance to the effects of acute ocean acidification.Limnologyand Oceanography,61(6): 1 969-1 983.

    Waldbusser G G, Hales B, Langdon C J, Haley B A, Schrader P, Brunner E L, Gray M W, Miller C A, Gimenez I. 2015.Saturation-state sensitivity of marine bivalve larvae to ocean acidification.Nat.ClimateChang,5(3): 273-280.

    Wang W M, Liu G X, Zhang T W, Chen H J, Tang L, Mao X W. 2016. effects of elevated seawater pCO2on early development of scallopArgopectenirradias(Lamarck,1819).JournalofOceanUniversityofChina,15(6):1 073-1 079.

    White M M, McCorkle D C, Mullineaux L S, Cohen A L.2013. Early exposure of bay scallops (Argopecten irradians) to high CO2causes a decrease in larval shell growth.PLoSOne,8(4): e61065.

    猜你喜歡
    大鵬
    周鵬飛:大鵬展翅 跨界高飛
    華人時刊(2022年7期)2022-06-05 07:33:46
    Beating standard quantum limit via two-axis magnetic susceptibility measurement
    看圖紙
    三棱錐中的一個不等式
    Vorticity vector-potential method based on time-dependent curvilinear coordinates for two-dimensional rotating flows in closed configurations *
    Proton Beam Generated by Multi-Lasers Interaction with Rear-Holed Target
    李大鵬:打造縱向、橫向全域發(fā)展的蘇交科
    中國公路(2017年14期)2017-09-26 11:51:42
    劉業(yè)偉、王大鵬設(shè)計作品
    非誠勿擾
    AComparingandContrastingAnalysisofCooperationandPoliteness
    欧美最黄视频在线播放免费| 国产一区二区亚洲精品在线观看| 欧美色视频一区免费| 国产亚洲91精品色在线| 国模一区二区三区四区视频| 两人在一起打扑克的视频| 日韩一区二区视频免费看| 国产极品精品免费视频能看的| 久久久久久久久中文| 亚洲色图av天堂| 精品人妻视频免费看| 淫秽高清视频在线观看| 国产成人av教育| 日本欧美国产在线视频| 中出人妻视频一区二区| 亚洲久久久久久中文字幕| 精品免费久久久久久久清纯| 亚洲国产精品合色在线| 亚洲avbb在线观看| 一本一本综合久久| 在现免费观看毛片| 久久精品国产亚洲网站| 中文字幕人妻熟人妻熟丝袜美| 网址你懂的国产日韩在线| 日韩精品青青久久久久久| 搡老熟女国产l中国老女人| 69av精品久久久久久| 国产女主播在线喷水免费视频网站 | 十八禁网站免费在线| 嫩草影院入口| 国产久久久一区二区三区| 亚洲欧美日韩东京热| 老司机深夜福利视频在线观看| av在线亚洲专区| 国产精品久久久久久亚洲av鲁大| 亚洲国产精品久久男人天堂| 午夜免费激情av| 在线观看美女被高潮喷水网站| 午夜精品久久久久久毛片777| 亚洲一区高清亚洲精品| 给我免费播放毛片高清在线观看| 欧美三级亚洲精品| 赤兔流量卡办理| 大又大粗又爽又黄少妇毛片口| 国产男人的电影天堂91| 亚洲av成人av| 国产亚洲av嫩草精品影院| 内地一区二区视频在线| 免费无遮挡裸体视频| 少妇丰满av| 精品人妻1区二区| 国产三级中文精品| av.在线天堂| 欧美另类亚洲清纯唯美| 真人一进一出gif抽搐免费| 亚洲七黄色美女视频| 亚洲aⅴ乱码一区二区在线播放| 亚洲精品456在线播放app | 亚洲在线自拍视频| 天天躁日日操中文字幕| 国产精品国产三级国产av玫瑰| 国产精品av视频在线免费观看| 久久精品久久久久久噜噜老黄 | 精品久久久久久久久亚洲 | 一个人看视频在线观看www免费| 久久欧美精品欧美久久欧美| 欧美日韩综合久久久久久 | 日本爱情动作片www.在线观看 | 日韩精品中文字幕看吧| 人妻夜夜爽99麻豆av| 久久热精品热| 18禁黄网站禁片免费观看直播| 国内少妇人妻偷人精品xxx网站| 日本在线视频免费播放| 韩国av在线不卡| 国产成人影院久久av| 最近视频中文字幕2019在线8| 亚洲欧美日韩无卡精品| 久久人人精品亚洲av| 九色成人免费人妻av| 高清毛片免费观看视频网站| 欧美一级a爱片免费观看看| 一区二区三区免费毛片| 国产黄色小视频在线观看| 日本 欧美在线| 国国产精品蜜臀av免费| www.色视频.com| 日本 av在线| 99久久精品热视频| eeuss影院久久| 欧美+亚洲+日韩+国产| 成年女人永久免费观看视频| 中亚洲国语对白在线视频| 成人无遮挡网站| 日韩欧美三级三区| 12—13女人毛片做爰片一| 成人高潮视频无遮挡免费网站| 十八禁国产超污无遮挡网站| 黄色丝袜av网址大全| 成人精品一区二区免费| 国产熟女欧美一区二区| 天天一区二区日本电影三级| 可以在线观看毛片的网站| 日韩欧美在线二视频| 午夜福利成人在线免费观看| 国内精品久久久久久久电影| 两人在一起打扑克的视频| 夜夜夜夜夜久久久久| 色精品久久人妻99蜜桃| 听说在线观看完整版免费高清| 精品久久久久久久久av| 91在线精品国自产拍蜜月| 精品久久久久久久久av| 国内毛片毛片毛片毛片毛片| 美女高潮的动态| 日本三级黄在线观看| 日本在线视频免费播放| 国产人妻一区二区三区在| av视频在线观看入口| 在线观看美女被高潮喷水网站| 69人妻影院| 一夜夜www| 观看美女的网站| 婷婷丁香在线五月| 联通29元200g的流量卡| 亚洲欧美日韩东京热| .国产精品久久| 国产又黄又爽又无遮挡在线| 国产在线精品亚洲第一网站| 亚洲国产精品久久男人天堂| 成人综合一区亚洲| 女的被弄到高潮叫床怎么办 | 午夜福利高清视频| 国产国拍精品亚洲av在线观看| 中亚洲国语对白在线视频| 色av中文字幕| .国产精品久久| 日韩精品有码人妻一区| 天美传媒精品一区二区| 在线播放国产精品三级| 麻豆久久精品国产亚洲av| 国产高清激情床上av| 男女视频在线观看网站免费| 午夜福利在线观看吧| 国产精品自产拍在线观看55亚洲| 又粗又爽又猛毛片免费看| 成人高潮视频无遮挡免费网站| 又黄又爽又免费观看的视频| 欧美激情久久久久久爽电影| 久久精品91蜜桃| 男女下面进入的视频免费午夜| 色吧在线观看| 免费大片18禁| 18禁裸乳无遮挡免费网站照片| 久久久久国内视频| 国产精品久久久久久av不卡| 日韩强制内射视频| 男女之事视频高清在线观看| а√天堂www在线а√下载| 国产精品嫩草影院av在线观看 | 精品99又大又爽又粗少妇毛片 | 亚洲美女搞黄在线观看 | 免费不卡的大黄色大毛片视频在线观看 | 丰满的人妻完整版| 91午夜精品亚洲一区二区三区 | 日日摸夜夜添夜夜添小说| 精品无人区乱码1区二区| 三级毛片av免费| 午夜老司机福利剧场| 亚洲aⅴ乱码一区二区在线播放| 国产精品,欧美在线| 麻豆国产av国片精品| 亚洲性久久影院| 成人三级黄色视频| 亚洲国产精品成人综合色| 日本一本二区三区精品| 亚洲真实伦在线观看| 久久人人爽人人爽人人片va| 啦啦啦啦在线视频资源| 中文字幕高清在线视频| 一级黄色大片毛片| 人妻制服诱惑在线中文字幕| 一级黄色大片毛片| 久久香蕉精品热| 精品不卡国产一区二区三区| 国产黄片美女视频| 波野结衣二区三区在线| 又紧又爽又黄一区二区| 成人三级黄色视频| 日韩高清综合在线| 免费av观看视频| 无遮挡黄片免费观看| АⅤ资源中文在线天堂| 亚洲四区av| 中文字幕人妻熟人妻熟丝袜美| 免费黄网站久久成人精品| 天堂av国产一区二区熟女人妻| 日日摸夜夜添夜夜添小说| 亚洲色图av天堂| 97碰自拍视频| 男人舔女人下体高潮全视频| 亚洲美女视频黄频| 午夜福利在线观看吧| 亚洲av不卡在线观看| 国产在视频线在精品| 18禁黄网站禁片午夜丰满| 免费观看的影片在线观看| 麻豆国产av国片精品| 中亚洲国语对白在线视频| 18禁裸乳无遮挡免费网站照片| 欧美色欧美亚洲另类二区| 精品国内亚洲2022精品成人| 欧美bdsm另类| 国产人妻一区二区三区在| 久久久久久久久久久丰满 | 精品久久久久久成人av| 久久精品国产亚洲av天美| 中文字幕av在线有码专区| 久久精品国产亚洲av涩爱 | 搡老岳熟女国产| 久久久久久久午夜电影| 别揉我奶头 嗯啊视频| 亚洲专区中文字幕在线| 国产精品久久视频播放| 免费人成在线观看视频色| 色5月婷婷丁香| 日韩欧美 国产精品| 日韩中字成人| 久久久久久久久久黄片| а√天堂www在线а√下载| 亚洲国产色片| 久久99热6这里只有精品| 国产v大片淫在线免费观看| 99久久成人亚洲精品观看| 午夜福利在线观看免费完整高清在 | 我要搜黄色片| 久久久久久久精品吃奶| 嫁个100分男人电影在线观看| 黄色视频,在线免费观看| 亚洲精华国产精华精| 97热精品久久久久久| 亚洲国产色片| 中出人妻视频一区二区| 欧美另类亚洲清纯唯美| 赤兔流量卡办理| 国产真实伦视频高清在线观看 | 免费观看在线日韩| 男女那种视频在线观看| 国产高清不卡午夜福利| 精品久久久久久久久亚洲 | 九九热线精品视视频播放| 十八禁网站免费在线| 色播亚洲综合网| 国产麻豆成人av免费视频| 色av中文字幕| 亚洲中文日韩欧美视频| 免费av毛片视频| 美女cb高潮喷水在线观看| 女的被弄到高潮叫床怎么办 | 亚洲精品亚洲一区二区| 亚洲乱码一区二区免费版| 久久久成人免费电影| av在线天堂中文字幕| 99热这里只有是精品在线观看| 日韩国内少妇激情av| 琪琪午夜伦伦电影理论片6080| 午夜福利在线在线| 久久欧美精品欧美久久欧美| 国产伦精品一区二区三区视频9| 97超视频在线观看视频| 18禁在线播放成人免费| 欧美激情在线99| 午夜免费激情av| 久久午夜福利片| 无人区码免费观看不卡| 嫩草影院新地址| 如何舔出高潮| 国产激情偷乱视频一区二区| 一个人看的www免费观看视频| 成人国产一区最新在线观看| 亚洲成人中文字幕在线播放| 男人舔女人下体高潮全视频| 国产av不卡久久| 99九九线精品视频在线观看视频| 成人无遮挡网站| 国产真实乱freesex| 蜜桃久久精品国产亚洲av| 精品福利观看| 丰满乱子伦码专区| 欧美丝袜亚洲另类 | 91av网一区二区| 国产一区二区在线观看日韩| 亚州av有码| 深夜精品福利| 制服丝袜大香蕉在线| 嫩草影院新地址| 久久久色成人| 欧美在线一区亚洲| 国产中年淑女户外野战色| 久久久久国产精品人妻aⅴ院| 国产成年人精品一区二区| 亚洲国产色片| 一区二区三区激情视频| 日本免费a在线| 精品人妻一区二区三区麻豆 | 麻豆成人午夜福利视频| 亚洲va日本ⅴa欧美va伊人久久| www.色视频.com| 毛片一级片免费看久久久久 | 国产色婷婷99| 免费观看精品视频网站| 色综合婷婷激情| 亚洲色图av天堂| 男女啪啪激烈高潮av片| 最新中文字幕久久久久| 久久中文看片网| videossex国产| 久久久精品大字幕| 国产真实伦视频高清在线观看 | av天堂中文字幕网| 久久久精品欧美日韩精品| 日韩一区二区视频免费看| 男人舔女人下体高潮全视频| 人妻少妇偷人精品九色| 欧美+日韩+精品| 人人妻人人澡欧美一区二区| 欧美激情在线99| 直男gayav资源| 国产老妇女一区| 久久这里只有精品中国| 亚洲熟妇熟女久久| av在线天堂中文字幕| 男女视频在线观看网站免费| 久久久国产成人免费| 99精品久久久久人妻精品| 性欧美人与动物交配| 国产色婷婷99| 欧美最新免费一区二区三区| 国产精品爽爽va在线观看网站| 欧美极品一区二区三区四区| 日韩精品青青久久久久久| videossex国产| 日韩精品中文字幕看吧| 亚洲性夜色夜夜综合| av在线老鸭窝| 国产精品,欧美在线| 亚洲国产色片| 窝窝影院91人妻| 日本成人三级电影网站| av天堂中文字幕网| 男人舔奶头视频| 草草在线视频免费看| 亚洲18禁久久av| 日本 欧美在线| 午夜福利视频1000在线观看| 久久久久国产精品人妻aⅴ院| 精品免费久久久久久久清纯| 啦啦啦韩国在线观看视频| 九九久久精品国产亚洲av麻豆| 亚洲七黄色美女视频| 日韩欧美国产在线观看| 观看免费一级毛片| 国产高清不卡午夜福利| 日韩精品有码人妻一区| 日韩欧美免费精品| 亚洲人与动物交配视频| 国产av一区在线观看免费| 国产色婷婷99| 日本免费一区二区三区高清不卡| 欧美xxxx黑人xx丫x性爽| 国产探花极品一区二区| 观看美女的网站| 少妇的逼水好多| 久久久久久久久大av| 午夜久久久久精精品| www日本黄色视频网| 一个人免费在线观看电影| 中文在线观看免费www的网站| 国产成人一区二区在线| 欧美最新免费一区二区三区| av天堂在线播放| 亚洲美女视频黄频| 亚洲av一区综合| 桃色一区二区三区在线观看| 真实男女啪啪啪动态图| 国语自产精品视频在线第100页| 国产精品一及| 亚洲精品乱码久久久v下载方式| 三级国产精品欧美在线观看| av女优亚洲男人天堂| 成人特级黄色片久久久久久久| 99久久无色码亚洲精品果冻| 亚洲在线自拍视频| 99久久久亚洲精品蜜臀av| 一个人免费在线观看电影| 禁无遮挡网站| 久久精品国产鲁丝片午夜精品 | 97人妻精品一区二区三区麻豆| 亚洲av一区综合| 国产人妻一区二区三区在| 亚洲天堂国产精品一区在线| 韩国av一区二区三区四区| 国产成人av教育| 最近在线观看免费完整版| 精品国内亚洲2022精品成人| 又黄又爽又免费观看的视频| 久久国产乱子免费精品| 一区二区三区四区激情视频 | 乱人视频在线观看| 国产在视频线在精品| 国产91精品成人一区二区三区| 亚洲av不卡在线观看| 99久久精品热视频| 99热这里只有精品一区| 亚洲精品在线观看二区| 男人和女人高潮做爰伦理| 久久久精品大字幕| 在线天堂最新版资源| 国产精品,欧美在线| 亚洲七黄色美女视频| 在线免费十八禁| 久久久久久久久久久丰满 | 精品99又大又爽又粗少妇毛片 | 舔av片在线| 亚洲精品乱码久久久v下载方式| 久久这里只有精品中国| 九九爱精品视频在线观看| 国产91精品成人一区二区三区| 一卡2卡三卡四卡精品乱码亚洲| 亚洲国产高清在线一区二区三| 国产一区二区三区在线臀色熟女| 婷婷丁香在线五月| 伦理电影大哥的女人| 久久精品国产自在天天线| 日本爱情动作片www.在线观看 | 日韩强制内射视频| bbb黄色大片| 可以在线观看毛片的网站| 欧美日韩精品成人综合77777| 亚洲人与动物交配视频| 国产午夜精品久久久久久一区二区三区 | 免费av不卡在线播放| 久久99热这里只有精品18| 久久国内精品自在自线图片| 精品久久久久久久久久免费视频| 国产视频一区二区在线看| 色吧在线观看| 欧美成人性av电影在线观看| 欧美丝袜亚洲另类 | 国产精品综合久久久久久久免费| 国产亚洲精品久久久com| 亚洲精华国产精华液的使用体验 | 99久久精品热视频| 久久久久久久精品吃奶| 久久精品国产亚洲av涩爱 | 女的被弄到高潮叫床怎么办 | 色精品久久人妻99蜜桃| 久久久久久久亚洲中文字幕| 亚洲国产精品久久男人天堂| 免费观看精品视频网站| 在线观看av片永久免费下载| 国产伦人伦偷精品视频| 免费一级毛片在线播放高清视频| 国产精品久久久久久精品电影| 久久久国产成人精品二区| 免费av不卡在线播放| 草草在线视频免费看| 嫁个100分男人电影在线观看| 黄色丝袜av网址大全| 国产熟女欧美一区二区| 琪琪午夜伦伦电影理论片6080| 18禁黄网站禁片午夜丰满| 久久久久免费精品人妻一区二区| www日本黄色视频网| 亚洲国产色片| 色哟哟哟哟哟哟| 99热这里只有是精品在线观看| av在线观看视频网站免费| 免费观看的影片在线观看| 波多野结衣高清无吗| 欧美极品一区二区三区四区| 国产男人的电影天堂91| 内射极品少妇av片p| 18禁裸乳无遮挡免费网站照片| 国产高潮美女av| 久久精品国产99精品国产亚洲性色| 久久这里只有精品中国| 国产av麻豆久久久久久久| 麻豆国产97在线/欧美| av黄色大香蕉| 国产一区二区在线观看日韩| 精品一区二区三区视频在线| 联通29元200g的流量卡| 欧美又色又爽又黄视频| 听说在线观看完整版免费高清| 久久久久性生活片| 日韩欧美 国产精品| 嫁个100分男人电影在线观看| 国产精品国产高清国产av| 偷拍熟女少妇极品色| 看十八女毛片水多多多| 久99久视频精品免费| www日本黄色视频网| 亚洲av成人精品一区久久| 欧美性感艳星| 99久久九九国产精品国产免费| 亚洲aⅴ乱码一区二区在线播放| 欧美人与善性xxx| 极品教师在线免费播放| 中文字幕高清在线视频| 深夜a级毛片| 亚洲精品影视一区二区三区av| 九色国产91popny在线| 国产午夜福利久久久久久| 狠狠狠狠99中文字幕| 久久久久久久久久久丰满 | 成人综合一区亚洲| 日本五十路高清| 亚洲欧美清纯卡通| 91狼人影院| 国产精品福利在线免费观看| 亚洲欧美激情综合另类| 午夜日韩欧美国产| 美女xxoo啪啪120秒动态图| 国产色爽女视频免费观看| 国产一区二区三区av在线 | 桃红色精品国产亚洲av| 亚洲性久久影院| 美女高潮喷水抽搐中文字幕| 亚洲人成伊人成综合网2020| 亚洲色图av天堂| 国产高清视频在线观看网站| 欧美3d第一页| 日本-黄色视频高清免费观看| 国产av不卡久久| 男人狂女人下面高潮的视频| 麻豆成人av在线观看| 3wmmmm亚洲av在线观看| 国产真实乱freesex| 日本免费一区二区三区高清不卡| 国产欧美日韩一区二区精品| 嫩草影视91久久| 精品人妻熟女av久视频| 国内揄拍国产精品人妻在线| 国产在视频线在精品| 日韩精品有码人妻一区| 国产淫片久久久久久久久| 国产伦一二天堂av在线观看| 有码 亚洲区| 在线播放国产精品三级| 神马国产精品三级电影在线观看| 久久久久久大精品| 亚洲精品456在线播放app | av中文乱码字幕在线| 99久久无色码亚洲精品果冻| 欧美日本视频| 国产男人的电影天堂91| 欧美日韩亚洲国产一区二区在线观看| 日韩人妻高清精品专区| 成人午夜高清在线视频| 亚洲人成网站高清观看| 91av网一区二区| 国产精华一区二区三区| 免费一级毛片在线播放高清视频| 国产一区二区激情短视频| 欧美高清性xxxxhd video| 日本五十路高清| 熟女人妻精品中文字幕| 国产三级中文精品| 乱码一卡2卡4卡精品| 床上黄色一级片| 在线观看66精品国产| 麻豆国产av国片精品| 精品人妻偷拍中文字幕| 高清在线国产一区| 亚洲成人中文字幕在线播放| 午夜激情欧美在线| 国产探花极品一区二区| 草草在线视频免费看| 日本一二三区视频观看| 欧美精品啪啪一区二区三区| 色哟哟·www| av黄色大香蕉| 精品久久国产蜜桃| 麻豆成人午夜福利视频| 波野结衣二区三区在线| 亚洲性夜色夜夜综合| 老司机福利观看| 日日啪夜夜撸| a级毛片a级免费在线| 成人二区视频| 精品人妻偷拍中文字幕| 禁无遮挡网站| 色哟哟哟哟哟哟| 欧美成人a在线观看| 欧美激情国产日韩精品一区| 欧美日韩中文字幕国产精品一区二区三区| 亚洲不卡免费看| 99九九线精品视频在线观看视频| 婷婷精品国产亚洲av| 久久久色成人| 搡女人真爽免费视频火全软件 | 禁无遮挡网站| 嫩草影视91久久| 美女高潮的动态| 色哟哟·www| 91在线观看av| 毛片一级片免费看久久久久 | 国产麻豆成人av免费视频| 免费一级毛片在线播放高清视频| 美女高潮喷水抽搐中文字幕| 在线播放国产精品三级| www日本黄色视频网| 国产在视频线在精品| 色综合亚洲欧美另类图片|